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Abstract
In this note we perform a cross check of the programs used by NOvA to calculate the 3-flavor

oscillation probabilities with a independent program using a different method. The comparison

is performed at 6 significant figures and the agreement, |∆P |/P is better than 10−5, as good as

can be expected with 6 significant figures. In addition, a simple and accurate alternative method

to calculate the oscillation probabilities is outlined and compared in the L/E range and matter

density relevant for the NOvA experiment.
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I. SETUP

Neutrino parameters relevant for oscillations:

∆m2
32 = ± 2.5× 10−3 eV2, ∆m2

21 = + 7.5× 10−5 eV2

sin2 θ12 = 0.31, sin2 θ23 = 0.43

sin2 θ13 = 0.022, δ = −69◦ = −23π/60 (1)

Where ∆m2
32 > 0 gives a normal ordering (NO) neutrino spectrum and ∆m2

32 < 0 for inverted
ordering (IO). Note we have avoided the special points: θ23 = π/4 as well as δ = 0,±π/2, π.

Experimental setup parameters, approximate that of the NOvA experiment:

L = 800 km

Yeρ = 1.4 g.cm−3

0.7 GeV ≤ E ≤ 3.7 GeV. (2)

The comparison is performed every 0.1 GeV for both νµ and ν̄µ disappearance as well as νe
and ν̄e appearance for both NO and IO (8 channels and 31 energy points per channel).

II. OSCILLATION PROBABILITIES

NOvA has two independent methods for calculating the oscillation probabilities in
constant matter: one based on [1] and the other based on [2]. These two methods have
been compared to each other by the collaboration and they agree.

The two codes are located in the OscLib package in the NOvA software repository. The
PMNS.h,cxx codes follow [1] which diagoalizes the 3 × 3 neutrino hamiltonian in closed
form and provides exact solutions for its eigenvectors and eigenvalues. Starting from a
unitary matrix in the flavor basis, the PMNS code accumulates the product of the transition
amplitudes Aij for steps of propagation distance L across matter with electron density Ne

for flavor i to oscillate to flavor j. The final oscillation probabilities are then the magnitudes
of these final transition amplitudes, Pij = A∗ijAij. The second codes, PMNSOpt.h,cxx are
also based an exact calculation but completes the diagonalization of the 3× 3 hamiltonian
matrix in fewer internal calculations. As these routines are computationtioanlly more
efficient, they are the ones used in NOvA physics analyses.

In this note we compare the NOvA calculations to a completely different method based
on an exact analytical calculation based on paper [3] and programmed independently of the
NOvA collaboration ie by the author SP.1

Beside the parameters in the previous section, we also had to agree on h̄c as well as the
conversion factor going from Yeρ to the matter potential a = 2

√
2GFNeEν to the relevant

precision.
The comparison was make every 0.1 GeV from 0.7 GeV to 3.7 GeV, more than covering

the energy window of NOvA . The results are given in Fig. 1 and Fig. 2. As the comparison

1 This paper has some typos which have been corrected in the numerical program.
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was only performed at 6 significant figures, having a fraction difference,

|∆P |/P ≤ 10−5

is as good as one can expect. Therefore the conclusion here that all three methods of
calculating the oscillation probability agree beyond what is need for the NOvA experiment.

FIG. 1: Disappearance: P (νµ → νµ) and P (ν̄µ → ν̄µ) for NO (first row) and IO (second row).
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FIG. 2: Appearance: : P (νµ → νe) and P (ν̄µ → ν̄e) for NO (first row) and IO (second row).

III. A SIMPLE, ACCURATE METHOD FOR CALCULATE OSCILLATION

PROBABILITIES IN MATTER

In this section, a simple and accurate way to evaluate oscillation probabilities, recently
shown in [4], is given.2 Details as to the why’s and how’s of this method are contained in
this paper.

2 In this note φ, ψ and ∆λjk of [4], are replaced with the more meaningful notation θ̃13 and θ̃12 and ∆ m̃2
jk

respectively.
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The mixing angles in matter, which we denote by a θ̃13 and θ̃12 here, can also be calculated
in the following way, using ∆m2

ee ≡ cos2 θ12∆m2
31 + sin2 θ12∆m2

32, as follows3:

cos 2θ̃13 =
(cos 2θ13 − a/∆m2

ee)√
(cos 2θ13 − a/∆m2

ee)
2 + sin2 2θ13

, (3)

where a ≡ 2
√

2GFNeE is the standard matter potential, and

cos 2θ̃12 =
(cos 2θ12 − a ′/∆m2

21)√
(cos 2θ12 − a ′/∆m2

21)2 + sin2 2θ12 cos2(θ̃13 − θ13)
, (4)

where a ′ ≡ a cos2 θ̃13 + ∆m2
ee sin2(θ̃13 − θ13) is the θ13-modified matter potential for the

1-2 sector. In these two flavor rotations, both θ̃13 and θ̃12 are in range [0, π/2].

