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1 Metapopulation model

1.1 Commuting by age

We describe here in detail the inference procedure used to approximate fluxes of commuters per age class
i = a, c in Belgium. For each commuting link l of the French commuting network, we computed the
commuting distance d(l) and the fraction ρ(l) of commuters of age class i. We filtered all links having less
than 30 commuters. We considered seven bins of distance, according to the definition used in the ”Enquête
National Transport et Déplacements 2008” (National survey on transport and mobility, 2008): [0, 2] km,
]2, 5] km, ]5, 10] km, ]10, 20] km, ]20, 40] km, ]40, 80] km, and > 80 km. The distribution obtained for each
distance bin is then used to infer the fraction of Belgian commuters in age class i traveling on the same
distance bin. A comparison between the empirical distributions obtained from the French commuting data
and the reconstructed distributions for Belgium is shown in Figure S1. A good agreement is found for all
distance bins, with a noisier behavior obtained for the bin class d(l) ≤ 2km, due to poor statistics. Plots
also show that children commute at shorter distances than adults.
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Figure S1: Probability distribution of the fraction of children commuters at specific distance bins: compar-
ison between the empirical distributions obtained from the French commuting data and the reconstructed
distributions for Belgium.

1.2 Contact Matrices

The average number of contacts made by participants in age class i = 1, 2 with people in age class j = 1, 2
is given by Mij . The per capita contact rates are then summarised in the contact rate matrix

C̄ij = Mij/Nj ,

which is rescaled to a normalised contact matrix

Cij = C̄ij ·Ntot,

where Ntot is the total population of Belgium
We note here that the values Cij are scale invariant, that is

Cij =
Mij

Nj
Ntot =

M
(p)
ij

N
(p)
j

N
(p)
tot . (S1)

We consider Cij to describe the social interaction in each patch, i.e. C
(p)
ij = Cij , so that C̄

(p)
ij =

Cij

N(p)(t)

following Eq.(S1), with N (p)(t) being the total population in the patch at time t.
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1.3 Details of the compartmental model in each patch

Each patch receives commuters from kin(p) patches and moves residents to kout(p) other patches, with
kin and kout representing the indegree and outdegree, respectively, of patch p in the commuting network.
Commuters are modeled with separate compartments, in order to track them in their movements from
residence to destination and back. At each time step t, the population of a patch p is composed of the
following subpopulations, each described by a two-age class SEIR disease progression model:

• individuals who reside in patch p and do not commute: S
p|p→p
i ,E

p|p→p
i ,I

p|p→p
i ,R

p|p→p
i , for each age

class i = c, a;

• kout(p) subpopulations of individuals who reside in patch p and commute to another patch q: S
p|p→q
i ,

E
p|p→q
i , I

p|p→q
i , R

p|p→q
i , with q neighbor of p, and i = c, a;

• kin(p) subpopulations of individuals who reside in a patch q and commute from patch q to patch p:

S
p|q→p
i , E

p|q→p
i , I

p|q→p
i , R

p|q→p
i , with q neighbor of p, and i = c, a.

Accounting for commuting, we can then write the force of infection for a susceptible individual of age class
i in patch p and time t:

λ(i, p, t) = β
∑
j

Cij(t)
Ipj (t)

Np(t)
, (S2)

with
Ipj (t) = I

p|p→p
j +

∑
q

I
p|p→q
j +

∑
q

I
p|q→p
j . (S3)

1.4 Influenza transmission

Here we describe influenza transmission for the subpopulation of residents of a given patch p (we drop the
p for simplicity). The extension to the other subpopulations present in the patch is straightforward. The
probabilities associated to SEIR transitions for age class i in a small enough time interval dt are given by:

• pS→Ei (t) = 1− e−βλ(i,t)dt ;

• pE→Ii (t) = 1− e−εdt ;

• pI→Si (t) = 1− e−µdt .

The number of individuals in age class i newly entering the E, I, and R class are extracted with binomial
distributions (B):

• Enew,i ∼ B(pS→Ei (t), S
p|p→p
i (t)) ;

• Inew,i ∼ B(pE→Ii (t), E
p|p→p
i (t)) ;

• Rnew,i ∼ B(pI→Ri (t), I
p|p→p
i (t)) ;

1.5 Derivation of the next generation matrix

In calculating the values of R we disregard mobility. The in-patch model becomes therefore a two age-classes
stochastic SEIR model. Its deterministic couterpart can be written as:

~̇S(t) = −β~S C̄(t)

Np
~I (S4)

~̇E(t) = β~S(t)
C̄(t)

Np
~I(t) + ε ~E(t) (S5)

~̇I(t) = ε ~E(t)− µ~I(t) (S6)

~̇R(t) = µ~I(t) (S7)
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where ~S =

(
Sc
Sa

)
, ~E =

(
Ec
Ea

)
, ~I =

(
Ic
Ia

)
, and ~R =

(
Rc
Ra

)
.

