
Non-Functional Requirements Optimisation for
Multi-Tier Cloud Applications: An Early Warning

System Case Study

Polona Štefanič
Faculty of Civil and Geodetic Engineering

Faculty of Computer and Information Science
University of Ljubljana

Email: polona.stefanic@fgg.uni-lj.si

George Suciu Jr
BEIA Consult International

Bucharest, Romania
Email: george@beia.ro

Dragi Kimovski
University of Innsbruck

Institute of Computer Science
Email: dragi@dps.uibk.ac.at

Vlado Stankovski
Faculty of Civil and Geodetic Engineering

University of Ljubljana
Email: vlado.stankovski@fgg.uni-lj.si

Abstract—Modern software engineering tools, technologies
and approaches can radically speed up the development and
engineering of multi-tier cloud applications and may be applied
to the cloud/edge/fog computing paradigm. The engineering of
such cloud applications must take into account Non-Functional
Requirements (NFRs), such as end-user, software and cloud
infrastructure requirements for low-power computing, perfor-
mance, availability, elasticity, operational cost and similar. Such
requirements should be identified and considered early in the
software engineering process and decisions must be taken on
their trade-offs, e.g. greater service availability while balancing
operational costs. This paper introduces a new multi-criteria
decision making approach via the use of the Pareto method
to aid the software engineers with NFR trade-off adjustment
possibilities. Adjustment possibilities may include geographic
distribution of application tiers, horizontal and vertical scaling
of virtual resources (such as Virtual Machines and containers)
and similar. This work builds on top of technologies and tools
developed under the SWITCH and ENTICE projects. The impact
of this approach is the ability to fully tailor the adjustments
of non-functional properties of the multi-tier cloud application
according to the decisions of its engineer. An early warning system
cloud application is used to present the approach.

Keywords—Software engineering, Multi-tier cloud applications,
Edge/Fog computing, Non-functional requirements.

I. INTRODUCTION

Various cloud computing applications have diverse needs
for optimization of their Non-Functional Requirements
(NFRs). This diversity is particularly evident with the emer-
gence of smart phones and the Internet of Things (IoT) in
general. In some cases, it is necessary to be able to run
the applications on the smart phones, while in other cases
it is more reasonable to run the services in micro-data cen-
tres close to the smart phones or in the actual core data
centre, where high frequency processors may be used. All
these applications fit in the context of modern cloud/edge/fog
computing approaches and are facilitated by new middleware
technologies including distributed storage repositories for both

data and software, such as Storej.io, orchestration tools, such
as Kubernetes, virtualization technologies, such as Docker, and
software engineering environments, such as Juju or Fabric8.

Thus, the selection of software technologies in the overall
software engineering process plays an increasingly important
role and contributes to the design of dependable applications
and systems. Dependability is a complex non-functional re-
quirement, which includes, inter alia aspects of availability,
resilience, reliability, security etc. Although the (traditional)
software engineering domain has been studied in the last
decades extensively, it is obvious that the emergence of cloud
computing, Big Data, federated and distributed storage repos-
itories, micro-service architectures, orchestration and virtual-
ization tools, cloud design patterns, and other new cloud-based
technologies and approaches, may provide new possibilities to
address NFRs of applications and to make them radically more
adaptive.

Some approaches to address the complete life-cycle of
cloud applications, including their NFRs are restricted to
the use of dedicated infrastructures or cloud providers (e.g.
Amazon EC2, Google Cloud Platform), and various cloud
models (e.g. private, public or community cloud) which make
it possible to ”personalize” the applications. This, however,
is not sufficient, particularly when it comes to the needs to
provide highly self-* (=*adaptive, healing etc.) cloud applica-
tions based on the use of various (micro-)services. A range of
these approaches leads to vendor lock-in, thus, it is necessary
to consider life-cycle of cloud applications and their NFRs,
which is cloud approach, technology and vendor agnostic. This
has lead us to the emergent need to provide an approach for
the engineering of NFRs, which relies on a great diversity
of infrastructures, virtualization technologies, networking and
other solutions.

Cloud applications increasingly rely on multi-tier architec-
tures, which are particularly suitable to address cloud, edge
and fog computing concepts. Multi-tier refers to a type of



application that is organized in several tiers that are usually the
independent modules and can be reused in other applications.
For example, the most common is three-tier architecture, where
presentation, logic and data layer can build the entire and fully
operational application.

