

www.eo4eu.eu

1

D3.2 - EO4EU automated systems and services (a)

Work Package WP3, Data Orchestration and ML

Lead Author (Org) Babis Andreou (NKUA)

Contributing Author(s)
(Org)

Kakia Panagidi (NKUA), Nektarios Deligianakis (NKUA), Kostas Kiriakos

(NKUA), Vironas Anemogianis (NKUA), Konstantinos Mirtolari (NKUA),

Michalis Loukeris (NKUA), Ioannis Varouxis (NKUA), Vironas Korpas

(NKUA), Armagan Karatosun (ECMWF), Tolga Kaprol (ECMWF), Claudio

Pisa (ECMWF), Vasileios Baousis (ECMWF), Lakis Christodoulou(EBOS),

Lucia Rodriguez Munoz (CINECA), Francesco Maria Cultrera (CINECA),

Piero Scrima (ENG)

Due Date 30.11.2023

Date 29.11.2023

Version V1.0

Dissemination Level

X PU: Public

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

Disclaimer

This document contains information which is proprietary to the EO4EU Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the EO4EU Consortium.

Ref. Ares(2023)8183408 - 30/11/2023

www.eo4eu.eu

2

Versioning and contribution history
Version Date Author Notes

0.1 28.07.2023 Babis Andreou(NKUA) TOC and V0.1

0.2 30.10.2023 All partners Input

0.3 05.11.2023 Babis (Andreou) Refinements

0.4 15.11.2023 Kakia Panagidi (NKUA) Review
0.5 22.11.2023 Babis Andreou, Kakia Panagidi (NKUA) Refinements

1.0 27.11.2023 Simone Mantovani (MEEO) Review

Terminology

Terminology/Acronym Description

CSA Coordination and Support Action

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

WFE WorkFlow Editor

PRP Pre-Processor

PP Post-Processor

PS Provision Service

FE Fusion Engine

OSS Operations Support System

www.eo4eu.eu

3

Table of Contents
Versioning and contribution history ... 2

Terminology .. 2

Table of Contents... 3

List of Figures .. 4

List of Tables ... 4

Executive Summary ... 5

1 Introduction .. 5

1.1 Scope of D3.2 .. 5

1.2 Relation to other deliverables.. 5

2 Development of EO4EU Systems and Services .. 6

2.1 Initial Development Infrastructure ... 6

2.2 Software Components and Functionalities ... 6
2.2.1 Systems and Services ...7
2.2.2 Fusion Engine .. 24
2.2.3 DSL Engine ... 26
2.2.4 AI ML Marketplace .. 27
2.2.5 Infrastructure as a Code .. 30

3 Integration and Testing of EO4EU Systems and Services ...31
3.1 Approach ... 31
3.2 Methodology ... 32
3.2.1 Test framework ... 33
3.3 Integration Environment Setup .. 36
3.3.1 Infrastructure .. 36
3.3.2 Platform... 36
3.4 Integration Test Results .. 36
3.4.1 Platform Integration.. 37
3.4.2 Auxiliary and Support Integration ... 38
3.4.3 Platform Integration.. 38
3.4.4 Authentication SSO Integration .. 41
3.4.5 Fusion Engine Integration ... 42
3.4.6 DSL Engine Integration .. 42
3.4.7 AI ML Marketplace Integration ... 43
3.4.8 Infrastructure as a Code Integration ... 43
3.5 Verification scenarios results .. 44
3.5.1 Platform Controller ... 44
3.5.2 Auxiliary and Support .. 46
3.5.3 Platform Orchestrator ... 47
3.5.4 Authentication SSO ... 50
3.5.5 Fusion Engine .. 51
3.5.6 DSL Engine ... 52
3.5.7 AI ML Marketplace .. 53
3.5.8 Infrastructure as a Code .. 53

4 Conclusion ...54

www.eo4eu.eu

4

List of Figures
Figure 1: EO4EU architecture (first version) and current integration coverage6
Figure 2: Schematic representation of Monitoring component architecture ..9
Figure 3: Schematic representation of Logging component architecture.. 10
Figure 4: Configuration Management and Day2 Operations. .. 13
Figure 5: Resource Registry .. 15
Figure 6: Container Image Registry. ... 16
Figure 7: Communication Manager. ... 18
Figure 8: The provision service architecture. ... 22
Figure 9: Authentication SSO and End-User Log-in. ... 24
Figure 10: FE lifecycle ... 26
Figure 11: Fusion proxy and parallel processing .. 26
Figure 12: DSL Engine Class Diagram. .. 27
Figure 13: AI/ML Marketplace Communication and Integration – System Architecture 30

List of Tables
Table 1 – Interface Interaction matrix of components. ... 33
Table 2 - Template for reporting interface test results. ... 34
Table 3 - template for reporting integration scenarios test results ... 35
Table 4 - : Provision Manager interface test results ... 37
Table 5 - Monitoring interface test results. .. 37
Table 6 - Logging interface test results. .. 38
Table 7 - Monitoring interface test results. .. 38
Table 8 - Pre-Processor interface test results... 39
Table 9 - Post-Processor interface test results. .. 39
Table 10 - FaaS interface test results. ... 40
Table 11 - Provision Service interface test results.. 40
Table 12 - Authentication SSO interface test results. ... 41
Table 13 - Fusion Engine interface test results. .. 42
Table 14 - DSL Engine interface test results. .. 43
Table 15 - AI/ML Marketplace interface test results. ... 43
Table 16 - IaC interface test results. ... 44
Table 17 - Platform Manager Verification test results. .. 44
Table 18 - Monitoring Verification test results... 45
Table 19 - Logging Verification test results. ... 46
Table 20 - Container Registry Verification test results. .. 47
Table 21 - Pre-Processor Verification test results. ... 47
Table 22 - Post-Processor Verification test results. .. 48
Table 23 - FaaS Verification test results. .. 48
Table 24 - Provision Service Verification test results. .. 49
Table 25 - Authentication SSO Verification test results. .. 50
Table 26 - Fusion Engine Verification test results. ... 51
Table 27 - Fusion Engine in workflow Verification test results. ... 51
Table 28 - DSL Engine Verification test results. .. 52
Table 29 - AI/ML marketplace Verification test results. ... 53
Table 30 - Infrastructure as a code Verification test results. ... 53

www.eo4eu.eu

5

Executive Summary
This deliverable reports the progress made in Task T3.2 of the WP 3 during the first implementation
cycle of the EO4EU project. Firstly, the document provides an insight of the Initial Development
Infrastructure by presenting the cloud infrastructures that EO4EU platform will use. Following, in the
document is presented the EO4EU software components and functionalities describing the initial
development process. Furthermore, the document provides integration, validation and testing
description, in a component level analysis, based in the methodology defined in D4.7. Finally, this
deliverable presents a technical overview, usage and foreseen improvements for each component
that was developed during this cycle and includes a summary of foreseen components.

1 Introduction

1.1 Scope of D3.2

This deliverable describes the implementation of the EO4EU components involved in the first
implementation cycle. The document presents:

• The general technical approach

• EO4EU hardware and software environment

• Technical description and usage of EO4EU components

• Integration and validation in component level

• Foreseen refinements

This document is structured as follows:

• Chapter 2 presents the development status of the PaaS tier

• Chapter 3 contains the integration and validation process concerning each specific
component

• Chapter 4 contains the conclusion

1.2 Relation to other deliverables

A detailed description of requirements, design and specification of EO4EU platform was carried out in
D2.2 and D2.4. The D2.2 includes the first version of user requirements of EO4EU and the baseline of
all business processes, which will take place through a flowchart methodology. Furthermore, the D2.4
presents the system specifications for all different components of the EO4EU solution and a technical
overview of the architecture of the proposed solution. In D4.5 there is a fully description and
repository reference of the implementation of the serverless FaaS architecture of EO4EU platform.

www.eo4eu.eu

6

2 Development of EO4EU Systems and Services

2.1 Initial Development Infrastructure

The EO4EU platform leverages on CINECA ADA Cloud and ECMWF/WEkEO DPI (Distributed Partner
Infrastructure) cloud infrastructures, constituting a multi-cloud system. The description of these
infrastructures and their interconnection is presented in detail in deliverable D4.3.

The ADA Cloud HPC infrastructure, co-funded by the European ICEI project, is a Tier-1 system designed
for scientific research. It offers high performance and flexibility by integrating cloud computing into
the HPC ecosystem. This flexibility allows adaptation to diverse user workloads while providing
powerful computing capabilities. Additionally, other top-tier HPC systems like GALILEO100 and
Leonardo can be integrated into the workflow as computing needs grow. Data can be stored in
dedicated areas (DRES) accessible by all HPC systems, enhancing collaborative research.

WEkEO, a part of the Copernicus Data and Information Access Services (DIAS), operates on a robust
cloud infrastructure comprising high-performance servers, extensive storage solutions, and high-
speed networking. Load balancers optimize network traffic for service stability. WEkEO utilizes
OpenStack, offering Infrastructure as a Service (IaaS) functionalities and orchestrates virtual machines,
object and block storage systems, and networking capabilities, providing a flexible and scalable
environment for Earth observation data processing and geospatial analysis tasks.

2.2 Software Components and Functionalities

In the figure below there is a general overview of the EO4EU platform architecture. Data, IaaS, Paas,
ML and Frontend tier are the architectural layers that are presented in the D2.4 “Technical,
Operational and Interoperability Specifications and Architecture” deliverable. In this document is
presented in detail the backend System and Services of the EO4EU platform PaaS tier that consists of
the Platform Controller, Fusion Engine, and Platform Orchestrator.

Figure 1: EO4EU architecture (first version) and current integration coverage

www.eo4eu.eu

7

2.2.1 Systems and Services

2.2.1.1 Platform CONTROLLER

2.2.1.1.1 Platform Manager

Component Platform Manager
Responsible partner ECMWF

Participant partners CINECA

Parent Component Platform CONTROLLER

Technical description Platform manager offers a powerful platform for the deployment,
administration and orchestration of Kubernetes clusters. It
seamlessly integrates with cloud infrastructure through Cluster API,
facilitating native compatibility.

Platform manager streamlines cluster access by providing both a
user-friendly graphical user interface and an API for efficient
resource management across multiple clusters.

Background

Technologies/Frameworks
used

• OpenStack

• Kubernetes

• Rancher

• Terraform and Ansible for the deployment
Input -

Output • Orchestration of the workloads on Kubernetes clusters across
different cloud providers

2.2.1.1.2 Monitoring

Component Central Monitoring

Responsible partner CINECA

Participant partners ECMWF, NKUA

Parent Component Platform CONTROLLER
Technical description The Monitoring component provides insightful information on the

status of the platform by collecting metrics from various targets, such

as applications and servers, to ensure, for example, their reliability

and performance. Metrics are scraped and persisted using

Prometheus 1and Thanos 2and visualized with Grafana3. They provide

a scalable and efficient monitoring solution for cloud-native

environments, helping optimize cloud services and infrastructure.

SOTA: Prometheus and Thanos are community-driven projects with

an open-source license hosted by the Cloud Native Computing

Foundation. Prometheus is an open-source toolkit that scrapes and

1 https://prometheus.io/
2 https://thanos.io/
3 https://grafana.com/

www.eo4eu.eu

8

stores metrics in a time-series database and it supports service

discovery and alerting based on predefined rules. Thanos extends

Prometheus with global scalability and long-term data retention

capabilities, enabling a global view of metrics data and high

availability. Grafana is a visual-analytics software which provides tools

to turn time series data into graphs organized into custom

dashboards. It is capable also of managing alerts from Prometheus

AlertManager4.

The whole architecture is divided into an observer and multiple

observe clusters:

• Observe clusters collect data directly from cluster local

services.

• Observer cluster gathers metrics from each observee cluster

and provides a centralized database for querying metrics via

APIs and for visualization.

Following the Infrastructure as Code (IaC) and GitOPS principles, we

use Terraform, GitLab and Fleet 5 for deploying each component in

Kubernetes clusters. In particular, each observee cluster and the

observer cluster use kube-prometheus operator to configure both the

Prometheus instances and the Thanos Sidecars to store the collected

metrics into a central S3 Bucket and make them accessible to the

remaining Thanos components, which are deployed in the observer

cluster using bitnami/thanos Helm chart6. These components can

automatically scale horizontally. Finally, all the metrics are rearranged

in visualization dashboards in Grafana, which is managed by grafana-

operator.

