
Incremental Learning from Multi-Level Monitoring
Data and its Application to Component Based

Software Engineering

Salman Taherizadeh, Vlado Stankovski
Faculty of Civil and Geodetic Engineering

University of Ljubljana
Ljubljana, Slovenia

vlado.stankovski@fgg.uni-lj.si

Abstract—Many new Internet of Things (IoT) applications
such a disaster early warning systems, video-streaming,
automated driving and similar, are increasingly being built by
using advanced component based software engineering
approaches. Software components can include various executable
images, such as container or Virtual Machine images, scripts and
others. Achieving adequate Quality of Service (QoS) for such
applications is still a challenging issue due to runtime variations
in running conditions intrinsic to the cloud, edge and fog
environments. These types of systems should therefore be
continuously monitored and hence adapted at various levels
including infrastructure, container and application levels. In this
work, we present an adaptation method using a new Incremental
Learning approach based on Multi-Level Monitoring data. The
method dynamically generates a set of rules representing a
performance prediction model that allow us to find potential
performance bottlenecks and then propose suitable application
adaptation actions. Adaptation possibilities in this work include
(1) live-migration of application components (such as containers)
from the current infrastructure to another one with different
characteristics, such as CPU, memory, disk or bandwidth
capacity, and (2) dynamic horizontal or vertical scaling of
container-based application instances to offer better fitted
resource capacities.

Keywords—software engineering; components; multi-level
monitoring; incremental learning; adaptation

I. INTRODUCTION
Internet of Things (IoT) is a paradigm where

things/objects/sensors have a pervasive presence in the
Internet. In recent years, IoT systems, such as early warning
systems, robots, automated cars and similar, are increasingly
used by organizations that want to look beyond traditional
applications. The cloud computing model is a pay-per-use on-
demand offer through which organizations can exploit elastic
cloud resources and federated cloud environments. As IoT
applications can be virtualized, cloud computing has become a
preferable solution for delivery of such applications.

Achieving high Quality of Service (QoS) and high Quality
of Experience (QoE) needed by cloud-based IoT applications is
still a challenging task. Many times end-user requirements for

high QoE translate to requirements for high-performance
computing, for example, requirements for the use of high-speed
processors, memory and bandwidth between the devices and
the processing software components running in the cloud.

Offering favorable application performance as service
quality is still a challenging task particularly due to frequent
inability to dynamically obtain necessary computing resources
required by the application, and highly varying environmental
conditions that can affect the application’s performance during
runtime. Accordingly, the next generation of IoT systems and
applications, would need to be highly self-adaptive – they will
need to be implemented in a way that does not require human
intervention in their operation [1]. In other words they should
be able to detect runtime environmental changes and determine
their own way of reacting in order to continuously adapt the
deployed services for optimal performance.

Nowadays, a popular method for the delivery of cloud
applications is via component based software engineering with
tools such as Juju and Fabric8 and containers, such as Docker.
Due to the lightweight nature of containers and their fast boot
time, it is possible to deploy cloud-based IoT applications in
various hosting environments faster and more efficiently than
using Virtual Machines (VMs) [2].

This research work presents a continuous multi-level
monitoring for software components, such as containers
running in the cloud. The generated data are fed as input to a
Learning Classifier System (LCS) that incrementally learns
rules representing a prediction model for the application’s QoS.
The rules can be used to adapt the application’s components
during runtime and thus maintain the expected QoS. The goal
is to develop a performance model that is fully supportive to
determine performance problems that need corrective actions.

II. METHOD

A. Modern component based software engineering practices
In software engineering, there are new tools gaining

popularity due to possibilities to quickly develop cloud
applications from scratch. For example, Juju is an open source
component based modeling tool for service oriented

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.148

378

X452
Stamp

X452
Stamp

X452
Stamp

architectures and application deployments with a set of
predefined components connected together. An application
developed in Juju can be vertically and horizontally scaled thus
addressing some important properties of the cloud. Fabric8 is
another open source platform providing the developer with a
console for creating, building and deploying micro services, as
well as running and managing them in continuous manner. The
SWITCH project also provides its own Interactive
Development Environment (IDE) for the development of
component based cloud applications.