Managing the NFRs of such cloud applications requires
detailed understanding of their trade-offs. For example, achiev-
ing greater service availability, requires an increase of the
operational cost. With multiple NFRs this problem becomes a
multi-criteria decision making problem. The goal of the present
paper is therefore to design a new approach for requirements
engineering, which includes decision making process based
on a study of trade-offs among conflicting NFRs for each
application tier and create application deployment patterns
for the deployment and migration options of the entire cloud
application to the federated cloud environment.

The rest of the paper is structured as follows. Section
II presents related work. In section III cloud, edge and fog
computing paradigms are briefly described. The design phase
of a proposed software engineering approach to a solution is
introduced in section IV. Section V thoroughly describes the
example of an early warning system that suits for fog/edge
and cloud computing paradigm and presents results and Pareto
front of the first phase in the software engineering process of
cloud applications. Finally, section VI concludes the paper and
reveals further plans for our future implementation work and
research.

II. RELATED WORK

When considering the need to optimise NFRs for multi-tier
cloud applications it is necessary to compare the present work,
with existing scientific works, prototypes, tools, technologies
and frameworks. Several important criteria were made in order
to prepare such comparison: first, it is necessary to assess
modern software engineering Interactive Development Envi-
ronments, and the extent to which they allow the management
of NFRs; second, the level of which it is possible to freely
combine functionalities into multi-tier applications; third, it is
necessary to assess if such software engineering tools utilise
advanced standards, such as the OASIS standard for Topol-
ogy and Orchestration Specification for Cloud Applications
(TOSCA) [1]. In the end of this section a short comparison
among the present approach and the studied existing works is
presented.

Currently, two leading software engineering tools that are
used to create cloud applications and services are Juju [3], [14]
and Fabric8 [6]. Juju is an open source universal component-
based graphical modeling tool for service oriented architec-
tures and application deployments. It contains a collection
of charms (e.g. software assets or components: a knowledge,
how to properly deploy and configure selected services in the
cloud and relationships among them) that can be graphically
managed or written using various programming languages,
such as Python and Ruby [3]. Juju allows that application
can be vertically scaled by adding or removing charms. It
offers also sets (called bundles) of predefined relationships and
configurations among charms [14]. Fabric8 is an open source
platform that is based on Docker as virtualisation, and Kuber-
netes as orchestration technology. Fabric8 provides a developer

console for creating, building and deploying micro-services
and run and manage them with continuous improvement [6].
However, none of the above described software engineering
editors consider neither the management of the trade-offs
between conflicting NFRs nor they allow user’s involvement in
the decision making process. Juju packs software assets onto
Virtual Machines and LXD containers, while present approach
uses Docker containers.

In order to guide developers to the optimal software design
and development, a variety of cloud application design patterns
have been proposed by traditional software engineering com-
panies [9] as well as by enterprise integrators [11]. Fehling et
al. [7] present a catalogue of cloud computing patterns that de-
scribe good solutions and practices to address NFRs, including
different types of cloud models and provide guidelines how to
deploy and migrate cloud applications on the basis of the cloud
patterns. The paper [13] presents a catalogue of service-based
cloud migration patterns that are focused on the ability to run
the applications across multiple clouds.

Furthermore, some bigger cloud providers, such as Ama-
zon [21] and Microsoft [12] offer their own platform-
dependent cloud patterns with tutorials for software installation
and migration. However, generally speaking, the provided
design patterns in more or less all existing works cited above,
are only guidelines for developing and deploying cloud ap-
plications. The end-users of these applications may all have
different QoE requirements at runtime, which may signifi-
cantly influence the resource consumption and the decisions
on elasticity (up or down scaling of the use of resources).
In order to address NFR concerns, software engineers may
want to organise applications into several tiers, which in turn
may all be elastic and scale on specific cloud providers in the
cloud/edge environment. Such applications may significantly
differ from an application to an application, and this kind of
scenarios are not supported by commercial cloud providers.
Besides, application patterns provided by cloud providers are
usually platform-dependent, and represent significant vendor
lock-in that is part of the NFRs of many end-users. In addition
to this, cloud application design patterns are developed having
in mind only the deployment and migration of the application
to the cloud, and elasticity to a limited extent (e.g. horizontal
scaling). Other phases of the life-cycle of cloud applications
are not addressed, e.g. software design and development or
wider range of NFRs.