Background On the one hand, Prometheus and Thanos are community-driven

projects with an open-source license and they are hosted by the

Cloud Native Computing Foundation. On the other hand, Grafana is

an open-source tool extensively used for data visualization. These

technologies are currently widely adopted throughout the cloud

panorama, and therefore, they are the optimal choices for EO4EU

platform. In addition, several products like Rancher support them by

default, which makes their use even more advantageous.

Technologies/Frameworks
used

• Prometheus (kube-prometheus).

• Thanos (bitnami/thanos).

• Grafana (grafana-operator).

• Terraform and GitLab CI/CD for the deployment.

Input • Metrics data exposed by application services in Prometheus
format.

4 https://prometheus.io/docs/alerting/latest/alertmanager/
5 https://fleet.rancher.io/
6 https://artifacthub.io/packages/helm/bitnami/thanos

www.eo4eu.eu

9

Output • Collected and deduplicated metrics data exposed to
Orchestrator applications and visualized as Grafana
dashboards.

Figure 2: Schematic representation of Monitoring component architecture

2.2.1.1.3 Logging

Component Central Logging

Responsible partner CINECA

Participant partners ECMWF

Parent Component Platform CONTROLLER

Technical description This component allows us to gather logs directly from the output of

every application on the platform and extract meaningful information

from them. In the observability platform, this enables navigating from

an identified issue to its root cause. The data are aggregated and

correlated using different tools:

Fluentd 7and Fluentbit 8are used to create a unified layer to capture

event logs from a diverse source range. Fluent technologies are not

used for detailed analytics, but rather to filter these data and extract

information from them.

OpenSearch is a community driven project, forked by Elasticsearch

and Kibana, which is used for searching and analytics. It integrates

both a full-text search engine and a dashboard component.

7 https://www.fluentd.org/
8 https://fluentbit.io/

www.eo4eu.eu

10

The whole architecture is divided into an observer and multiple

observe clusters:

• Observe clusters collect data directly from cluster local

services.

• Observer cluster gathers logs from each observee cluster.

Following the Infrastructure as Code (IaC) and GitOPS principles, we
use Terraform, GitLab and Fleet for deploying each component in
Kubernetes clusters. In particular, each observe cluster and the
observer cluster use the logging-operator from Banzai Cloud to
configure both the Fluentbit agents (one per node) and the Fluentd
instance to centralize the collection of the cluster logs. The collected
data are forwarded to an OpenSearch installation (managed by
OpenSearch operator9) which stores them on block storage and
rearranges them in visualization dashboards.

Background Fluentd and Fluent-bit are community-driven projects with an open-

source license, and they are hosted by the Cloud Native Computing

Foundation as graduated projects. They are packaged in an open-

source Kubernetes operator by Banzai cloud, which is supported by

default by Rancher. This allows us to easily operate the logging data

retrieval from every cluster of the EO4EU Platform. OpenSearch is a

very flexible tool which allows us to collect and visualize logging data.

Furthermore, it is fully compatible with the aforementioned tools and

its use is attractive due to its open-source license.

Technologies/Frameworks
used

• Fluentd and Fluentbit (logging-operator).

• OpenSearch (OpenSearch operator).

• Terraform and GitLab CI/CD for the deployment.

Input • Log data from applications.

Output 1 Collected and rearranged log data visualized as

OpenSearch dashboards.

Figure 3: Schematic representation of Logging component architecture.

2.2.1.1.4 Configuration Management and Day2 Operations

9 https://opensearch.org/docs/2.1/clients/k8s-operator/

www.eo4eu.eu

11

Component Configuration Management and Day2 Operations

Responsible partner ENG

Participant partners CINECA

Parent Component Platform CONTROLLER

Technical description In the context of EO4EU, Configuration Management and Day2

Operations refers to managing the configurations of cloud resources

and applications, ensuring that they are always aligned with project

objectives and that environments are consistent and replicable.

Including all ongoing management activities that occur after the

initial deployment of resources, in the development phase.

These activities need to continue even once the system is available in

the production environment. In this context it is always necessary to

keep the environment updated with all the updates that are part of

the normal maintenance and life cycle of the software.

First in the EO4EU the system needs to be able to provide the

infrastructure by the use of infrastructure configuration, Terraform

automatically provisions the necessary resources.

Once Terraform10 has built the infrastructure, Ansible11 can be used

to configure and manage machines, both virtual and physical. Ansible

uses playbooks, written in YAML, to describe automation tasks that

configure systems to run software, apply patches, manage users, and

many other configuration management functions. All this

configuration can be stored in a code repository such GitLab12, that is

also available in EO4EU infrastructure.

GitLab contains a tool for Continuous Integration and Continuous

Delivery (CI/CD) to get the system synchronized to configuration

uploaded. These tools help to automate the process of developing,

testing, and deploying applications and configurations.

The integration of GitLab CI/CD into EO4EU greatly improves the

automation of development, testing and deployment processes,

ensuring that changes are validated accurately, and that assets and

applications are reliably deployed in replicable cloud environments

and coherent.

Background Terraform is an Infrastructure as Code (IaC) tool developed by
HashiCorp as shown in Figure 4. It is used to define and provision an
IT infrastructure through a high-level language. Terraform allows
developers to write code in a declarative format (using HCL -
HashiCorp Configuration Language syntax) to describe the
infrastructure needed to launch an application or service. It supports
multiple cloud providers (such as AWS, Azure, Google Cloud, etc.), as
well as on-premise systems.
Ansible is an open-source IT automation tool that simplifies
configuration management and the automation of deployment
processes.

10 https://www.terraform.io/
11 https://www.ansible.com/
12 https://about.gitlab.com/

www.eo4eu.eu

12

GitLab is an open-source project with possible enterprise
subscription. GitLab is a complete web platform for managing the
software development lifecycle, providing a managed Git repository,
along with CI/CD (Continuous Integration/Continuous Deployment),
issue management, code review, and many more capabilities tools
for collaboration and tracking of software development.
GitLab CI/CD is a complete Continuous Integration and Continuous
Delivery solution integrated into the GitLab platform. This tool offers
the following features:

• Pipeline Configuration: GitLab CI/CD allows you to define
pipelines that automate your development and deployment
processes using a YAML configuration file. This file defines
the steps to be performed, including testing, releasing, and
monitoring.

• Automated Testing: GitLab CI/CD facilitates the automated
execution of unit, integration and performance tests,
ensuring that configuration and application changes are
reliably validated.

• Continuous Deployment: With GitLab CI/CD, you can
automate the continuous release of changes to your
infrastructure and applications, ensuring rapid and
controlled deployment.

• Integration with Version Control: GitLab CI/CD is integrated
directly with version control systems like Git, allowing
pipelines to be automatically detected and started in
response to changes in the repository.

Technologies/Frameworks
used

• Terraform

• Ansible

• GitLab CI/CD

Input 1 Ansible: YAML config file that defines the activity to run; these
files are called playbooks.

2 Terraform requires configuration files in HashiCorp
Configuration Language (HCL) format that describe the desired
infrastructure, including cloud providers, resources, and
dependencies.

3 GitLab CI/CD: GitLab runs a CI/CD pipeline based on the .gitlab-
ci.yml configuration file.

Output 1 The results are the infrastructure created for terraform, the
machine configuration for ansible and the pipeline execution for
GitLab, which may include docker images.

www.eo4eu.eu

13

Figure 4: Configuration Management and Day2 Operations.

2.2.1.1.5 Scratch Storage

Component Scratch Storage

Responsible partner CINECA

Participant partners ECMWF, NKUA

Parent Component Platform CONTROLLER

Technical description Scratch Storage, being a temporary storage area, is optimized for
short-term data retention, emphasizing quick access and data purging
capabilities. It ensures a clean and efficient storage environment by
automatically removing data after a predefined expiration period or
upon completion of relevant tasks.

It is designed to be a versatile and temporary storage solution for
various data needs within our system architecture.

Background This component will be implemented using MinIO, an open-source,
high-performance object storage service that is API-compatible with
Amazon S3.

MinIO's deployment in this context allows to offer a scalable, secure,
and efficient means to store temporary data, such as intermediate file
processing results, temporary backups, or data awaiting further
processing or transfer.

Technologies/Frameworks
used

1 MinIO

Input • EO and meteorological data

Output • Post processed data

2.2.1.2 Auxiliary and support

2.2.1.2.1 Resource Registry

Component Resource Registry

Responsible partner NKUA

Participant partners ECMWF, CINECA

Parent Component Platform Orchestrator

www.eo4eu.eu

14

Technical description The resource registry component aims to create a representation of

the current instance of the Kubernetes cluster as a graph. Neo4j graph

database will be used for this purpose. When a new Kubernetes

object is deployed to the cluster, it will be instantiated in the graph

database, using the Kubernetes manifest. Having this parallel

representation allows us to store information, like resources in use,

connections, and dependencies between Kubernetes objects, in an

accessible way. Components like monitoring, provision service and

predictive allocation will be able to query and update the graph

database without burden to the Rancher API. Finally, the graph

database will help ensure that a Kubernetes object about to be

deployed has all the required resources and the needed Kubernetes

objects (dependencies) to run.

Background For the creation of this component, we considered KubeView, a

Kubernetes cluster visualizer and visual explorer. KubeView is

deployed in the cluster and provides a mapping of the API objects in

real-time from the Kubernetes API. We chose to create our own

resource registry component using Neo4j in order to decrease calls to

the Kubernetes API to only, when necessary, by using the monitoring

component and the Provision Handler. In addition, our approach

allows easy querying from the various

components and is more versatile in allowing us to visualize more

objects in detail and save additional information like the overall

health status that is not provided by the Kubernetes API.

Technologies/Frameworks
used

• Neo4j, Kubernetes API

Input • Kubernetes API

Output • No output. Updating Kubernetes Cluster Graph.

www.eo4eu.eu

15

Figure 5: Resource Registry

2.2.1.2.2 Repository Registry

Component Container Image Registry

Responsible partner ENG

Participant partners ECMWF
Parent Component Platform Controller

Technical description Container Image Registry is a centralized system that allows users to
store and manage container images, such as Docker images, within a
specific environment. These repositories serve as a secure and
organized way to keep track of different versions of container images,
ensuring efficient access and version control.
In our project, we have chosen to implement this crucial component
using GitLab Container Registry for several reasons. GitLab Container
Registry seamlessly integrates into an existing Continuous
Integration/Continuous Deployment (CI/CD) system, offering a
smooth and efficient workflow. This integration means that Docker
images created during the CI/CD pipelines can be automatically
stored in the GitLab Registry, streamlining the deployment process.
The container registry fits perfectly into the operational flows of
EO4EU. After the codes of the components to be built have been
pushed to GitLab, the latter starts the building which, after having
created the image, takes care of uploading it to the registry.
Furthermore, once the image has been created and uploaded to the
registry, the CI/CD component can trigger other pipelines that deploy
it in different environments or that start other processes of creating
more complex infrastructures.

Background GitLab's container registry system is open source, integrated with
Docker Registry, and allows to store Docker container images in a
private registry managed user or organizations, giving more control

www.eo4eu.eu

16

over privacy and access to images. The main difference between the
GitLab container registry and the Docker Hub (which is one of the
most well-known public Docker registries) is that the GitLab container
registry is a private registry owned and managed by users or your
organizations. This means that the container images stored in GitLab
are private and accessible only to authorized people. In contrast, the
Docker Hub is primarily a public registry where images are generally
accessible to anyone, although access control can be set on specific
images.

Technologies/Frameworks
used

• GitLab Container Image Registry

Input • Container Images

• Helm Charts

Output • Container Images

Figure 6: Container Image Registry.