Using Diekmann’s approach we linearize the equations of the infectious compartments ~E, ~I around the

disease free state with the correct immunity fraction ~So =

(
(1− gc)Np

c

(1− ga)Np
a

)
, ~E0 = ~I0 =

(
0
0

)
and ~R0 =

(
gcN

p
c

gaN
p
a

)
and obtain for the following system of linear equations restricted to the infectious compartments:

~̇E(t) = β

(
(1− gc)Np

c 0
0 (1− ga)Np

a

)
C(t)

Np
~I(t) + ε ~E(t) (S8)

~̇I(t) = ε ~E(t)− µ~I(t). (S9)

The next generations matrix in the patch therefore reads (III is the identity matrix):

KKKp =
β

Np

(
(1− gc)Np

c 0
0 (1− ga)Np

a

)
C(t)C(t)C(t) · (εIII)−1 · (εIII) · (µIII)−1 =

=
β

µ

(
(1− gc)N

p
c

Np 0

0 (1− ga)
Np

a

Np

)
C(t)C(t)C(t)

(S10)

which in components gives the result reported in the main text:

Kp
ij =

β

µ
(1− gi)

Np
i

Np
Cij(t) (S11)

1.6 Computational details

The code of the simulations was written in C++ and made use of the Mersenne-trwister random generator
and the binomial extraction procedures as provided by the Boost Libraries v1.58.0. Compiling was done
using the gnu c++ compiler version 4.8.1 with optimization level 3.

1.7 List of districts

Table S1 presents the list of district names and associated IDs used in the study.

2 Calibration procedure

We minimized the Weighted Least Square function WLS(βn, αn) computed on the median normalized inci-
dence curves, considered from the start of the epidemic up to the peak time. The calibration is performed
on Brussels district only and for each set of parameters (βn, αn) we performed 1,000 simulations. Here βn
is the explored per-contact transmission rate, and αn is the rescaling factor for the simulated incidence in
Brussels district to account for possible sampling biases in the initial condition. The calibration is performed
on normalized incidence curves to discount the effects of unknown GP consultation rates.

To reduce the number of points to explore and cope with stochastic fluctuations we considered iterative
resampling through a particle filter/bootstrap method. For each level l we calculate a weight distribution
for each (βn, αn) as follows:

wl(βn, αn) =

1
WLS(βn,αn)∑

βn,αn

1
WLS(βn,αn)

, (S12)

which allows us to define a filtering/resampling transition probability:

p(β, α; l + 1 | βl1, . . . , βln, αl1, . . . , αln; l) =
∑
βl
n,α

l
n

wl(β
l
n, α

l
n)Vβn,αn)(β, α) (S13)

where V(a0,b0)(a, b) is the uniform distribution over the Voronoi cell centred in (a0, b0). We can then resample
N -particles at level l+ 1 given the M -particles at level l and repeat the process iteratively until the filtering
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ID District alternative name ID District alternative name
0 Antwerpen Anvers 22 Charleroi
1 Mechelen Malines 23 Mons Bergen
2 Turnhout 24 Moeskroen Mouscron
3 Brussel Bruxelles 25 Soignies Zinnik
4 Halle-Vilvoorde Hal-Vilvorde 26 Thuin
5 Leuven Louvain 27 Tournai Doornik
6 Nivelles Nijvel 28 Huy Hoei
7 Brugge Bruges 29 Liège Luik
8 Diksmuide Dixmude 30 Verviers
9 Ieper Ypres 31 Waremme Borgworm
10 Kortrijk Courtrai 32 Hasselt
11 Oostende Ostende 33 Maaseik
12 Roeselare Roulers 34 Tongeren Tongres
13 Tielt 35 Arlon Aarlen
14 Veurne Furnes 36 Bastogne Bastenaken
15 Aalst Alost 37 Marche-en-Famenne
16 Dendermonde Termonde 38 Neufchâteau
17 Eeklo 39 Virton
18 Gent Gand 40 Dinant
19 Oudenaarde Audenarde 41 Namur Namen
20 Sint-Niklaas Saint-Nicolas 42 Philippeville
21 Ath Aat

Table S1: List of district names and associated IDs.

probability is almost uniform, and therefore the filter does not work any more. Here we used 20 particles at
each level (except the first) and then we stopped when the number of effective particles defined as:

Neff =
1∑

βl
n
wl(βln, α

l
n)2

(S14)

was greater of 19, which corresponds to uniformity of filtering probability. For each level l, we thus obtain a
set of 20 pairs (βln, α

l
n) whose distribution is used to estimate the values of α and β that minimize WLS(β, α).

3 Additional validation results

Calibration results are listed in Table S2. Figure S2 shows the comparison in the peak timing between
simulations calibrated with values of Table S2 and surveillance data.

Table S2: Calibration results.

median 95% CI
β 0.0850 0.0842, 0.0860
α 0.068 0.061–0.073

WLS 0.0068 0.0063–0.0115
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Figure S2: Left: Boxplot of the peak time difference ∆T d per district between simulations and empirical
data. Numbers represent Belgium districts, see Table S1 for corresponding names. Right: Geographical map
of the median peak time difference per district.
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