The following two papers [18], [17] present patterns for
migration only of data layers in the cloud. The contribution
of [17] is an initial catalog of Cloud Data Patterns, which deal
with challenges for the data tier to be realized in the clouds.
The authors are mostly focusing on two aspects: how to enable
store scalability and ensuring data confidentiality. The later
paper [18] introduces cloud data patterns that take into account
functional, non-functional and privacy-related aspects for the
migration of the data layer to the cloud. However, the authors
provide the initial catalogues of cloud data patterns only for
the data tier, the other two tiers, e.g. the presentation and the
logic tier, are not considered. Moreover, no (data) tier-related
NFRs management is available, nor any user’s involvement in
the decision making process.

Current state-of-the-art approaches for orchestration of
micro-services use and address new developed topologies for



orchestration, automation and application provisioning and
management [8], [10], [20]. However, they do not handle
NFRs, but explain that TOSCA should be extended to allow
handling and defining NFRs using TOSCA policies and steer
topology completion and similar [8]. [20] demonstrates an
approach to include NFRs in TOSCA using policies and
provides a mechanism for automatic processing of the policies
in a TOSCA compliant runtime environment. However, these
approaches neither handle NFRs nor provide the software
engineer with ability to study the trade-offs between conflicting
NFRs but explain that TOSCA should be extended to allow
handling and defining NFRs using TOSCA policies and steer
topology completion and similar.

III. BACKGROUND

The emergence of the Internet of Things (IoT) and its
intended applications opens a whole new range of Big Data and
real-time computing problems. Software engineering intends to
follow this progress by radically shortening the life-cycle of
cloud applications through component-based software devel-
opment and engineering. The underlying computing platforms
and technologies are designed to further support cloud, edge
and fog computing concepts. Multi-tier application patterns
seem to be predominant approach for delivering applications
that can run both at core data centres and simultaneously at
the edge/fog devices. Currently, in this context, there does not
exist a systematic approach for the management of NFRs,
and this study intends to address this gap. Following is an
account of the key design principles underpinning an approach
to incorporate NFRs management in the overall life-cycle of
multi-tier cloud applications.

Edge, fog, osmotic [19] and other new computing concepts
have been emerging recently in order to address the require-
ments of a plethora of new applications for smart phones,
cars, homes, and so on. For such applications decentralized
computing infrastructures can be advantageous. The general
idea of cloud/edge/fog computing is to extend the traditional
cloud computing model to the network edge. There exist
virtualized platforms (e.g. micro-data centres) that are located
between the centralized core data centres and the end users’
devices and offer strong support for IoT-based applications.

Cloud, edge and fog computing platforms and approaches
generally allow to move the processing, storage and commu-
nication capabilities from actual core data centres towards the
edge of the network and run services in micro-data centres
that are closer to the end users. That is, the main idea of
cloud/edge/fog computing paradigm is to properly push/move
the computing resources, application services and data away
from centralized nodes to the edge of the network and vice-
versa in order to achieve higher efficiency [4]. When ap-
plication’s services run at the edge of the network, e.g. in
micro-data centres closer to the end users: (1) lower amount
of data is transported that normally would be processed and
analysed in the core data centres, which means for example
lower data transportation costs, lower latency and delays,
faster data (e.g. virtual machine images, containers) delivery
and communication with the end users, specific geographic
availability of the services i.e. location awareness of services
and so on [16].

Nowadays, new container-related technologies make it
more straightforward to realize the cloud/edge/fog computing
concepts. Various companies enable edge devices, such as
routers to perform operations with containers, such as delivery,
storage, deployment and so on. Due to the nature of the
technologies used, the movement, starting, stopping and other
operations with services and networks are much faster and effi-
cient. This makes it possible to address NFRs, such as latency,
bandwidth, availability, reliability, security, operational cost,
and so on, in a much more efficient and effective manner. The
goal of the present study is to inform the software engineering
process about the potential offered by the underlying cloud
technologies so that essential NFRs are taken into account
early in the cloud application engineering process i.e. in editors
such as Juju.

IV. SOFTWARE ENGINEERING: MULTI-TIER CLOUD
APPLICATIONS AND THEIR NFRS

Multi-tier application architecture is a type of architecture,
where application layers run on various server instances or
on several virtualized server instances somewhere between the
core data centres and the end user. A most commonly used
multi-tier architecture is a three-tier architecture, which usually
consists of presentation, logic and database tiers.

The presentation tier (also called layer) is the highest level
of the application and it usually presents the user interface.
Its main function is to render the tasks to the end user that
he/she can understand them. Users access this layer directly,
e.g. via Web browser on the client-side. The logic tier controls
the application’s functionality and processes data between
other tiers. This tier communicates with the other two tiers
(presentation and data tier). The data tier presents the storage,
e.g. database or file, where the information can be stored
and retrieved from. The back-end logic layer serves both the
client application (user interface) and the data storage. The
presentation layer (user interface) does not have a direct access
to the data storage.