2.2.1.3 Platform Orchestrator

2.2.1.3.1 Communication Manager

Component Communication Manager

Responsible partner NKUA

Participant partners ECMWF

Parent Component Platform Controller

Technical description The Communication Manager’s task is to manipulate the persistent
communication flow of EO4EU pipelines and ensuring continuous
operations. Efficiently orchestrating and directing messages between
services, applications, and subsystems is crucial for maintaining
operational coherence for the software procedures. The
Communication Manager deftly ensures optimal data delivery by
interpreting the source and destination needs while attuned to the
fluctuating demands of contemporary systems and can swiftly
expand or contract its capacity in response to varying workloads.
Such flexibility ensures resource optimization and service efficiency.
Furthermore, constructed with a fail-safe design, the module assists

www.eo4eu.eu

17

in the formulation, modification, and termination of communication
topics and brokers.
The underlying technology that powers and supports the
Communication Manager within the Kubernetes ecosystem is the
Strimzi operator. Strimzi provides a way to run an Apache Kafka
cluster on Kubernetes simply and robustly, making it a perfect choice
for our Communication Manager's needs with an interface that
exposes the utilization of Kubernetes.
Strimzi simplifies the deployment, maintenance, and scaling of Kafka
clusters, making it a practical choice for complex communication
systems. Also, it uses Kubernetes Custom Resources to control Kafka
resources, enabling a declarative approach to configure topics, users,
and other Kafka components. This integration allows the
Communication Manager to leverage Kafka’s robust messaging
capabilities for handling high-throughput, distributed messaging
systems while benefiting from Kubernetes' scalability and self-healing
features.
Finally incorporating Cruise Control into the Communication
Manager's architecture marks a significant advancement in
performance management. Cruise Control's role in continuously
monitoring operational metrics and identifying performance
bottlenecks is vital. It ensures that the Communication Manager
maintains peak operational efficiency, automatically adjusting
resources and balancing workloads to meet the dynamic needs of the
system.

Background EO4EU Communication manager will build upon the current
standards of the Strimzi operator on Kubernetes. The deployment of
Apache Kafka brokers within Kubernetes environments has been
significantly streamlined and optimized through the use of Strimzi, an
open-source project that provides tooling and operator support for
Kafka on Kubernetes. Strimzi leverages the Kubernetes Operator
pattern to automate the deployment, management, and scaling of
Kafka clusters. It simplifies the process by handling complex Kafka
operations, such as configuration, provisioning, maintenance, and
upgrades, in a Kubernetes-native way. Strimzi includes custom
resource definitions (CRDs) for Kafka clusters, Kafka Connect, Kafka
MirrorMaker, and Kafka Bridge, allowing for a declarative approach
to configuring these components. The integration of Strimzi with
Kubernetes ensures that Kafka brokers are efficiently managed and
can dynamically scale to meet workload demands.
Strimzi integrates with Kubernetes' self-healing mechanisms, such as
pod restarts and auto-replacements, to ensure high availability. It
also supports rolling updates for Kafka brokers, which minimizes
downtime during upgrades or configuration changes. For monitoring,
Strimzi can be configured to expose Kafka metrics which can be
collected and visualized using tools like Prometheus and Grafana. This
enables real-time monitoring of key metrics such as throughput,
latency, and broker health. Additionally, Strimzi's integration with
Kubernetes' logging and monitoring infrastructure allows for
comprehensive logging and observability, facilitating efficient
troubleshooting and performance tuning. The combination of Strimzi

www.eo4eu.eu

18

and Kubernetes offers a powerful and flexible platform for running
Apache Kafka in a cloud-native environment, ensuring scalability,
reliability, and ease of management.

Technologies/Frameworks
used

• Strimzi Operator

• Strimzi Cruise Control

• Kubernetes Custom Resource Definitions (CRDs)
Input • Directives for topic and broker lifecycle

Output • Characteristics and description of the kafka elements

Figure 7: Communication Manager.

2.2.1.3.2 Provision Manager

2.2.1.3.2.1 Pre-Processor

Component Pre-Processor
Responsible partner NKUA

Participant partners

Parent Component Provision Service
Technical description The Pre-Processor is responsible for downloading the user specified

datasets from the corresponding services (CDS, ADS, ADAM etc). The
component is fed with the Python script which downloads the
specified files (datasets). Pre-process expects the body of the Python
script to be encoded in B64.

www.eo4eu.eu

19

After decoding, the script is executed, and dataset files are
downloaded. If the downloaded files are packed, the component will
unpack them in a temporary directory.
Afterwards, the pre-processor will upload all files (downloaded
packed file and extracted files) in the corresponding S3 bucket. Upon
successful S3 upload, a Kafka message is posted to appropriate topic,
to notify the next component in the workflow chain. Finally, the
cleanup process runs, which removes all created / downloaded files.

Technologies/Frameworks
used

• S3 bucket

• Kafka

Input • Python script to be executed (in Base 64 encoding)

Output • Upload files to S3 bucket

• Kafka message

2.2.1.3.2.2 Post-Processor

Component Post-Processor

Responsible partner NKUA
Participant partners

Parent Component Provision Service

Technical description The Post-Processor is the final stage of each workflow. To begin, the
component listens to a topic for the previous component to finish.
Then it iterates all the files (decompressing any compressed tar files)
on the S3 bucket uploading any files that are compatible meaning
they can be indexed to the elastic search instance for visualization
purposes.

Technologies/Frameworks
used

• S3 bucket

• Kafka

• Elastic Search

• Pandas/GeoPandas

Input • Kafka Message

Output • Elastic Search Upload

2.2.1.3.2.3 Function as a Service (FaaS)

Component FaaS Proxy
Responsible partner NKUA

Participant partners ENG,

Parent Component Provision Service

Technical description FaaS is a cloud computing service that allows users to run code in
response to events without managing the complex infrastructure
typically associated with building and launching microservices
applications. In this context, the FaaS component receives code
snippets from the DSL component and initiates the processing
immediately upon receiving a message from Kafka.
After the FaaS operation is successfully completed, a notification is
sent via Kafka to ensure that all pertinent components are informed
of the results.

www.eo4eu.eu

20

Technologies/Frameworks
used

• S3 bucket

• Kafka

• OpenFaaS

Input • DSL output

• Kafka message

Output • CSV, Shapefiles, tiff, tar.xz

• Kafka message

2.2.1.3.2.4 Provision Service

Component Provision Service

Responsible partner NKUA

Participant partners

Parent Component Provision Manager

Technical description The Provision Service is the backbone of the provision manager. The
component is responsible for the dynamic instantiation of each user
defined workflow.
The Provision Service in order to instantiate each user defined
workflow, has to receive input from the DSL engine (see section
2.2.3). All the required components and procedures the user has
opted for are inputted to the provision manager which are processed
by the provision service. This input is parsed and processed in order
to extract the required resources and components deployments
which will be created on the infrastructure, specifically the dedicated
clusters for this project. All the resources to be created are unique,
dedicated and oriented to each separate workflow. Kubernetes
resources are created to be available for the deployed components.
These resources are specific configuration and authentication files
storing necessary data and authentication information for storage
platforms and tokens for other services. The components require this
information in order to authenticate themselves to other services.
Also, for all the various components to be coordinated together, the
provision service decides and dictates several configuration options
for every single component. All the components are assigned input
and output communication queues for communicating in a specified
order. The components communication sequence is given to the
Provision Service from DSL Engine which also is part of the EO4EU
workflow’s description.
Additionally, the provision service provides the needed configuration
of the corresponding communications in the workflow for each
component. This functionality takes strongly into account any relation
and dependency between the various components (the output of one
component may be the input for another).
After the above steps, the provision service initiates the deployments
of all the components (and their corresponding subcomponents, if
any). At this stage, the user defined workflow does not yet begin its
execution, but all the components have to be deployed and
initialized.
Finally, the provision service also dispatches messages to the
components via predefined communication queues for initialization

www.eo4eu.eu

21

purposes only. Any component is informed of its assigned input and
output queues, any selected algorithms or procedures the user opted
for in the editor, etc.
After the workflow is executed and is bearing results, the DSL engine
dispatches a message verifying that the workflow is completed. The
provision service begins to free up the allocated resources for the
workflow.

Background Several works can be found studying real time scheduling on
distributed core environment (mostly by using CPUs) while other A
suggested solution for scheduling any deployment is the Argo CD13
tool for Kubernetes14. However, to avoid additional intermediaries in
our workflow, we opted to use the included Kubernetes API (KAPI),
which provides all required API calls for scheduling any application on
the cluster. Also, Argo CD does not offer out of the box functionalities
for creating Kubernetes resources (e.g. secrets, configmaps, etc). It is
achievable but requires great effort to accomplish and set up
compared to the KAPI which requires only one API call for each such
task

Technologies/Frameworks
used

• Kubernetes API

• Python libraries

• YAML

• Kafka

Input • DSL output

Output • Creation of Workflow dedicated kubernetes namespace

• Creation of kubernetes resources (configmaps, volumes,
secrets) containing Kafka topic names, S3 bucket name and
access details, scripts for downloading EO datasets,
configuration details and specifiacations for all deployments.

• Deployment of Workflow components (Pre-Processor, Post-
Processor, FaaS proxy and OpenFaaS function deployment)
and attaching volumes and references to kubernetes
resources to be accessed.

• Dispatching initialization messages to Fusion Engine and ML
component containing specifications for algorithms and
operations to be executed on the EO datasets.

• Informing the WFE the workflow has been created and is
executing.

13 “The argo cd project,” [Last Accessed; 01-November-2012]. Available:
https://github.com/argoproj/argo-cd
14 The kubernetes authors,” [Last Accessed; 01-November-2012]. Available: https://kubernetes.io/

www.eo4eu.eu

22

Figure 8: The provision service architecture.

2.2.1.4 Authentication SSO

Component Authentication SSO

Responsible partner EBOS

Participant partners EBOS

Parent Component Keycloak

Technical description The SSO (Single Sign On) functionality allows users to sign in once and get
access to a set of different applications. Such functionality requires the
use of cookies and therefore the access is granted per browser. The Single
sign-on (SSO) is an identification and an authentication method that
enables users to log into the EO4EU Software platform system that
provides access onto multiple applications and services with one set of
credentials. SSO streamlines the checking authentication process for
users. The Authentication SSO mechanism is being integrated into the
EO4EU Software Platform, which exploits a wide spectrum of AI/ML
functionalities and EO Services to the end-user in a versatile cloud security
framework. The advantage is to allow ubiquitous access to EO4EU services
and data offerings. Furthermore, the Authentication SSO mechanism
provides an easy and accelerated in time user data engagement with a
checking and secure authentication. In particular the user authentication
and registration of the EO4EU will be based on ASP.NET Core, containing
features for managing authentication, authorization, data protection,
HTTPS enforcement, app secrets, XSRF/CSRF prevention, and CORS
management. Furthermore, a session mechanism will be applied to assist
users interact with the EO4EU framework. Currently, the assessment of
the cloud security and authentication mechanism that is being designed,
developed and integrated into the platform, is being programmed by the
technology specialists in CINECA and ECMWF.

www.eo4eu.eu

23

In addition, from the technical side of development view, a robust
security-authentication-encryption mechanism is being integrated into
the EO4EU Software Platform System to allow only authorized entities to
access system data and functionality subject to specific arrangements
and approval previously granted.

Background The SSO15, functionality, as a fundamental component of modern
authentication and authorization systems, has garnered significant
attention and refinement in recent years. Notably, the integration of SSO
within the EO4EU Platform hinges on the utilization of cookies, thereby
providing access on a per-browser basis. This approach aligns with best
practices in contemporary web security.

Here, the Keycloak and the User Data Interface are designed-developed-
and integrated in the back-end of the User Management Model providing
also the software functionality of the Authentication SSO (Single Sign On).
Another key-advantage here, is that we are designing the Authentication
SSO based on the OAuth 2.0 and OpenID Connect16, that are fundamental
protocols used for authentication and authorization in modern web
applications. In particular, OAuth 2.0, is an authorization framework that
allows third-party applications to access resources on behalf of a user
without exposing the user's credentials. It provides a secure and
standardized way for users to grant limited access to their resources to
other applications.

The use of ASP.NET Core17, for user authentication and registration
underscores a commitment to robust and scalable frameworks. ASP.NET
Core encompasses a rich feature set for managing authentication,
authorization, data protection, HTTPS enforcement, app secrets,
XSRF/CSRF prevention, and CORS management. This ensures a
comprehensive and secure environment for user interaction within the
EO4EU framework.