These new software engineering methods and tools are
intended to radically shorten the software lifecycle. By using
them, it is possible to build IoT applications based on software
components and organize the applications into multiple tiers,
which can be made to execute across federated cloud
environments. Software components can be persistently
running in a data center, at the edge of the network, e.g. in
micro-severs or in fog computing devices, such as
smartphones, robots, cars and actuators. The present work aims
to provide learning mechanisms for the adaptation of
component-based IoT applications, so that they can
continuously maintain high QoS during their operation in
multi-cloud environments.

B. Learning Classifier System
A Learning Classifier System (LCS) is aimed at identifying

a set of rules that can be stored and used in a Knowledge Base,
such as Jena Fuseki. The rules can be applied in order to make
performance predictions based on behavior models. The goal is
to develop an adaptive system which is able to learn how to
perform specific adaptation actions under specific conditions.
The LCS module includes three fundamental components: (I)
Environment, (II) Learning machine, and (III) Rule
compaction.

(I) Environment: The environment is the source of data
upon which the LCS learns. As an example, shown in Table I,
the environment could be a dataset with some number of
training instances. Each instance has some independent
attributes that can traditionally have the value of 0 or 1.
Moreover, each instance has a single endpoint referred to
action. This endpoint is the main variable in the data that we
are trying to predict.

To generate this dataset, an implemented monitoring
approach able to measure a wide variety of different attributes
in the execution environment is proposed. The objective is to
autonomously maintain such applications’ performance
considered as the endpoint in the dataset and hence deliver
seamless user experience in different conditions.

(II) Learning machine: The learning machine iterates over
the dataset repeatedly until some stop criteria are met, or the
maximum number of learning iterations is reached. As the
result, the learning machine generates a set of rules together
considered as the prediction model. The model will be used to
predict the behavior of application performance as single
endpoint based on other attributes.

TABLE I. BINARY LEARNING INSTANCES FOR RULES

Endpoint
Attributes

Attribute 1 Attribute 2 Attribute N

1 0 1 1

0 1 1 0

… … … …

1 0 0 1

(III) Rule compaction: Once the last learning iteration is
reached, the resulting rules can be applied as the model.
However, there is often a post-processing step called “rule
compaction” applied to the resulting model after the last
learning iteration. Rule compaction strategies typically seek to
remove poor, redundant or inexperienced rules from the
prediction model. In this way, rule compaction simplifies the
model, improves interpretability, and even can enhance
predictive performance.

C. Rule population (P)
Rules typically take the form of an {IF:THEN} expression,

e.g. {IF 'condition' THEN 'action'}. An individual rule is not
itself a prediction model, since the rule is only applicable when
its condition is satisfied. The entire population of rules
collectively forms the prediction model. Each attribute in a rule
can be 0, 1, or '#' as "don't care" symbol (also referred as wild
card). For example, the rule (#1###0### ~ 1) as {condition ~
action} can be interpreted in this way: IF the second attribute =
1 AND the sixth attribute = 0 (regardless of other attributes)
THEN the prediction class = 1. In the example, the second and
sixth attributes have been specified in this rule, while the others
were generalized. A rule along with its associated parameters
(such as accuracy, fitness and numerosity) is often referred as a
classifier. In Michigan-style LCS as the most common type of
LCS algorithm, classifiers are contained within a population
([P]) that has a user defined maximum number of classifiers.
The [P] starts out empty (i.e. there is no need to randomly
initialize a rule population). Classifiers will instead be initially
introduced to [P] with a covering mechanism.

As explained before, the learning machine is the core of an
LCS and includes several interacting components that operate
in a step-wise learning cycle: (Step 1) Training, (Step 2)
Matching, (Step 3) Covering, (Step 4) Updating, (Step 5)
Subsuming, (Step 6) Genetic algorithm, (Step 7) Deleting.

(Step 1) Training: The beginning step in incremental
learning is getting a training instance from the environment.
For online learning, LCS will obtain a completely new training
instance for each iteration from the environment.