Using a three-tier architecture allows flexible scaling and
modifying one of the tiers without affecting the other two
tiers. In contrast, a two-tier architecture is an application
that executes a back-end logic and data on the same server,
and the presentation tier is on the client side. The deploy-
ment of cloud/edge/fog applications (e.g. IoT) in a two-tiered
architecture already fails short of meeting the requirements
related to low latency, mobility, location awareness and so on.
Two-tier architecture is not really applicable to cloud/edge/fog
computing concepts.

Multi-tier architectures are designed to address the needs
of these new computing concepts, and therefore inherit the
benefits of the underlying technologies. For example, they can
support the replication of data and services, self-* (*=healing,
adaptation, configuration, maintenance etc.) properties and
so on, which immediately affects the perceived Quality of
Experience (QoE) and Quality of Service (QoS).

In conclusion, a multi-tier cloud application architecture
can be suitable to address a range of new NFRs across cloud,
edge and fog infrastructures. In this study, we focus on a three-
tier application architecture as being sufficient to address the
objectives of our study.



Fig. 1: Software development of multi-tier cloud applications on top of SWITCH SIDE. Phase 1 presents including NFRs and
constraints into the development process; in phase 2: QoS metrics are gathered; phase 3 offers to the engineer Pareto front
for each application component; in a phase 4 TOSCA file is updated according to the engineer’s decisions; in phase 5 cloud
design patterns will be generated and according to the engineer’s decision making multi-tier application will be deployed to the
cloud/edge/fog environment in phase 6.

A. NFRs management in the software engineering process

A major novelty of this work, is to provide a process
that allows the software engineer to study the NFR trade-off
possibilities for each application tier during the development
of a multi-tier cloud application. The approach presented in
this paper builds on the top of a new software engineering
editor of project SWITCH1, which is a graphical user interface
developed in the course of the running project SWITCH. This
new graphical editor allows the software engineer to consider
various NFRs (e.g. thresholds on Quality of Service (QoS)
metrics, allowed physical locations where to run the services,
and restrictions to such locations, and other). The SWITCH
SIDE (software interactive development environment) relies on
the TOSCA standard, which makes it possible to integrate with
existing orchestrators capable of using TOSCA with ability
to take into account NFRs early in the software engineering
process, by creating trade-off decisions about NFRs by further
automatically proposing cloud design patterns suitable for the
cloud/edge/fog computing paradigm. Finally, these functional-
ities are packed in Docker containers and can be deployed and
orchestrated across multiple clouds (e.g. data centres, micro-
data centres, IoT devices). Figure 1 shows the steps in the
software development of multi-tier cloud application on top of
the SWITCH SIDE. The process is managed by a software
engineer who is the decision maker.

The first three steps of the process represent the application
1www.switch-project.eu

design phase and the last three steps (out of a total of six steps)
represent the deployment phase for the application. In the
following, we briefly describe all steps of our newly designed
process. Particular focus is given on the first three steps that
highlight the novelty of the process.

1) Designing and including NFRs and constraints: A soft-
ware engineer can create services and application components
in the SWITCH SIDE GUI by gathering application compo-
nents from public or private repositories (e.g. Docker Hub)
and by creating them on the SIDE canvas. In many situations
several useful components may be retrieved, and the engineer
has to decide which one to use. The SWITCH SIDE the
overall application editing process is TOSCA compliant. A
crucial step in the process is that the software engineer can
consider which NFRs should be defined for each application
component (application tier) or service separately, e.g. what
is the minimum CPU frequency required for the component
to run, what is the minimum amount of Memory that has to
be allocated to that particular component so that the specific
application tier will run properly. Obviously, not all NFRs of
the application components of the multi-tier cloud application
share the same grade of the importance to work optimally (e.g.
high security for higher cost is probably more important for the
data tier and not that much important for the presentation tier).
The user can include these constraints in an updated version
of the TOSCA application specification.

For illustration, the use case, which is presented later on



in this paper (in section V) has the following NFR constraints:
jitter should be less than 1 millisecond, querying the database
should be less than 2 milliseconds and so on.

2) SLAs of cloud providers and monitoring data: Since we
are dealing with cloud computing, Service Level Agreements
(SLAs) of the cloud providers should be considered, such
as availability, cost and performance. SLAs of individual
cloud providers are publicly available documents. Some cloud
providers expose their SLAs via APIs, and can be used for
various calculations and cost estimation. In addition to the
SLAs, some applications may require real-time monitoring of
the provided Quality of Service (QoS). Monitoring the entire
cloud, edge and fog computing spectrum is a work in progress
(see V-B).