In this project we also follow the standards of the OpenID Foundation,
"OpenID Connect Core 1.0"18, which is a supporting tool for understanding
the technical details and standards of OpenID Connect, including the ID
token, authorization request, token endpoint, and other key components
of the protocol.

15 From a technical standpoint, the integration of a robust security-authentication-encryption mechanism is central to the
EO4EU Software Platform's commitment to safeguarding sensitive data and functionalities. This mechanism operates on
the principle of allowing access solely to authorized entities, contingent upon specific arrangements and pre-granted
approvals. This multi-layered approach ensures that only authenticated and approved users gain entry to the system,
fortifying the platform's overall security posture.
 In conclusion, the integration of the Authentication SSO functionality within the EO4EU Software Platform represents a
significant stride towards providing users with streamlined and secure access to a diverse range of applications and
services. This development, underpinned by cutting-edge technologies and robust security measures, stands poised to
revolutionize the user experience in the realm of Earth observation data analysis, processing, and visualization.
16 Nat Sakimura, Edmund Jay, and Brian Campbell, "OAuth 2.0 and OpenID Connect (in Plain English!)" ,Nomura Research
Institute, Ltd., 2018.
17 Microsoft Docs, "ASP.NET Core Identity", "Introduction to Identity on ASP.NET Core", Introduction to Identity on ASP.NET
Core | Microsoft Learn , Article 12/01/2022.
18 "OpenID Connect Core 1.0" by OpenID Foundation, 2014.

www.eo4eu.eu

24

Moreover, a session management mechanism is slated for
implementation, augmenting user engagement and interaction with the
EO4EU platform. This feature will enhance the overall user experience by
facilitating seamless interactions with the platform's resources.

Technologies/Frame
works used

• Keycloak

• ReactJS

• C#, ASP.NET Core

Input • User Credentials + OTP

Output • Access Granted to the requested application

Figure 9: Authentication SSO and End-User Log-in.

2.2.2 Fusion Engine

Component Fusion Engine

Responsible partner NKUA

Participant partners MEEO, CMCC

Parent Component -

Technical description Fusion (FE) enables context awareness by combining the data
readings and leading to situation awareness. FE has two main
functionalities: i) create fusion models and pipelines to provide
spatiotemporal fusion functionalities of the data, and ii) execute
multiple workflows on parallel coming as requests from the user in a
dynamic way. Fusion functionalities are "black boxes" to the user, in
which are translated to different chains of several algorithms. Each
pipeline is tested in Jupyter notebooks and developed in Kubeflow
pipelines. Kubeflow builds on Kubernetes as a system for deploying,
scaling, and managing complex systems compatible to EO4EU
installations. Fusion pipelines have access to data in the S3 bucket of
the user as presented in Figure 10 . The configuration of the fusion as
long as the access credentials to S3 bucket are consumed by kafka
message bus.
Fusion pipelines are published in AI/Marketplace in order to be
accessible to the users in WFE. Each pipeline is AI/Marketplace has an
icon, name, input requests, output requests and a functionality
description for user. A Fusion Proxy is also added as the main

www.eo4eu.eu

25

orchestrator to serve multiple requests coming to the FE in parallel
from users as shown in Figure 11. When a new workflow is created
by WF Editor, a request arrives to Fusion Proxy in order to create a
specific workflow in Kubeflow environment, i.e. create a consumer
triggering the start of the execution, initialize the namespace, run the
pipeline and then publish the results in data repository and inform
next component via Kafka. All computations will be investigated to be
performed by using HPC or GPU environments and always in regards
to high productivity rates.

Background Spatiotemporal fusion techniques have been gained a great amount
of interest during the last decades19. The use of EO data combined
with multiple sensor sources, mobile or fixed, maximizes the quality
of information that arrives to the user as a combination of several
interpolated layers. Researchers have shown that maximizing the
integrated amount of information through spatial, spectral, and
temporal attributes can lead to accurate stable predictions and
enhance the final output 20 21 22. Spatiotemporal fusion can be applied
within local and global fusion frameworks, where locally it can be
performed using weighted functions and local windows around all
pixels 23 24, and globally using optimization approaches25.
Additionally, spatiotemporal fusion can be performed on various data
processing levels depending on the desired tools and applications to
be used26. It also can depend on the type of data used, for instance,
per-pixel operations are well suited for images acquired from the
same imaging system (i.e. same sensor) since they undergo a similar
calibration process and minimum spectral differences in terms of
having the same number of bands and bandwidths ranges in the
spectrum, whereas feature or decision level fusion are more flexible
and able to handle heterogeneous data such as combing elevation
data (e.g. LiDAR) with satellite images27. Fusion levels include: i) Pixel-

19 Bandara, W.G.C., Valanarasu, J.M.J., Patel, V.M., 2022. Hyperspectral pansharpening based on improved deep image
prior and residual reconstruction. IEEE Transactions on Geoscience and Remote Sensing 60, 1{16.
doi:10.1109/TGRS.2021.3139292.

20 Zhu, X., Zhan, W., Zhou, J., Chen, X., Liang, Z., Xu, S., Chen, J., 2022. A novel framework to assess all-round performances
of spatiotemporal fusion models. Remote Sensing of Environment 274. doi:10.1016/j.rse.2022.113002.
21 Albanwan H, Qin R. A Novel Spectrum Enhancement Technique for Multi-Temporal, Multi-Spectral Data Using Spatial-
Temporal Filtering. ISPRS J Photogramm Remote Sens 2018; 142: 51–63.
22 Gómez C, White JC, Wulder MA. Optical Remotely Sensed Time Series Data for Land Cover Classification: A review. ISPRS
J Photogramm Remote Sens 2016; 116: 55–72.
23 Feng Gao, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily

Landsat Surface Reflectance. IEEE Trans Geosci Remote Sens 2006; 44: 2207–2218.
24 Wu, X., Hong, D., Chanussot, J., 2022. Convolutional neural networks for multimodal remote sensing data classification.

IEEE Transactions on Geoscience and Remote Sensing 60, 1{10. doi:10.1109/TGRS.2021.3124913.
25 Liu, J., Shen, D., Wu, Z., Xiao, L., Sun, J., Yan, H., 2022a. Patch-aware deep hyperspectral and multispectral image fusion
by unfolding subspace-based optimization model. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 15, 1024{1038. doi:10.1109/JSTARS.2022.3140211.
26 Li, Jiaxin, et al. "Deep learning in multimodal remote sensing data fusion: A comprehensive review." International Journal
of Applied Earth Observation and Geoinformation 112 (2022): 102926.
27 Reiche J, Souzax CM, Hoekman DH, et al. Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for
Mapping and Monitoring of Tropical Deforestation and Forest Degradation. IEEE J Sel Top Appl Earth Obs Remote Sens
2013; 6: 2159–2173.

www.eo4eu.eu

26

level image fusion [24 25] ii) Feature-level image fusion 28 29 30 and
Decision-level image fusion 31 32.

Technologies/Frameworks
used

• Kubeflow

• Jupyter notebooks

• Python libraries

• Docker

• YAML

Input • Dataset repository/ S3 bucket

Output • CSV, Shapefiles, tiff, tar.xz

• Kafka message

Figure 10: FE lifecycle

Figure 11: Fusion proxy and parallel processing

2.2.3 DSL Engine

Component DSL Engine

Responsible partner NKUA

Participant partners
Parent Component Workflow Editor

28 Palsson F, Sveinsson JR, Ulfarsson MO. Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural
Network. IEEE Geosci Remote Sens Lett 2017; 14: 639–643.
29 Uezato, T., Hong, D., Yokoya, N., He, W., 2020. Guided deep decoder: Unsupervised image pair fusion, in: European

Conference on Computer Vision, Springer. pp. 87{102. doi:10.1007/ 978-3-030-58539-6_6
30 Wei, W., Nie, J., Li, Y., Zhang, L., Zhang, Y., 2020. Deep recursive network for hyperspectral image super-resolution. IEEE
Transactions on Computational Imaging 6, 1233{1244. doi:10. 1109/TCI.2020.3014451.
31 Hang, R., Li, Z., Ghamisi, P., Hong, D., Xia, G., Liu, Q., 2020. Classification of hyperspectral and lidar data using coupled

cnns. IEEE Transactions on Geoscience and Remote Sensing 58, 4939{4950. doi:10.1109/TGRS.2020.2969024.
32 Albanwan H, Qin R, Lu X, et al. 3D Iterative Spatiotemporal Filtering for Classification of Multitemporal Satellite Data

Sets. Photogramm Eng Remote Sens 2020; 86: 23–31.

New message
with a user
workflow

www.eo4eu.eu

27

Technical description The DSL Engine’s role is to act as a validation and control schema for
the System Workflows. A DSL (Domain Specific Language) is
developed for the needs and characteristics of the Workflow Editor
named GDL (Graph Description Language). This language is mainly
comprised of structures containing the information of system nodes,
their characteristics, metadata and relation other system nodes. The
DSL Engine while being a standalone component is tightly integrated
with the Workflow Editor (WFE) through the WFE’s Auxiliary Service.
When a workflow is about to be deployed from the WFE ,it is first sent
to the DSL Engine for compilation and validation, where in the case
of it being valid will get compiled to YAML format and sent back to
the AUX Service for deployments to the Systems ,or in case of it not
being valid an error report will be sent to the AUX Service.

Background

Technologies/Frameworks
used

• Xtext

• Java Frameworks

• YAML

• Docker

Input • Workflow Editor

Output • Kafka messages

Figure 12: DSL Engine Class Diagram.

2.2.4 AI ML Marketplace

Component AI ML Marketplace

Responsible partner EBOS

Participant partners NKUA

Parent Component Customer Facing Services (Dashboard)

www.eo4eu.eu

28

Technical description The introduced AI/ML Marketplace instance is actually a Software Library-
List contained in the Dashboard of the CFS Software package.
The AI/ML Marketplace is a software library that operates within the
dashboard, offering a collection of machine learning algorithms and
models for users to access and utilize on a software platform system. It
facilitates seamless integration of various ML and not only capabilities and
empowers end-users to leverage these algorithms to solve specific
problems.
Technical Features-Technologies:
Algorithm Repository: The marketplace contains a repository of pre-
trained machine learning algorithms and models that cover a wide range
of tasks.
More AI/ML algorithms will be added such as the Data Fusion, and other
algorithms developed in the project by the assigned partner, will be
added.
Model Details and Metrics: Each algorithm will be defined with detailed
information by the corresponding partner-developer, including its
purpose, accuracy metrics, input requirements, and output format,
allowing users to make informed decisions.
Model Selection: The end-users can select the ML algorithm that best fits
their needs and integrates it into their workflow.
Personalization: The marketplace allows users to customize their
algorithm preferences based on their past selections and feedback, since
the dashboard will provide a history events-actions list of the end-user.
Versioning and Updates: The library maintains version control for
algorithms, enabling users to select specific versions based on their
requirements. It also notifies users of updates and improvements to the
algorithms.
Technologies and Development:
Backend Framework: The library's backend is developed using languages
like Python, which provide robustness and scalability.
Database: A database stores algorithm metadata, user preferences, and
versioning information.
API Development: The library exposes APIs to communicate with the ML
algorithms and retrieve information about them.
Model Wrapping: Algorithms initially installed on the HES-SO inference
server are wrapped in a standard format, allowing seamless integration
into the library.
Interfaces: User Interface (Dashboard): The AI/ML marketplace is
accessed through a user-friendly dashboard, offering an intuitive interface
for users to browse, search, and select ML algorithms.
Visual Workflow Editor: The platform features a visual workflow editor,
allowing users to design and execute complex ML workflows by combining
multiple algorithms in a drag-and-drop manner.
Technical Features:
Icons and Descriptions: Provide intuitive icons and concise descriptions for
each AI/ML model and workflow to help users quickly understand their
functionality.
Input and Output Specifications: Clearly define the expected input data
formats and output data structures for each model or workflow, ensuring
compatibility with user data.

www.eo4eu.eu

29

Restrictions and Recommendations: Highlight any limitations or
prerequisites for each model or workflow, as well as provide
recommendations for optimal usage.
Re-usability to the end-users of the pre-defined WF Models.
By incorporating these trends, security measures, and user-friendly
features, the AI/ML Marketplace will empower users to make informed
decisions and effectively leverage the full potential of AI/ML models in
processing and visualizing EO data and metadata.
Each prototyped AI-ML Algorithm-Technique-Model has to be well
defined and to keep certain standards in order to be able to accept the
input data that the end-user will select and to process the data for further
AI Data Analytics or Data Graphs/Visualizations. Data pre-processing will
be needed earlier the Data Fusion and ML pipeline processing phase, but
a data pre-processing mechanism maybe also needed before it enters the
AI/ML Marketplace. The AI/ML section will allow users to get (or
download) workflow files published by other users in the S3 buckets. It
will also give metadata about different workflow files.
Overall, the AI/ML Marketplace software library streamlines the process
of accessing and utilizing ML algorithms on the platform system, providing
end-users with a specific AI/ML models’ array of options for solving data-
driven challenges. Its seamless integration with the visual workflow editor
and data storage services enhances the platform's capabilities and
facilitates efficient data processing and analysis through the Dashboard.