(Step 2) Matching: The next step is finding all rules in the
population [P] that have a condition matching the attributes
values of the training instance. In other words, every rule in [P]
is now compared to the training instance to see which rules
match. A rule matches a training instance if all feature values
specified in the rule condition are equivalent to the
corresponding feature value in the training instance. For
example, assuming the training instance is (001001 ~ 0), these

379

rules would match: (###0## ~ 0), (00###1 ~ 0), (#01001 ~ 1),
but these rules would not (1##### ~ 0), (000##1 ~ 0), (#0#1#0
~ 1). In matching step, the endpoint (action or prediction class)
specified by the rule is not taken into consideration. At the end,
matching rules are moved to a match set [M]. As a result, the
[M] may contain classifiers that propose conflicting actions.
Afterwards, since we are performing supervised learning, [M]
will be divided into a correct set [C] and an incorrect set [I]. A
matching rule goes into the [C] if it proposes the correct action
(based on the known action of the training instance), otherwise
it goes into [I]. At this point, if no rule has been made into
either [M] or [C], then the covering step will be applied.

(Step 3) Covering (as rule discovery): Covering is one of
two mechanisms that can introduce new rules to [P] also
known as “rule discovery”. Covering randomly generates a rule
that matches the current training instance. It works by
generating a rule condition which randomly specifies a subset
of attribute values in the current training instance, and applies
wild cards (‘#’) to the rest. The action or prediction class for
the rule is set to the class of the current training instance.
Assuming the training instance is (001001 ~ 0), covering might
generate any of the following rules: (#0#0## ~ 0), (001001 ~
0), (#010## ~ 0). Covering step not only ensures that during
each learning cycle there is at least one correct, matching rule
in [C], but also any rule initialized into the population [P] will
match at least one training instance. As mentioned before, [P]
typically starts off empty. Because of this, covering step serves
as a form of smart population initialization.

(Step 4) Updating: Parameters of any rule in [M] are
updated to reflect the new experience gained from the current
training instance. For example, we can simply update the
accuracy of a rule. Rule accuracy is calculated by dividing the
number of times the rule was in the correct set [C] by the
number of times it was in the match set [M]. Rule fitness is
also updated in this step, and is commonly calculated as a
power function based on the inverse of rule accuracy.
Numerosity of a classifier means the number of copies of this
classifier in the population [P] (if there are multiple copies).
Classifiers in the correct set [C] will see an increase in both
accuracy as well as fitness. Classifiers in the incorrect set [I]
will see a decrease in the accuracy and fitness.

(Step 5) Subsuming: In particular, rules that specify fewer
attributes are likely to appear in match set [M] more frequently.
Subsuming step is a generalization mechanism that merges
classifiers that cover redundant parts of the problem space. In
this way, it helps to decrease the size of population set [P] by
subsuming a classifier to a more general classifier (and its
numerosity has been increased). In other words, the subsuming
step examines pairs of rules and looks for a situation in which
one of the rules is a subsumer of another one. For example, rule
(#####0 ~ 0) is a subsumer of (##1#00 ~ 0). A subsumer rule
must cover all of the problem space of another rule, and must
be more general and accurate while the more specific rule is
eliminated from the population [P].

(Step 6) Genetic algorithm (as rule discovery): This step
applies a simple Genetic Algorithm (GA) as the second type of
rule discovery mechanisms. While other heuristics could be
used to discover rules, the GA is most commonly used. In fact,

only two new ‘offspring’ rules are typically generated by the
GA and added to the rule population [P] during each learning
cycle.

(Step 7) Deleting: The last step in the LCS learning cycle is
to enforce the limited size of the rule population using deletion
in order to maintain the maximum population size. The
probability of a classifier being selected for deletion is
inversely proportional to its fitness. Other factors such as the
classifier’s numerosity can be applied to increase the
probability of deletion (e.g. numerosity divided by fitness).
This keeps [P] from being overrun by just a few rules with
large numerosities. When a classifier is selected for deletion, its
numerosity parameter is reduced by one. When the numerosity
of a classifier is reduced to zero, it is removed entirely from the
population [P].

Whether or not rule compaction has been applied, the
output of an LCS algorithm is a population of classifiers which
can be applied to making predictions on unseen instances as
testing data. During the prediction step, the population [P] does
not continue to learn from incoming testing data. A test
instance is passed to [P] where a match set [M] is formed as
usual. Rules in the match set [M] can predict different actions.
Therefore a voting scheme will be applied in this situation.

In a simple voting scheme, the action (prediction class)
with the strongest supporting “votes” from matching rules
wins, and becomes the selected prediction. The strength of the
vote for a single rule (a single classifier) is commonly
proportional to its numerosity and fitness (Classifier Vote =
Numerosity * Fitness). Or another simple voting scheme can be
to sum the votes of all rules proposing the same prediction
class and chose the class with the highest overall vote.