When considering monitoring, various QoS metrics can
already be measured by using systems, such as JCatascopia
and the SWITCH agent-based Monitoring System. Metrics
that can already be collected include application level metrics
(availability, cost, performance), network level metrics (e.g.
throughput, latency, response time etc.) and container-based
metrics (CPU, memory etc.). When performing our tests, we
have considered performance of the databases, throughput, la-
tency and response time of connecting clients to the databases
and running server tests in the clouds (see subsection V-B).

3) Application tier-based Pareto decision making: In this
step, the monitoring data, SLA information of cloud providers
and NFRs (e.g. application tier constrains) are defined in
TOSCA, and sent to the multi-criteria decision module in order
to offer the software engineer the optimal trade-offs of the
NFRs for every application tier of the multi-tier application.
At this point, the decision maker (software engineer) chooses
the optimal solution on the Pareto front, which represents a
NFRs trade-off solution in accordance with the given objective
functions (see V-C). The concept of Pareto optimality has been
utilized to simplify the decision making process and to provide
guidance to the software engineer how to efficiently deploy
their application.

4) Updating TOSCA file: In the next step of the process,
the decision maker (i.e. software engineer) selects a completely
independent non-dominant solutions for each application com-
ponent. The changes of his/her choices are updated in the
TOSCA application specification and are made ready to be
processed in the next steps.

5) Creating deployment patterns: The last step before de-
ployment is achieved by creating deployment patterns that will
provide the software engineer a set of few optimal deployment
options. For example, the engineer may select on which nodes
– cloud/edge – the application tiers should be deployed in order
to meet the desired NFRs. In this step the previous decision
maker’s choices will be considered when creating deployment
patterns for optimal deployment to the cloud infrastructure.

6) Deploy to the cloud infrastructure: In the last step of
this process the software engineer chooses the application
pattern that suits the most his/her multi-tier application and
deploys the application on the selected cloud/edge computing
infrastructure.

V. USE CASE

A multi-tier cloud application was designed and developed
in order to illustrate the NFR optimisation approach. The ap-
plication represents an early warning system, and was designed
in collaboration with the company BEIA Consult2. The main
idea of an early warning systems is in case of natural disasters,
such a flood, earthquakes and similar disaster events to save
lives – warn people for example to leave homes, hospitals to
be prepared to receive more patients, a fire department or army
to be prepared for rescuing people and to enable the authorities
to prepare and provide any help – and to minimize costs
when preventing efficiency. An early warning system often
collects data from sensors in real time, processes the gathered
information using various predictive simulation tools on the
warning system and provides data to the warning services or
interactive facilities for the public to obtain more information.

A. An Elastic Disaster Early Warning System Case Study

BEIA Consult elastic disaster warning system application
represents “cloudified” solution for natural disasters. The ap-
plication should be capable of collecting and processing sensor
in nearly real-time and thus allowing very rapid response
to urgent events. In addition to that application should pro-
vide sufficient reliability, availability and scalability to the
increasing numbers of sensors. The main QoE metric of the
application that should be met is the system’s reaction time i.e.
the time from sensor data acquisition to the notification sent to
the operator. The design of this cloud application is presented
in Figure 2.

Sensors transmit the field data that is collected by Remote
Telemetry Unit (RTU) and forwarded to IP Gateway that trans-
mits the data to the database server. Here the reports/statistics
are created. The notification server periodically checks the
database server and statistics in real time and sends notifi-
cations to operators if the threshold is violated. Notifications
are sent to the operator that processes the event. The operator
checks statistics received and makes a decision whether or not
to alert the emergency system.

This is a multi-tier cloud application, where two relational
data bases (database and notification server), representing two
tiers can be horizontally scaled since the amount of data
can start growing quickly. Therefore, we have done some
measurements using MySQL and SQLite databases and deploy
them to Amazon EC2 in order to perform benchmark tests. The
results are collected in V-B and presented on Pareto front in
V-C.

B. Gathering QoS metrics for the modelling process

Tests were run using Amazon Web Services (AWS) Elas-
tic Compute Cloud (EC2), since Amazon is a major cloud
provider. Amazon EC2 is hosted on various regions in a sepa-
rate geographic areas world-wide. Currently, Amazon offers 14
regions on various continents. For the purpose of the evaluation
we have set instances and run tests on four different regions:
North Virginia, USA (us-east-1), London, Europe (eu-west-
2), Sydney, Australia (ap-southeast-2) and São Paulo, South
America (sa-east-1). In each region we have created three

2http://www.beiaro.eu/



Fig. 2: BEIA elastic disaster early warning system.

different virtual machines: t2.micro3, m4.large4 and i3.large5.
In Table I the basic properties6 of the above mentioned VMs
are described.