Background The AI/ML Marketplace concept builds upon the latest advancements in
AI/ML integration, data access, and user interface design. Some notable
trends and technologies in this area are included in the following key-
innovations that are developed in this project.
Recent research advancements in Microservice-based Architecture and
API services33 34 35, are highly demanded as they are leveraging
microservices for building modular, scalable, and secure APIs for exclusive
and dedicated work tasks. This allows for easier management and
deployment of individual services, enhancing flexibility and scalability.
L. Lechner has proposed Integrating Machine Learning Models into
Existing Applications36. In this area, we are heavily designing and
developing prototyped AI/ML models and pre-defined WF models based
on a seamless integration and communication of a PostgreSQL database
server and the work flow editor. Introducing the availability of AI/ML
models inside the front-end web interface of the dashboard, provides a
significant availability and capacity of AI/ML utilities to the end user to
apply innovative workflows and application.
J. Hill et al. has introduced methods of securing APIs37, thus our aim here
was to implement specific authentication and security measurements,

33] R. Ranjan et al., "Microservices Architectural Patterns and API Gateway for Containerized
Cognitive Computing Systems," in IEEE Transactions on Services Computing, 2018.
34] D. Faria et al., "A Secure Microservice Architecture for Healthcare," in Procedia Computer
Science, 2018.
35] M. M. Rahman et al., "A Review of Microservices Architecture: Key Challenges and Solutions," in
IEEE Access, 2020.
36 L. Lechner, "Integrating Machine Learning Models into Existing Applications," in AI & Society, 2018.
37] J. Hill et al., "Securing APIs," in O'Reilly Media, Inc., 2016

www.eo4eu.eu

30

such as: the focus on security, especially in communication with
databases, is crucial. Technologies like OAuth 2.0, JWT (JSON Web
Tokens), and HTTPS are commonly used to secure API endpoints and data
communication.
Additional key-technological innovations in this project related with the
integration of the AI/ML Marketplace, is the incorporation and data
interface with the following software components:

I. Workflow Editors: Providing a user-friendly interface for creating,
editing, and managing workflows is an essential feature. This
empowers users to design their own data processing pipelines.

II. Data Visualization Integration: Integration with data visualization
libraries and tools ensures that the processed EO data and
metadata can be presented in a user-friendly and insightful
manner.

III. User Management and Access Control: Implementing robust user
authentication, authorization, and access control mechanisms is
crucial for ensuring that users only have access to the resources
and functionality they are authorized to use.

Technologies/Frame
works used

The following Technologies/Frameworks have been used:

• ReactJS

• C#, ASP.NET Core

• Kafka

Input • Yaml representations of workflows, AI/ML algorithms and their

configuration.

Output • Yaml representations of workflows, AI/ML algorithms and their
configuration towards the workflow editor.

Figure 13: AI/ML Marketplace Communication and Integration – System Architecture

2.2.5 Infrastructure as a Code

Component Infrastructure as a Code

Responsible partner ECMWF

Participant partners CINECA, ENG
Parent Component Platform CONTROLLER

Technical description Infrastructure as a Code is a tool developed by HashiCorp, used to
define and provision IT infrastructure through a high-level language.

www.eo4eu.eu

31

Terraform, a part of this tool, allows developers to write code in a
declarative format using HashiCorp Configuration Language (HCL)
syntax. This format is utilized to describe the infrastructure needed to
launch applications or services.

Ansible, an open-source IT automation tool, is used for simplifying
configuration management and automating deployment processes.
The EO4EU project also utilizes GitLab, an open-source platform for
managing the software development lifecycle. This includes a
managed Git repository, CI/CD (Continuous Integration/Continuous
Deployment), issue management, code review for collaboration and
software development tracking.

Background

Technologies/Frameworks
used

• Terraform

• Ansible

• Gitlab

Input • Terraform Templates

• HCL Configuration Files for Terraform

• Ansible Playbooks

• Git Repositories

Output • Provisioned Infrastructure

• Deployment Artifacts

• Infrastructure State Files

3 Integration and Testing of EO4EU Systems and Services

3.1 Approach

The objective of this activity is to produce an end-to-end operational prototype of the EO4EU platform

that is used in testing pilots in the context of this specific task and, ultimately in test cases as described

in D5.1. The integration process started at the very beginning of the project inception and in its

associated description of work, in which numerous design choices have guided the initial steps of the

project execution.

To ensure that the developed software operates as expected and is of utmost quality, performing tests

is of essence. The purpose of testing is to isolate and identify defects before the software is available

on the market and, as a result, improve its quality and ensure high performance. Testing can be done

in two ways: automatically or manually. Due to the alignment of the EO4EU Systems and Services

integration plan with CI/CD and development and operations (DevOps) methodologies, introducing

automation in testing is vital to avoid bottlenecks and ensure integration targets are met without

major issues. Apart from the time saved when conducting tests in an automated manner, automated

tests are particularly useful to ensure that the software updates do not retroactively introduce

problems in the existing code (regression testing), therefore ensuring a much faster delivery cycle

compared to manual testing. Hence, EO4EU will align its testing lifecycle approach to have as many

automated tests as possible, and consequently to minimize the human factor and reduce the overall

test effort and time consumed. The current chosen strategy for testing within EO4EU systems is based

www.eo4eu.eu

32

on manual tests, specifically by running user-acceptance tests which involve human operators. We

will be including automation testing as soon as possible.

3.2 Methodology

Integration testing includes activities where individual software modules are combined and tested as
a group. It precedes validation testing and generally applies tests defined in an integration test plan
to aggregates or groups of unit-tested modules with the aim to deliver as its output an integrated
system ready for validation testing.

Integration activities follow the individual / unit testing activities performed (mainly in the context of
WP4) on the various components defined in the architecture deliverables (WP2 D2.4), and are based
on the integration testing plan (verification scenarios) defined in D4.7. They aim to provide sufficient
proof of correctness of functionality for combinations of platform components and identify possible
bugs and inefficiencies in the foreseen workflow of EO4EU platform services usage. The methodology
adopted in EO4EU for integration testing generally follows a bottom-up approach, in the sense that
integration activities are performed initially pairwise with test cases involving 2 components that
directly communicate either synchronously or asynchronously (via message bus) and then proceeding
with more extensive test scenarios involving interactions of multiple components that implement part
or complete EO4EU workflows.

The integration tests involved the following major categories:

1. Testing of components interfaces (black box testing): This kind of black box testing should be
performed for all components implemented in the 1st iteration cycle that provide an interface
or are capable to send/receive data from Message Bus.
An interaction matrix has been created (see Table 1) which provides a quick reference of all
the interacting components (including the type of interaction) independent of the tier they
exist. Based on this matrix a detailed report was compiled (see section 3.4) which elaborates
on the exact interface or message exchange that was tested during integration activities.

2. Execution/Testing of verification scenarios (1st level of white box testing): This step involved
the execution of all the applicable (since some components were not considered for the 1st
iteration) integration and validation tests defined mainly in D4.7 section 4. Although these
verification scenarios aim mainly to verify individual components’ functionality in most cases,
they have as pre-requisite the existence of other components (tools or services). Therefore,
despite the individual component testing performed during implementation activities in WP4,
the (re)execution of all these verification scenarios was deemed necessary.

3. Execution of end-to-end scenarios (1st level of system testing): This step involved the
execution of scenarios that address multiple components and verify the behaviour of the
system for its expected ‘real’ usage (i.e. the Provision of workflow and consequent execution
and completion of a scenario). No such tests were prescribed/foreseen for integration testing
activities during the first iteration cycle. As a consequence, this step will be done in the next
cycles. It is however mentioned at this point because it is an important part of the
methodology, which should not be overlooked.

www.eo4eu.eu

33

Table 1 – Interface Interaction matrix of components.

Note: Performance tests and tests involving non-functional aspects of the EO4EU system were not
considered as part of the integration activities and will not be included in the present report.

Note: Because some components were not present in the first iteration, to complete the integration
testing activities mentioned above, certain assumptions/simplifications were made to meet the
prerequisites needed in each test scenario. These assumptions mainly have to do with:

The pre-existence of certain data in the EO4EU database due to the fact that the tool/service that was
responsible for inserting/updating these data was not implemented or partly implemented

The fact that a limited number of components involved in the core test workflow were not considered
for implementation in the 1st iteration cycle. Thus, these components (involving mainly interactions
via message bus) had either to be skipped during integration testing or considered to provide a default
functionality

More precise information on the assumptions/simplifications made will be provided on a per test case
basis in sections 3.4 and 3.5 that provide details on the testing activities.

Acceptance tests are carried out by end-users to check if the developed system meets the goals as

defined in the business requirements. The adoption of the software by target stakeholders is

determined by the level of success of acceptance tests. During the development phase, EO4EU

partners involved in the development of a particular component will act as end-users themselves and

run use case trials.

3.2.1 Test framework

Integration of components is performed in stages:

1. Intra-tier: addressing activities needed to integrate and test components in the same tier (e.g.

platform controller, platform orchestrator, etc);

2. Inter-tier: addressing activities needed to integrate and test components belonging to 2

different tiers;

3. System wide: addressing activities needed for verifying end to end interaction flows (all tiers,

end-to-end integration). testbed

Components P
la

tf
o

rm

M
an

ag
e

r

M
o

n
it

o
ri

n
g

Lo
gg

in
g

C
o

n
fi

gu
ra

ti
o

n

M
an

ag
e

m
e

n
t

an
d

 D
ay

2

O
p

e
ra

ti
o

n
s

Sc
ra

tc
h

St
o

ra
ge

R
e

so
u

rc
e

R
e

gi
st

ry

C
o

n
ta

in
e

r

Im
ag

e

R
e

gi
st

ry

 P
ro

vi
si

o
n

Se
rv

ic
e

P
re

-P
ro

ce
ss

o
r

P
o

st
-

P
ro

ce
ss

o
r

Fa
aS

A
u

th
e

n
ti

ca
ti

o

n
 S

SO

Fu
si

o
n

 E
n

gi
n

e

D
SL

 E
n

gi
n

e

A
I M

L

M
ar

ke
tp

la
ce

Platform Manager x x

Monitoring x x x x x

Logging x x x x x

Configuration

Management

and Day2 Operations

x x x x

Scratch Storage x

Resource Registry x x x x

Container Image Registry x x

Communication Manager x x x x x

Provision Service x x x x x x x

Pre-Processor

Post-Processor x x x x x

FaaS x

Authentication SSO x x x x

Fusion Engine x x x x x x x x x x

DSL Engine

AI ML Marketplace x x

www.eo4eu.eu

34

Inter-tier and Intra-tier stages involved both interface testing and functional (white box) testing while

the System wide stage focused only on functional aspects.

In order to allow for a common and concise way of representing the results of all kinds of integration

tests, two templates were used, that are shown in Table 2 and Table 3:

Table 2 - Template for reporting interface test results.