θ23 and δ are unchanged in matter for this approximation.

The neutrino mass squared differences in matter, i.e. the ∆m2
jk in matter, which we

denote by ∆ m̃2
jk, are given by

∆ m̃2
21 = ∆m2

21

√
(cos 2θ12 − a ′/∆m2

21)2 + sin2 2θ12 cos2(θ̃13 − θ13) ,

∆ m̃2
31 = ∆m2

31 +
1

2

(
2 a− 3 a′ + ∆m̃2

21 −∆m2
21

)
, (5)

∆ m̃2
32 = ∆ m̃2

31 −∆ m̃2
21 = ∆m2

32 +
1

2

(
2 a− 3 a ′ − ∆ m̃2

21 + ∆m2
21

)
.

Note that the same square root4 appears in both ∆ m̃2
21 and θ̃12. To see that the ∆ m̃2

31 and

∆ m̃2
32 have the right asymptotic forms, use the fact that (∆ m̃2

21−∆m2
21) = |a ′|+O(∆m2

21),
for |a| � ∆m2

21.

To calculate the oscillation probabilities, to 0th order, use the above ∆ m̃2
jk instead of

∆m2
jk and replace the vacuum PMNS matrix as follows

U0
PMNS ≡ U23(θ23)U13(θ13, δ)U12(θ12) ⇒ UM

PMNS ≡ U23(θ23)U13( θ̃13, δ)U12(θ̃12). (6)

That is, replace

∆m2
jk → ∆ m̃2

jk

θ13 → θ̃13

θ12 → θ̃12, (7)

it is that simple. θ23 and δ remain unchanged.

3 Vacuum values to be used in calculating ∆m2
ee.

4 If a = 0, then θ̃13 = θ13 and since a′ = 0 then θ̃12 = θ12 and both
√
· · · = 1, also ∆ m̃2

jk = ∆m2
jk for all

(j, k) as required. The identity s2θ = (1− cos 2θ)/2 is useful for calculating both sθ and cθ.
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These expressions are valid for both NO, ∆m2
31 > 0 and IO, ∆m2

31 < 0. For
anti-neutrinos, just change the sign of a and δ. Our expansion parameter is∣∣∣sin(θ̃13 − θ13) s12c12

∆m2
21

∆m2
ee

∣∣∣ ≤ 0.015, which is small and vanishes in vacuum, so that

our perturbation theory reproduces the vacuum oscillation probabilities exactly.

In Fig. 3 & 4 we have compared the exact oscillation probability with our approximation..
One sees that the 0th order oscillation probabilities, relevant for the NOvA experiment, have
a difference, from the exact calculation, ∆P < 1×10−4, which is unobservable in the NOvA
experiment.

A. Higher Orders

If the 0th order is not accurate enough, going to 1st order is simple and gives another

two orders of magnitude in accuracy. First the ∆ m̃2
jk remain unchanged but the mixing

matrix is modified by

UM
PMNS ⇒ V ≡ UM

PMNS(1 +W1), (8)

where the matrix W1 is given by

W1 = sin(θ̃13 − θ13) s12c12 ∆m2
21 0 0 −s̃12 e

−iδ/∆ m̃2
31

0 0 +c̃12 e
−iδ/ ∆ m̃2

32

+s̃12 e
+iδ/∆ m̃2

31 −c̃12 e
+iδ/∆ m̃2

32 0

 .

where s̃12 = sin θ̃12 and c̃12 = cos θ̃12. The ∆ m̃2
jk and the V -mixing matrix can be used to

calculate the oscillation probabilities and improve the accuracy so that ∆P < 10−6. The
next highest order is also discussed in [4].
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FIG. 3: Disappearance: P (νµ → νµ) and P (ν̄µ → ν̄µ) for NO (first row) and IO (second row).

The comparison is between the exact calculation of Zaglauer et al, [3], and 0th order of the simple

approximation of Denton et al [4] in red (green is the same comparison with 1st order).
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