TABLE I: AWS E2 Instances and their basic properties.

vCPU [cores] ECU [CPU unit] RAM [GB]
t2.micro 1 variable 1
m4.large 2 6.5 8
i3.large 2 7 15,25

On each VM instance we have deployed two relational
databases: MySQL and SQLite. For each database we have run
several server and client tests. As a server tests we have run
the following functionalities: (1) deleting database, (2) creating
database, (3) creating tables, (4) populating tables; We have
populated tables with various number of records, whereby we
have built a tree. For each node we have stored the information
about all its parents up to the root. As mentioned above, for
each database we have run more tests every time with different
number of records in the database, e.g. 13, 85, 781 and 9331.
We defined the number of records according to the following
formula No. of Records = NL−1

N−1 , where N represents the
number of childs each node (parent) has and L represents the
level (depth) of a tree. We decided to populate the tables with
data in an indexed tree, because it is greedy operation over
databases.

We have also created clients, who connect to all the VMs
on several locations and perform actions, such as download
the biggest database (with 9331 records). We measured how
long the data transfer takes (transfer rate metric: throughput).
The results have been summarized with those gathered when
measuring the creation and insertion of the database with dif-
ferent amount of records. This data represents our performance
that is measured in milliseconds and the cost is presented in
USD/h. The measured results can be found in Tables II and
III.

3t2 instances are low-cost and for general purpose and provide a baseline
level of CPU with the ability to burst above the baseline.

4m4 instances are for general purpose, with a balance of compute, memory,
and network resources.

5i3 instances are optimized on storage.
6https://aws.amazon.com/ec2/pricing/on-demand/

TABLE II: The data for performance and cost for SQLite
database.

VM Instance Performance [ms] Cost [USD/h]
us-east-1 t2.micro 327.9364671 0,012

i3.large 286.565312 0,156
m4.large 313.203688 0,108

eu-west-2 t2.micro 299.335739 0,014
i3.large 303.966593 0,181

m4.large 317.950037 0,125
ap-southeast-2 t2.micro 332.465423 0,016

i3.large 318.667166 0,187
m4.large 307.410629 0,134

sa-east-1 t2.micro 361.49492 0,02
i3.large 333.903969 0,286

m4.large 328.825433 0,171

TABLE III: The data for performance and cost for MySQL
database.

VM Instance Performance [ms] Cost [USD/h]
us-east-1 t2.micro 290.032196 0,012

i3.large 259.175117 0,156
m4.large 296.150911 0,108

eu-west-2 t2.micro 276.665274 0,014
i3.large 267.977918 0,181

m4.large 262.342901 0,125
ap-southeast-2 t2.micro 301.305107 0,016

i3.large 291.266964 0,187
m4.large 283.23083 0,134

sa-east-1 t2.micro 295.705113 0,02
i3.large 310.696244 0,286

m4.large 301.424925 0,171

C. Multi-criteria decision making

The process of cloud applications engineering requires
consideration of multiple different NFRs. Those requirements
are mutually conflicting, thus altering one parameter can have
profound effects on the others. For example, increasing the
availability of a given application will require increased system
redundancy, which will eventually lead to higher operational
costs for the application owner. Contrarily, reducing the op-
erational cost can easily limit the possibility for renting more



computational resources in the cloud, causing high VM de-
ployment, instantiation and execution overheads. Selecting the
most optimal trade-offs between multiple application run-time
parameters can be time-consuming and error-prone process,
especially when considering complex cloud environments.

In order to assist the software engineers to efficiently de-
ploy and operate multi-tier applications in cloud environment
we have introduced essential models from the field of multiple-
criteria decision making. To be more concrete, we have re-
sorted to the concepts of Domination and Pareto optimality to
develop a tool which will simplify the application deployment
process in the cloud by consider multiple conflicting non-
functional parameters.