Component: <Component

Name>

Conducted by: <Partner

ID>

Date: Feb 2016 Test Category: Interface

testing

Preconditions Describe any general precondition that must be present (if any)

 Related Component Type Message or API Call Status Remarks/comments

1 <Component Name> R <Method Name> Not

applicable

E.g. component does not yet exists

2 <Component Name> M-c <Message Name> Partial

success

Message was consumed by

Resource controller since

Experiment Controller does not yet

exists

Message successfully received by

receiving component

M-c <Message Name> Not tested E.g. functionality not yet supported

3 Message Bus M-p <Message Name> Success E.g. connection to database

succeeded

Retrieval/update/insert of

information succeeded

4 <Component Name> JDBC <Method Name> Fail Describe reason of failure e.g.

connection to database fail

Regarding the above template:

• For message-oriented communications (where the message bus acts as intermediate) since

we have producers and consumers, in the interface template we depict both of them using

the convention M-c, M-p so that it is clear that the producing component sends to

MessageBus and the consuming component receives the message

• For other types of synchronous interactions like REST, SOAP/ RPC, JDBC, S3, configMap etc. it

is obvious that the interface template will refer to component that initiates the

communication (caller).

• Allowed status include Success / Partial success / Fail / Not tested / Not applicable

• Success status is highlighted in green color, Partial Success in orange, while Not tested / Not

applicable are identified in grey

Generally, we include information regarding interactions with the message bus by both producers and

consumers components. Interface of type M-p (that is the case the component acts as producer)

should not include any related component (or only “Message Bus”). This message may be received by

multiple consumers and this interaction is shown in the interface table of each receiver component

including information for the exact producer. Therefore, there is no need to replicate this for the

producer by including several similar rows.

www.eo4eu.eu

35

The rationale of not specifying a related component when type of communication is M-p is that this

kind of communication is quite loosely coupled and in general it is not easy for the producing

component to know which target component will consume the message. There can be one or many

components but there is no reason i.e. to create 10 rows in the producer component because the

message will be consumed by 10 components.

This information is shown to the related component that acts as consumer (has type M-c).

In the case of interface testing that refers to communication between components, there are no steps

here, but only Success, Partial success, Fail or Not tested with a possible remark.

Table 3 - template for reporting integration scenarios test results

Test ID: MB02 Conducted by:

<Partner ID>

Date: Feb 2016 Test Category: Verification

Tests (XX tier)

Hardware Configuration See section 2.3.1

Software Configuration See section 2.3.1

Test Name: Receive resource provision notification

Preconditions • The user must have a registered email account belonging to the platform

• A long-term selection must be ….

Related Requirements (may not be present in integration tests)

Tools Used list any special or extra tools used beside code tests

Step Action Expected

Result

Status Remarks

1 Book any resource in order to carry on a

certain experiment in the near future

Reservation data

entries are

added to the DB

Success / Partial

success / Failed /

Not tested / Not

applicable

 list here any divergence from

initial foreseen action

2 Wait till the established date and time to

be executed

-

3 Verify that user has received the

corresponding notification regarding the

...

An email is send

to the user

4

Regarding the above template:

• HW and SW configuration may refer to EO4EU Platform and/or infrastructure. For the

platform case a common configuration was used in all integration activities which is listed in

section 3.3.2. Information for the infrastructure can be found in section 3.3.1.

• The field related to requirements may be omitted in this first iteration report. The rationale is

that integration tests generally are component level specific activities. However, during the

integration period (May-November 2023) the only available requirements were the ones of

D2.4 which were mainly high-level system requirements that aim to outline the overall

behaviour, services and performance characteristics that the EO4EU platform architecture

should adhere to.

www.eo4eu.eu

36

• Although the action field usually refers to a step that must be user initiated in certain cases

(to better illustrate the flow of activities) it is possible to include their activities that are

performed by a component (once or on a periodic basis) as a result of previous resultField

expected result might include a single or multiple outcome(s). In the latter case the outcomes

should be numbered accordingly in order to easily distinguish them.

• In the verification test, we use the nearly the same status labels Success / Partial success /

Failed / Not tested / Not Applicable (keeping in mind that partial success can apply only in

situation where a single step entails multiple results).

This addresses the verification of the component and system beyond the syntactical and static analysis

of the correct combination and matching of inter-component interfaces, initial requirements and pre-

conditions.

3.3 Integration Environment Setup

Detailed descriptions of the infrastructure and the platform are provided in D4.3. In the following
subsections we summarize the main information.

3.3.1 Infrastructure

For the multi-cluster orchestration at CINECA, resources are allocated for computationally intensive
workloads related to EO4EU services. The initial allocation includes 200 vCPU, 1.5 TB of RAM, 5120 GB
of block storage, and 40 public IPs.

In the case of WekEO's infrastructure, resources are primarily allocated for computationally intensive
tasks related to EO4EU services. The initial allocation includes 100 virtual machines with 384 vCPUs,
768 GB of memory, 300 volumes, and 64 TB of volume storage.

Any need for additional resources will be evaluated after the integrated platform undergoes its initial
operational testing.

3.3.2 Platform

The EO4EU multi-cloud platform implementation employs multiple Kubernetes deployments to
leverage different cloud benefits, minimize vendor lock-in risks, and enhance resilience. Using cloud-
native tools like Rancher, Kubernetes clusters are deployed with uniform configuration management,
ensuring consistent application delivery through containerization, CI/CD, and automated deployment
processes. Monitoring, logging, and alerting are unified for visibility, and security and compliance are
managed through unified Identity and Access Management (IAM) and policy enforcement. Gitlab
serves as the Version Control System, supporting source code management, software development
collaboration, and CI/CD pipelines, enhancing development workflows within the platform.

Rancher, chosen for deployment, enables the installation and configuration of Kubernetes clusters,
streamlining multi-cluster organization. This approach ensures scalability, high availability, and
optimal resource allocation, essential for integrating various tools and services required for EO4EU
data processing and analysis within the platform ecosystem.

3.4 Integration Test Results

www.eo4eu.eu

37

Table 5 - Interface types used in interface testing

Type Description

M-c Message bus consumer (receives messages from the message bus)

M-p Message bus producer (sends messages to the message bus)

REST or R REST (via HTTP) web service

gRPC gRPC protocol

VPC S3 protocol interface

configMap Configuration files mounted directly to the components

EO sources or EOsrc Interface with the EO data sources to retrieve data

KAPI Kubernetes cluster API through kubernetes framework for python

3.4.1 Platform Integration

3.4.1.1 Provision Manager

Table 4: Provision Manager interface test results

Component: Provision

Manager

Conducted by: ECMWF Date: September 2023 Test Category: Interface

testing

Preconditions • Cloud platforms up and running

• Rancher deployed (through Terraform)

• Kubernetes cluster created (through Terraform)

• Rancher and Kubernetes credentials obtained

 Related Component Type Message or API Call Status Remarks/comments

1 Rancher REST API List Kubernetes Clusters Success

2 Kubernetes cluster REST API Cluster Health Success

3.4.1.2 Monitoring

Table 5 - Monitoring interface test results.

Component: Monitoring Conducted by: CINECA Date: September 2023 Test Category: Interface

testing

Preconditions • Rancher-monitoring properly configured, up and running

• S3 bucket to be mounted correctly
• Kubernetes monitoring service and ingress up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Workflow Namespace gRPC Get platform information Success Intra-cluster retrieval of metrics

from the monitoring component

2 OSS Platform KAPI Gather platform

information

Success Collect metrics from all the

system components of the

platform

3 S3 VPC Upload Success Upload the Prometheus/Thanos

data in a S3 bucket

www.eo4eu.eu

38

4 Identity management ConfigMap

and REST

Authenticate users Success Connect Grafana to central

KeyCloack to authenticate and

authorize users to access

metrics dashboards

5 GitLab CI/CD ConfigMap,

KAPI and

REST

Deploy cluster components Success Deploy at creation time and

update monitoring components

on the Kubernetes clusters by

leveraging on the EO4EU

GitLab CI/CD component

3.4.1.3 Logging

Table 6 - Logging interface test results.

Component: Logging Conducted by: CINECA Date: September 2023 Test Category: Interface

testing

Preconditions • Logging-operator and OpenSearch tested with initial configuration

• Logging operator services up and running

 Related Component Type Message or API Call Status Remarks/comments

1 OSS Platform KAPI Get logging data Success Retrieve logging data from any

system component of the main

observability cluster

2 OpenStack Cinder

CSI

REST,

KAPI

Create volumes Success Use block storage volumes to

save and retrieve logging data

3 GitLab CI/CD ConfigMap,

KAPI and

REST

Deploy cluster components Not ready

yet

Deploy at creation time and

update logging components on

the Kubernetes clusters by

leveraging on the EO4EU

GitLab CI/CD component

3.4.2 Auxiliary and Support Integration

Table 7 - Monitoring interface test results.

Component: Container

Registry

Conducted by: Eng Date: September 2023 Test Category:

compotesting

Preconditions • GitLab properly configured, up and running
• GitLab CI/CD properly configured

• GitLab runners configured and available

• GitLab CI/CD pipeline configured in the same repository

 Related Component Type Message or API Call Status Remarks/comments

1 GitLab CI/CD configMap Push Image Success Image stored

2 GitLab CI/CD

R Image retrieve Success Image retrieved

3.4.3 Platform Integration

www.eo4eu.eu

39

3.4.3.1 Provision Manager

3.4.3.1.1 Pre-Processor

Table 8 - Pre-Processor interface test results.

Component: Pre-

Processor

Conducted by: NKUA Date: May 2023 Test Category: Interface

testing

Preconditions • Apache Kafka properly configured, up and running

• Related components must be up and running

• S3 bucket to be mounted correctly

• Provision service must be up and running

 Related Component Type Message or API Call Status Remarks/comments

1 Workflow Namespace configMaps GetConfigurationDetails Success Retrieve S3 config, kafka topic

in-out, communication

credentials, [Nekt] data sources

2 EOsrc Execute data request scrpt Success Execute the request scripts

towards the data sources.

3 S3 VPC Upload Success Upload the raw data in the

workflow S3 bucket. (archived

and unarchived files)

4 Message Bus M-p SendNextComponentStatus Success Send to the next component that

execution was completed, the

folder and the form that the data

are stored in S3 bucket

3.4.3.1.2 Post-Processor

Table 9 - Post-Processor interface test results.

Component: Post-

Processor

Conducted by: NKUA Date: May 203 Test Category: Interface

testing

Preconditions • Apache Kafka properly configured, up and running

• Related components must be up and running

• S3 bucket to be mounted correctly

• Provision service must be up and running

• Elastic Search service must be up and running

 Related

Component

Type Message or API Call Status Remarks/comments

1 Workflow

Namespace

configMaps GetConfigurationDetails Success Retrieve S3 bucket name,

kafka topic in-out,

communication credentials,

Elastiic Search credentials.

2 Kafka M-C GetPreviousComponentStatus Success Receive that the previous

component has ended its job,

what kind of data are produced

and where they are stored.

3 S3 VPC IterateBucket Success Iterate S3 bucket to find file

that can be uploaded in the

Elastic Search
4 Elsaticsearch Rest UploadData Success Upload data to the Elastic

Search

www.eo4eu.eu

40

5 Message Bus M-p SendNextComponentStatus Success Send to the next component

that execution was completed,

the folder and the form that the

data are stored in S3 bucket

3.4.3.1.3 FaaS

Table 10 - FaaS interface test results.

Component: FaaS Conducted by: NKUA Date: May 2023 Test Category:

Interface testing

Preconditions • Apache Kafka properly configured, up and running

• Related components must be up and running

• S3 bucket to be mounted correctly

• Provision service must be up and running

 Related

Component

Type Message or API Call Status Remarks/comments

1 Workflow

Namespace

configMaps GetConfigurationDetails Success Retrieve S3 bucket name,

kafka topic in-out,

communication credentials.

2 Kafka M-C GetPreviousComponentStatus Success Receive that the previous

component has ended its

job, what kind of data are

produced and where they

are stored.

3 S3 VPC GetData Success Download data from S3

bucket

4 FaaS REST SendData Success Send the data to the

OpenFaaS function service

for processing

5 Message Bus M-p SendNextComponentStatus Success Send to the next component

that execution was

completed, the folder and

the form that the data are

stored in S3 bucket

3.4.3.1.4 Provision Service

Table 11 - Provision Service interface test results.

Component: Provision

Service

Conducted by: NKUA Date: Feb 2016 Test Category:

Interface testing

Preconditions • Apache Kafka properly configured, up and running

• Related components must be up and running

• S3 bucket to be mounted correctly

 Related

Component

Type Message or API Call Status Remarks/comments

1 Kafka M-C GetDirectivesFormWFE Success Receive the user defined

yaml files and the needed

configurations for the

www.eo4eu.eu

41

deployment of the

workflow.

2 Kubernetes cluster KAPI CreateUniqueNamespace Success Message was consumed

by Resource controller

since Experiment

Controller does not yet

exists

Message successfully

received by receiving

component

3 Kubernetes cluster KAPI CreateNamespaceSecrets Success

Create the needed secrets

in the above namespace.

4 Kubernetes cluster KAPI CreateNamespaceConfigMaps Success

Create the needed

configuration files

(configMaps) in the above

namespace.

5 Kubernetes cluster KAPI CreateNamespaceDemployments Success

Deploy the components

designed in the WFE

6 Kubernetes cluster KAPI CreateNamespaceServices Success

Deploy the services

required or designed for

the workflow

7 Kubernetes cluster KAPI CreateNamespaceIngress Success

Deploy the ingress

services required for the

workflow

8 Message Bus M-P SendConfig Success Send configuration

information to the Fusion

component(s)

9 Message Bus M-P SendConfig Success Send configuration

information to the ML

component(s)

10 Message Bus M-P DepoolymentStatus Not tested Report message for the

deployment of the

workflow.

11 Message Bus M-C DeleteWorkflow Not tested Control message from

WFE to destroy workflow

after processing.

12 Kubernetes cluster KAPI DeleteUniqueNamespace Not tested

Delete Namespace

13 Kubernetes cluster KAPI DeleteSecrets Not tested DeleteSecrets

14 Kubernetes cluster KAPI Delete configMaps Not tested

Delete configMaps

15 Message Bus M-P DeletionStatus Report message for the

deletion of the workflow.

3.4.4 Authentication SSO Integration

Table 12 - Authentication SSO interface test results.

Component:

Authentication SSO
Conducted by: EBOS Date: September 2023 Test Category: Interface

testing
Preconditions • Have an account created on Keycloak instance

 Related Component Type Message or API Call Status Remarks/comments

1 User Management

Module (UMM)
HTTP GetSsoLoginPage Success Redirects the current SSO login

page when we try to open the

app url.
2 UMM API ViewUsers Success View all users and details

www.eo4eu.eu

42

4 UMM API CreateUser Success Creates new user (disabled)

5 UMM API EditUser Success Edit User details

6 UMM API DeleteUser Success Delete User

7 UMM API ViewApplications Success Shows all applications/clients

registered so far
8 UMM API CreateApplication Success

9 UMM API EditApplication Success

1

0
UMM API DeleteApplication Success

1

1
UMM API ViewOpenIDC Success Shows Client OpenID Connect

details
1

2
UMM API ManageGroups Success Edit, Create, Read, delete group

and assign users to group
1

3
OpenEO API API /Auth/token Success Using the password grant flow

to get access token from

registered user credentials
1

4
OpenEO API API /Auth/userinfo Success Returns User details if the

Bearer token is still valid

1

5
UMM API Manage User Resources Not ready

yet

1

6
UMM API Manage User Roles Not ready

yet

3.4.5 Fusion Engine Integration

Table 13 - Fusion Engine interface test results.

Component: Fusion Engine Conducted by: NKUA Date: May2023 Test Category: interface

testing

Preconditions • Apache Kafka properly configured, up and running

Related components must be up and running

S3 bucket to be mounted correctly

Related Component Typ

e

Message or API Call Status Remarks/comments

1 Message Bus M-C GetWorkflowConfigur

ation

Success Receive user configuration, S3 bucket

configuration, algorithms and next

component to notify

M-C GetPreviousCompone

ntStatus

Success Receive that the previous component

has ended its job and fusion can start

O UpdateS3Bucket Success Write in the S3 bucket the

generated/trasformed data

M-p SendNextCompon
entStatus

Success Send to the next component that

pipeline was completed, the folder

and the form that the data from fusion

are stored in S3 bucket

3.4.6 DSL Engine Integration

www.eo4eu.eu

43

Table 14 - DSL Engine interface test results.

Component: DSL Engine Conducted by: NKUA Date: May2023 Test Category: interface

testing

Preconditions • Apache Kafka properly configured, up and running.

• Workflow Editor is up and running.

Related Component Type Message or API Call Status Remarks/comments

1 Message Bus M-C GetDslModel Success Receive DSL model and compile it

M-C SendConfigurationYaml Success If received DSL model is valid send

configuration YAML to Systems

3.4.7 AI ML Marketplace Integration

Table 15 - AI/ML Marketplace interface test results.

Component: Provision Service Conducted by: EBOS Date: N/A yet Test Category:

Interface testing

Preconditions • PostgreSQL Database Server Set-Up and Programming

(under Technical Development, Phase-B)

• Work Flow Editor running and fully deployed

• API Microservices Middleware API development and deployment

(under Technical Development, Phase-B)

• AI/ML Models prototyped and well-defined (HES-SO)

• Work Flow Models prototyped and well-defined (NKUA)

• OpenEO API to be well defined and fully integrated with the rest of the

components (EBOS)

• Cluster Network, and HTTPS URL Communication to be well-established

 Related Component Type Message or API

Call

Status Remarks/comments

1 Work Flow Editor N/A API Call1 N/A Phase B-Technical

Development

2 AI/ML Models N/A API Call2 N/A Phase B-Technical

Development

3 WF Models N/A API Call3 N/A Phase B-Technical

Development

4 Microservices API N/A API Call4 N/A Phase B-Technical

Development

5 OpenEO API N/A API Call5 N/A Phase B-Technical

Development

6 Dashboard-Data Query N/A API Call6 N/A Phase B-Technical

Development

7 Dashboard – Data

Visualization

N/A API Call7 N/A Phase B-Technical

Development

3.4.8 Infrastructure as a Code Integration

www.eo4eu.eu

44

Table 16 - IaC interface test results.

Component: Infrastructure as a Code Conducted by:

ECMWF

Date: September

2023

Test Category: Interface

testing

Software Configuration • Terraform

• Ansible

• Gitlab

Test Name: Infrastructure as a Code Verification

Preconditions • Gitlab Version Control System Deployed

• Gitlab Runners Deployed

• Gitlab CI/CD Configuration Defined

• Terraform Environment Created
Related Requirements

Tools Used • Terraform

• Rancher

• Kubernetes

• Gitlab

• OpenStack

Step Action Expected Result Status Remarks

1 Setup Gitlab Repository Repository created Success

1 Add Terraform configuration files to

Gitlab

Configurations

onboarded

Success

2 Trigger Gitlab CI/CD pipeline Resources deployed Success

3.5 Verification scenarios results

In this section, the results of the executed verification scenarios of DX.X (chapter X) are explained. The
template table, given and explained in section 3.2.1, was extended to better visualize the scenario
steps and the results of them.

3.5.1 Platform Controller

3.5.1.1 Platform Manager

Table 17 - Platform Manager Verification test results.

Test ID: SS-PM-T-001 Conducted by:

ECMWF

Date: September

2023

Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Terraform

• Ansible

• Rancher

www.eo4eu.eu

45

Test Name: Platform Manager up and running

Preconditions • Gitlab CI/CD up and running

• Cloud resources allocated

Related Requirements

Tools Used • Terraform

• Rancher

• Kubernetes

• Gitlab

Step Action Expected Result Status Remarks

1 Add Terraform and Rancher configuration

files to Gitlab

Configurations

onboarded

Success

2 Trigger Gitlab CI/CD pipeline Rancher server

deployed

Success

3 Provision a Kubernetes cluster through

Rancher’s UI

Kubernetes cluster

deployed

Success

4 Deploy a NGINX Kubernetes pod with a

persistent volume claim attached an

associated public service and ingress

NGINX web service

reachable

Success

3.5.1.2 Monitoring

Table 18 - Monitoring Verification test results.

Test ID: SS-MON-T-001 Conducted by:

CINECA

Date: September

2023

Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Kubernetes cluster

Test Name: Monitoring up and running

Preconditions • Kubernetes clusters up and running

• S3 service up and running

• Rancher server up and running

• GitLab CI/CD up and running

Related Requirements

Tools Used • S3

• Kubernetes

• Rancher server

• GitLab

Step Action Expected Result Status Remarks

1 Add configuration in GitLab Repo Configuration details

successfully deployed

Success Triggers subsequent

deployments

2 Deploy Kubernetes Custom Resource

Definitions in the target Kubernetes cluster

Monitoring Custom

Resource Definitions

correctly deployed

Success Done with Rancher Helm

charts

3 Deploy monitoring operators Kubernetes

monitoring operators

up and running

Success Done with Rancher Helm

charts

www.eo4eu.eu

46

4 Deploy monitoring component

configuration

Components up and

running and metrics

flowing to the

observer cluster and

correctly visualized in

Grafana dashboards

with authentication

enabled. Historical

data stored and

retrieved in/from S3

bucket

Success

3.5.1.3 Logging

Table 19 - Logging Verification test results.

Test ID: SS-LOG-T-001 Conducted by:

CINECA

Date: September

2023

Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Kubernetes cluster

Test Name: Logging up and running

Preconditions • Kubernetes clusters up and running

• Cinder CSI plugin up and running

• Rancher server up and running

Related Requirements

Tools Used • S3

• Kubernetes

• Rancher server

Step Action Expected Result Status Remarks

1 Deploy Kubernetes Custom Resource

Definitions in the target Kubernetes cluster

Monitoring Custom

Resource Definitions

correctly deployed

Success Done with Rancher Helm

charts

2 Deploy logging operators (rancher-

logging and OpenSearch operator)

Kubernetes logging

operators up and

running

Success Done with Rancher Helm

charts

3 Deploy logging component configuration Components up and

running and logs

flowing to the

OpenSearch cluster

and correctly

visualized in

OpenSearch

dashboards with basic

authentication

enabled. Log data

stored and retrieved

in/from Cinder

volumes.

Success

3.5.2 Auxiliary and Support

www.eo4eu.eu

47

3.5.2.1 Container Registry

Table 20 - Container Registry Verification test results.

Test ID: SS-CR-T-001 Conducted by: ENG Date: September

2023

Test Category: Verification

Tests

Hardware Configuration

Software Configuration • GitLab CI/CD

Test Name: Container Registry up and running

Preconditions • Gitlab up and running

• GitLab CI/CD configured

• GitLab runners configured and available

• GitLab project available

• Create a gitlab-ci yml file that execute dockerfile
Related Requirements

Tools Used • GitLab CI/CD

Step Action Expected Result Status Remarks

1 Push gitlab-ci.yml file in GitLab project Image created Success

3.5.3 Platform Orchestrator

3.5.3.1 Provision Manager

3.5.3.1.1 Pre-Processor

Table 21 - Pre-Processor Verification test results.

Test ID: SS-PRP-T-001 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Kubernetes cluster

Test Name: Analysis Tool will be able to query available data schemas

Preconditions • Working message bus

• Working S3 Bucket

• WFE up and running

• Provision Service up and running

Related Requirements

Tools Used • S3

• Kubernetes

Step Action Expected Result Status Remarks

1 PRP retrieves information from mounted

configMaps and secrets

Configuration details

successfully imported

Success

2 PRP mounts S3 bucket Dataset is accessible Success

3 PRP configures producer based on

topic_out

Connection

established

Success

www.eo4eu.eu

48

4 PRP executes requests scriots towards EO

data sources

Data sources response

with the requested

datasets

Success

5 PRP uploads data in archived and

unarchived form in S3 bucket

Upload successful Success

6 Send message to the next components with

information about the end of the PRP

process and details for the data uploaded in

the S3 bucket

Producer successfully

send message

Success

3.5.3.1.2 Post-Processor

Table 22 - Post-Processor Verification test results.