The concept of domination has been used in the field of
multi-criteria decision making to compare multiple solutions
on the basis of two or more conflicting objective functions [15].
For a solution a ∈ A is said to dominate over a′ ∈ A if a′ is
greater than a in relation to all objective functions, while a′ has
worse value for at least one of them. Furthermore, a solution
a′ ∈ A is non-dominated if there are no other solutions a ∈ A
that dominate over a′. A set of solutions P ′ ∈ P is called
Pareto optimal set if there are no other solutions in P that
dominate any solution in P ′. The set of all Pareto optimal
solutions is called Pareto optimal set, or simply Pareto front.
The Pareto front can be considered as a efficient tool for
aiding the decision making process, especially in complex
environments. The shape and spread of the Pareto front can
provide insights that enable efficient exploration of the space
of non-dominated solutions, thus allowing certain properties
and regions of particular interest to be easily explored.

For our particular problem of Pareto front construction we
have utilized the JMetal Multi-objective optimization frame-
work [5]. The Pareto front is constructed on the basis of
the QoS metrics and benchmark tests described in Section
V-B. The algorithm uses the QoS metrics data to properly
sort the available VM instances in relation to the instance’s
performance and cost as conflicting objectives. The tools has
been created in a generic way, thus allowing the dominance
sort to be extended to more than two objective functions.
The process of Pareto construction is initiated by marking all
available instances that meet the minimal objectives’ criteria
required by the user. Afterwards, the pre-selected instances
are compared pair-wise and the actual non-domination sorting
is performed. This results in a construction of the Pareto
front, which encloses the optimal solutions in relation to both
conflicting objectives. Therefore, the tool reduces the number
of total available VM instances to only those ones that provide
the most optimal balance between cost and performance.

To illustrate the concepts presented in this section we
have evaluated the multi-criteria decision making tool with
the data provided in Tables II and III. Figures 3 and 4
show the Pareto optimal sets constructed for the SQLite and
MySQL VM instances respectively. It can be observed that
the proposed tool can easy the burden on the developers
and simplify the decision-making process by removing VM
instance types which are not optimal in the given objective
space. In our experiments we have reduced the number of
possible VM instance types from 12 to only few. Nevertheless,
this tool would be most suitable in the cases in which the
number of possible instance types and locations is in the

range of hundreds. Furthermore, this tool allows for graphical
representation of the objective space and the Pareto front, thus
providing easy to use interface. On the vertical axis of the
Pareto front we have set cost (USD/h) of each VM instance
and on the horizontal axis the performance (milliseconds),
which is the sum of running server tests (e.g. time needed
for inserting, creating, populating databases and so on) and
client tests (throughput).

Fig. 3: Pareto set for the SQLite VM instances.

Fig. 4: Pareto set for the MySQL VM instances.

VI. CONCLUSION

New software engineering methods and practices, such as
component-based software engineering may radically improve
the life-cycle of cloud applications. Our work focuses on a very
important aspect of the engineering process: the management
and optimisation of Non-Functional Requirements in multi-tier
cloud applications.



This work presents a new approach that raises the level
of abstraction, so that NFRs can be managed and optimised
very early in the application engineering process. As a proof of
concept, the process is included in the SWITCH SIDE GUI,
but, it can be used in other software engineering IDE, such
as Juju. The key novelty is in the use of available knowledge
about the software artifacts (components, such as containers,
Virtual Machines, etc.), the SLAs of the cloud providers, and
the QoS monitoring metrics, so that the software engineer is
provided with a Pareto front to study her/his optimal trade-off
solution. This process can apply to all tiers in particular, and
to the application as a whole. Once the NFRs are optimised
and a decision is taken, the NFRs are recorded in a semantic
description of the cloud application, which is a proposed
extension to the OASIS TOSCA standard.

Compared to other existing works discussed in section
II the novelty of our work is an approach, that offers soft-
ware engineers to study, optimise, and manage, NFR trade-
offs possibilities in a component-based software Interactive
Development Environment.

While the first three steps (1-3) of the process have been
fully completed and are described in this study, the next
three steps steps (4-6) have complexities, e.g. due to the
possibility to horizontally scale the application components at
each application tier, which need to be addressed by a separate
study (see IV-A). The focus of the new study will be the overall
optimal deployment, including scaling, migration and other
run-time adaptation possibilities for optimal operation of the
multi-tier cloud application. This will be achieved by creating
pre-prepared patterns for the software engineer to study and
choose based on the trade-offs. For example, the SIDE GUI
could offer the user optimal combination of application tiers,
some of which should be deployed in cloud core data centres
and some tiers to be moved towards the edge of the network.

Generally speaking, our future works will include analysis
on how to include NFR management principles to achieve self-
adaptive behaviour of applications, infrastructure planning,
middleware for the optimisation and delivery of software
components (e.g. ENTICE delivery mechanisms for Virtual
Machines and their fragments).

Noofrecords = N
N−1

ACKNOWLEDGMENT

The research work of this paper bases on two projects,
which have received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 643963 (SWITCH project) and under grant
agreement No 644179 (ENTICE project).

REFERENCES

[1] Oasis topology and orchestration specification for cloud applications
version 1.0, November 2013.

[2] A. A. Adewojo, J. M. Bass, and I. K. Allison. Enhanced cloud patterns:
A case study of multi-tenancy patterns. pages 53–58, Nov 2015.

[3] Kent Baxley, Jose De la Rosa, and Mark Wenning. Deploying workloads
with juju and maas in ubuntu 14.04 lts, May 2014. A Dell Technical
White paper.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, pages 13–16, New York, NY, USA, 2012. ACM.

[5] Nebro A. J. Durillo, J. J. jmetal: A java framework for multi-objective
optimization. Advances in Engineering Software, 42(10):760–771,
2011.

[6] Fabric8. Fabric8 documentation, December 2016.
[7] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and

Peter Arbitter. Cloud Computing Patterns: Fundamentals to Design,
Build, and Manage Cloud Applications. Springer Publishing Company,
Incorporated, 2014.

[8] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and
Arnor Solberg. Towards model-driven provisioning, deployment, mon-
itoring, and adaptation of multi-cloud systems. In Proceedings of the
2013 IEEE Sixth International Conference on Cloud Computing, pages
887–894, Washington, DC, USA, 2013. IEEE Computer Society.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1 edition, 1994.

[10] Pascal Hirmer, Uwe Breitenbücher, Tobias Binz, and Frank Leymann.
Automatic Topology Completion of TOSCA-based Cloud Applications.
In Proceedings des CloudCycle14 Workshops auf der 44. Jahrestagung
der Gesellschaft für Informatik e.V. (GI), volume 232, pages 247–258,
Bonn, September 2014. Gesellschaft für Informatik e.V. (GI).

[11] G. Hohpe and B.A. WOOLF. Enterprise Integration Patterns: De-
signing, Building, and Deploying Messaging Solutions. The Addison-
Wesley Signature Series. Prentice Hall, 2004.

[12] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson. Cloud
Design Patterns: Prescriptive Architecture Guidance for Cloud Appli-
cations. Patterns & practices. Microsoft Developer Guidance, 2014.

[13] Pooyan Jamshidi, Claus Pahl, Samuel Chinenyeze, and Xiaodong
Liu. Cloud migration patterns: A multi-cloud service architecture
perspective. In Service-Oriented Computing - ICSOC 2014 Workshops
- WESOA; SeMaPS, RMSOC, KASA, ISC, FOR-MOVES, CCSA and
Satellite Events, Paris, France, November 3-6, 2014, Revised Selected
Papers, pages 6–19, 2014.

[14] Ubuntu Juju. Juju docs, December 2016.
[15] D. Kimovski, N. Saurabh, V. Stankovski, and R. Prodan. Multi-objective

middleware for distributed vmi repositories in federated cloud environ-
ment. Scalable Computing: Practice and Experience, 17(4):299–312,
2016.

[16] I. Stojmenovic and S. Wen. The fog computing paradigm: Scenarios
and security issues. In 2014 Federated Conference on Computer Science
and Information Systems, pages 1–8, Sept 2014.

[17] S. Strauch, V. Andrikopoulos, U. Breitenbuecher, O. Kopp, and F. Leyr-
nann. Non-functional data layer patterns for cloud applications. In 4th
IEEE International Conference on Cloud Computing Technology and
Science Proceedings, pages 601–605, Dec 2012.

[18] Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbücher, Santi-
ago Gómez Sáez, Oliver Kopp, and Frank Leymann. Using Patterns
to Move the Application Data Layer to the Cloud. In Proceedings of
the 5th International Conference on Pervasive Patterns and Applications
(PATTERNS’13), pages 1–8. Xpert Publishing Services, May 2013.

[19] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. Osmotic
computing: A new paradigm for edge/cloud integration. IEEE Cloud
Computing, 3(6):76–83, Nov 2016.

[20] Tim Waizenegger, Matthias Wieland, Tobias Binz, Uwe Breitenbücher,
Florian Haupt, Oliver Kopp, Frank Leymann, Bernhard Mitschang,
Alexander Nowak, and Sebastian Wagner. Policy4TOSCA: A Policy-
Aware Cloud Service Provisioning Approach to Enable Secure Cloud
Computing, pages 360–376. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[21] Marcus Young. Implementing Cloud Design Patterns for AWS. Packt
Publishing, 2015.