Test ID: SS-PP-T-001 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Kubernetes cluster

Test Name: Analysis Tool will be able to query available data schemas

Preconditions • Working message bus

• Working S3 Bucket

• WFE up and running

• Provision Service up and running

• Elastic Search Service up and running

Related Requirements

Tools Used • S3

• Kubernetes

• Elastic Search

Step Action Expected Result Status Remarks

1 PP retrieves information from mounted

configMaps and secrets

Configuration details

successfully imported

Success

2 PP configures consumer and producer

based on topic_in and topic_out

Connection

established

Success

3 PP mounts S3 bucket Dataset is accessible Success

4 Iterate in S3 bucket for appropriate file # Files found Success

5 Push files in Elastic Search Push successful Success

3.5.3.1.3 FaaS

Table 23 - FaaS Verification test results.

Test ID: SS-F-T-001 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Kubernetes cluster

Test Name: Analysis Tool will be able to query available data schemas

www.eo4eu.eu

49

Preconditions • Working message bus

• Working S3 Bucket

• WFE up and running

• Provision Service up and running

• OpenFaaS up and running

Related Requirements

Tools Used • S3

• Kubernetes

• OpenFaaS

Step Action Expected Result Status Remarks

1 FaaS proxy component retrieves

information from mounted configMaps

and secrets

Configuration details

successfully imported

Success

2 FaaS proxy configures consumer and

producer based on topic_in and topic_out

Connection

established

Success

3 FaaS proxy mounts S3 bucket Dataset is accessible Success

4 Proxy sends distributed requests in FaaS

function service

Successful processing

with response

Success

5 Proxy uploads response data in S3 bucket Upload successful Success

6 Send message to the next components with

information about the end of the FaaS

process and details for the data uploaded in

the S3 bucket

Producer successfully

send message

Success

3.5.3.1.4 Provision Service

Table 24 - Provision Service Verification test results.

Test ID: SS-PS-T-001 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Kubernetes cluster

Test Name: Analysis Tool will be able to query available data schemas

Preconditions • Working message bus

• Working S3 Bucket

• WFE up and running

• Provision service defined configuration details configMaps

Related Requirements

Tools Used • S3

• Kubernetes

Step Action Expected Result Status Remarks

 Loading the contents of the Provision

Service configMap and initialize the KAPI

KAPI successfully

initialised and the

service has admin

roles for the cluster

(necessary for

creating resources)

Success

www.eo4eu.eu

50

 Provision Service awaits input from the

DSL engine.

Input received

describing a user

defined workflow.

Success Initiating the workflow’s

creation

 Provision Service creates a general

configmap containing configurations for

all components to be deployed.

All deployed

components

successfully access

this file.

Success Message bus configuration

is accessed by all in cluster

components

 Creating secrets for S3 bucket

authentication and access.

S3 Login successful

for all in cluster

components

Success

 Creating additional configmap and secret

for the Pre-Processor to authenticate and

access the datasources.

Successful login and

dowload the

datasources (datasets)

Success

 Creating additional configmap and secret

for the Ppst-Processor to authenticate and

access the ELS.

ELS login and send

text data.

Success

 Provision service sends configuration to

system fusion topic

S3 Login successful Success

 FE mounts S3 bucket (per workflow) Dataset is accessible Success

 FE configures consumer and producer

based on topic_in and topic_out

Communication

between the previous

and the next

component is

established, and data

streams are created.

Success

 Provision service sends configuration to

system ml topic

AI ML components

initiated (with the

corresponding

inputted algorithms),

S3 Login successful

Success The AI ML component(s)

initiate the various ML

algorithms (this is relayed

via the provision service

from the WFE to the AI

ML).

 AI ML mounts the S3 bucket (per

workflow)

FE output stored on

S3 bucket available

Success

 AI ML configures consumer and producer

based on topic_in and topic_out

Communication

between the previous

and the next

component is

established, and data

streams are created.

Success

3.5.4 Authentication SSO

Table 25 - Authentication SSO Verification test results.

Test ID: SS-ASSO-T-001 Conducted by: EBOS Date: September

2023
Test Category: Verification

Tests
Hardware Configuration

Cluster Network
Software Configuration Key Cloak

Test Name:

www.eo4eu.eu

51

Preconditions UMM, Key Cloak, openEO API

Related Requirements

Tools Used UMM

Step Action Expected Result Status Remarks

1 Create and configure properly your

client/application on UMM
SSO page appears

when you attempt to

open your client URL

Success

2 Store or record all user operations with

results
Every API call is

recorded into a

database

Success This logs only UMM

operations.

3 Manage Users, Applications and groups

with the UMM User Interface
View at least users,

applications and

groups

Success

3.5.5 Fusion Engine

Table 26 - Fusion Engine Verification test results.

Test ID: SS-FE-T-001 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

Software Configuration Kfp 1.8.22

Boto3 1.26.139

Python 3

Rasterio 1.3.7

Test Name: Analysis Tool will be able to query available data schemas

Preconditions • Working message bus

• Working S3 Bucket

• Working Data Analysis Tool

Related Requirements

Tools Used

Ste

p

Action Expected Result Status Remarks

1 Provision service sends configuration to

system fusion topic

Login successful Success

2 FE mounts S3 bucket Dataset is accesible Success

3 FE configures consumer and producer

based on topic_in and topic_out

Table 27 - Fusion Engine in workflow Verification test results.

Test ID: SS-FE-T-002 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

www.eo4eu.eu

52

Software Configuration Kfp 1.8.22

Boto3 1.26.139

Python 3

Rasterio 1.3.7

Test Name: Analysis Tool will be able to query available data schemas

Preconditions • Working message bus

• Working S3 Bucket

• Working Data Analysis Tool

Related Requirements

Tools Used

Ste

p

Action Expected Result Status Remarks

1 FE conume specific message from

previous components

Login successful Success

2 FE configures the Kubeflow pipeline Dataset is accessible Success

3 FE cruns user pipeline

4 FE sends status in the Logger Not tested

5 When experiment is completed the data are

uploded in S3 bucket

5 FE produceskafka message to the next

components

6 FE terminates the specific workflow

3.5.6 DSL Engine

Table 28 - DSL Engine Verification test results.

Test ID: SS-DSLE-T-001 Conducted by: NKUA Date: May 2023 Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Java 18

• Xtext 2.30

• Docker

Test Name: DSL Engine Input / Output functionality

Preconditions • Working message bus

• Workflow Editor is running

Related Requirements

Tools Used

Step Action Expected Result Status Remarks

1 Workflow Editor sends DSL model DSL model is compiled

and configuration YAML

gets dispatched

Success

2 Workflow Editor sends invalid DSL

model

DSL model is compiled

and error message is sent

Success

www.eo4eu.eu

53

3.5.7 AI ML Marketplace

Table 29 - AI/ML marketplace Verification test results.

Test ID: SS-Mark-T-001 Conducted by: EBOS Date: N/A Test Category: Verification

Tests

Hardware Configuration

• Local Premises Network Servers

• Cluster Network

• PostgreSQL Database Server

Software Configuration • Kubernetes cluster

• Middleware-Microservices API

• PostgreSQL Programming Set-up

Test Name: Analysis Tool will be able to query available data schemas

Preconditions • Working message bus

• Working S3 Bucket

• WFE up and running

• Provision Service up and running

Related Requirements

Tools Used • S3

• Kubernetes

Step Action Expected Result Status Remarks

1 API Call1 N/A N/A Phase B - Development

2 API Call2 N/A N/A Phase B - Development

3 API Call3 N/A N/A Phase B - Development

4 API Call4 N/A N/A Phase B - Development

5 API Call5 N/A N/A Phase B - Development

6 API Call6 N/A N/A Phase B - Development

3.5.8 Infrastructure as a Code

Table 30 - Infrastructure as a code Verification test results.

Test ID: SS-IaaC-T-001 Conducted by:

ECMWF

Date: September

2023

Test Category: Verification

Tests

Hardware Configuration

Software Configuration • Gitlab CI/CD configuration

• Gitlab CI/CD configuration file in terraform repository

Test Name: Infrastructure as Code verification

Preconditions • Gitlab up and running

• Gitlab CI/CD pipeline set up

• Cloud infrastructure up and running

• Terraform repository ready to deploy Rancher

Related Requirements

Tools Used Gitlab, Terraform, Rancher

www.eo4eu.eu

54

Step Action Expected Result Status Remarks

1 Git clone Terraform repository Terraform repository

cloned locally

Success

2 Add small commit to repository (e.g.

README file)

Gitlab pipeline

triggered, Rancher

server deployed on

cloud

Success

3 Check Gitlab pipeline logs for errors No errors Success

4 Check Rancher reachability Rancher reachable Success

5 Change terraform configuration in

repository (e.g. virtual machine flavor),

make a new commit and push

Gitlab pipeline

triggered, Rancher

server redeployed

reflecting changes

Success

6 Check Gitlab pipeline logs for errors No errors Success

7 Check Rancher reachability Rancher reachable Success

8 Check that Rancher has been redeployed

with the changes in the latest commit

Rancher deployment

reflects latest commit

changes

Success

4 Conclusion
This document contains the development of the components and functionalities of the System and

Services of the EO4EU platform and details about their development process and roadmap. D3.2

provides a technical description, technologies and frameworks used for the development, input and

output of each component but also a state-of-the-art section concerning the specific area of interest

according to the component. Furthermore, elaborating with D4.7 in this document is presented the

Integration, Validation, and Testing (IVT) process according to the development integration phase that

is described in that document. This way each component justifies the IVT steps towards the staging

phase of the platform integration.

	Versioning and contribution history
	Terminology
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	1 Introduction
	1.1 Scope of D3.2
	1.2 Relation to other deliverables

	2 Development of EO4EU Systems and Services
	2.1 Initial Development Infrastructure
	2.2 Software Components and Functionalities
	2.2.1 Systems and Services
	2.2.1.1 Platform CONTROLLER
	2.2.1.1.1 Platform Manager
	2.2.1.1.2 Monitoring
	2.2.1.1.3 Logging
	2.2.1.1.4 Configuration Management and Day2 Operations
	2.2.1.1.5 Scratch Storage

	2.2.1.2 Auxiliary and support
	2.2.1.2.1 Resource Registry
	2.2.1.2.2 Repository Registry

	2.2.1.3 Platform Orchestrator
	2.2.1.3.1 Communication Manager
	2.2.1.3.2 Provision Manager
	2.2.1.3.2.1 Pre-Processor
	2.2.1.3.2.2 Post-Processor
	2.2.1.3.2.3 Function as a Service (FaaS)
	2.2.1.3.2.4 Provision Service

	2.2.1.4 Authentication SSO

	2.2.2 Fusion Engine
	2.2.3 DSL Engine
	2.2.4 AI ML Marketplace
	2.2.5 Infrastructure as a Code

	3 Integration and Testing of EO4EU Systems and Services
	3.1 Approach
	3.2 Methodology
	3.2.1 Test framework
	3.3 Integration Environment Setup
	3.3.1 Infrastructure
	3.3.2 Platform
	3.4 Integration Test Results
	3.4.1 Platform Integration
	3.4.1.1 Provision Manager
	3.4.1.2 Monitoring
	3.4.1.3 Logging

	3.4.2 Auxiliary and Support Integration
	3.4.3 Platform Integration
	3.4.3.1 Provision Manager
	3.4.3.1.1 Pre-Processor
	3.4.3.1.2 Post-Processor
	3.4.3.1.3 FaaS
	3.4.3.1.4 Provision Service

	3.4.4 Authentication SSO Integration
	3.4.5 Fusion Engine Integration
	3.4.6 DSL Engine Integration
	3.4.7 AI ML Marketplace Integration
	3.4.8 Infrastructure as a Code Integration
	3.5 Verification scenarios results
	3.5.1 Platform Controller
	3.5.1.1 Platform Manager
	3.5.1.2 Monitoring
	3.5.1.3 Logging

	3.5.2 Auxiliary and Support
	3.5.2.1 Container Registry

	3.5.3 Platform Orchestrator
	3.5.3.1 Provision Manager
	3.5.3.1.1 Pre-Processor
	3.5.3.1.2 Post-Processor
	3.5.3.1.3 FaaS
	3.5.3.1.4 Provision Service

	3.5.4 Authentication SSO
	3.5.5 Fusion Engine
	3.5.6 DSL Engine
	3.5.7 AI ML Marketplace
	3.5.8 Infrastructure as a Code

	4 Conclusion