III. INTERNET OF THINGS APPLICATIONS
A typical example for IoT services is represented in a

layered architecture consisting of Sensors (e.g. DHT11),
Remote Terminal Units (e.g. Modbus RTU), IP Gateways (e.g.
TA900e or Cisco-ASA), Database Server (Apache Cassandra
server), Contact Centre Server (Apache Web servers) and
perhaps, Call Operators (dedicated and ad-hoc agents).

The Call Operators decide whether or not to send an alert to
emergency systems or to the public entities. The Call Centre
server checks sensed data stored in Database Server and
statistics in real-time and sends notifications (such as e-mail,
text messages or voice call via SIP based IP telephony or
ordinary PSTN) to Call Operators, if values are outside
predetermined thresholds for sensors. The Database Server is a
Time Series Database which is used for storing and handling
sensed values indexed by time. The IP Gateway is a node that
allows communication between networks. It receives data over
direct radio link or GSM/GPRS from sensors, aggregates the
data and sends the data to the database. Remote terminal units
(RTUs) connect to sensors in the process and convert sensor
signals to digital data. Sensors can measure temperature,
barometric pressure, humidity and other environmental
variables.

380

D. Prediction

Sensors, RTU and IP Gateway cannot be virtualized as
these components have physical items like attached antennas.
In this research work, the CC Server and DB Server are
software components that have been implemented by using
Docker containers and can thus be deployed in a federated
cloud environment.

IV. MULTI-LEVEL MONITORING
A multi-level monitoring tool was developed to monitor the

application’s execution environment at infrastructure-level,
which includes VM-level monitoring and end-to-end link
quality monitoring, at container-level and at application-level.

JCatascopia [3] has been chosen as baseline technology and
extended. In comparison with JCatascopia, the new system
concentrates on end-to-end network monitoring, including the
collection of metrics such as Packet Loss, Throughput,
Average Delay and Jitter. See Table II for more details.

Our monitoring system uses an agent-based client-server
approach which is able to support a fully interoperable, highly
scalable and light-weight architecture. The distributed nature of
this monitoring framework quenches the runtime overhead of
system to a number of Monitoring Agents running across
different cloud resources.

The system offers a framework to measure, store and report
monitoring metrics from different layers of the underlying
cloud infrastructure, as well as possible overall performance
metrics from the deployed application.

TABLE II. MONITORING METRICS

Level Metric Description

Call Centre
Server

requestCount
processingTime
requestThroughp
ut

Number of requests served since
last collection
Average request processing time
Rate at which requests are
processed

Database
Server

readLatency
writeLatency

Keyspace read latency
Keyspace write latency

Container-
level

rx_bytes
rx_packets
tx_bytes
tx_packets
cpu_usage
memory_usage
blkio_io_bytes_r
ead
blkio_io_bytes_
write

Bytes received
Packets received
Bytes sent
Packets sent
%CPU usage of container
%Memory usage of container
Bytes read from hard disk
Bytes written to hard disk

Infrastructure

cpuUsedPercent
memUsed
memUsedPercent
diskFree
diskUsed
netPacketsIn
netPacketsOut
netBytesIn
netBytesOut

%CPU utilization of VM
Current memory usage of VM
%Memory usage of VM
Amount of available disk capacity
Amount of used disk capacity
Packets in per second
Packets out per second
Bytes in per second
Bytes out per second

V. USING THE LCS ENVIRONMENT
According to the LCS algorithm, the environment can be

considered as dataset upon which the learning machine can
make the prediction model. For an IoT application, the
preparation of this environment has four different pre-
processing steps: (I) Producing monitoring data, (II) Averaging
monitoring data, (III) Re-formatting monitoring data, and (IV)
Converting monitoring data from numeric to binary format.

(I) Producing monitoring data: To enhance the
performance of an application component (e.g. Database
Server), one adaptation action can be adding more instances of
this component to the pool of servers so that load can be spread
across multiple instances for one application component. In a
table of collected metrics, rows belong to metrics measured
periodically in different times for all Database Servers, all Call
Centre Servers and all end-to-end links. The value of metrics
can be Long, Double or Float.

(II) Averaging monitoring data: Our solution periodically
measures the average value for all metrics at each time, e.g. the
average read and write latency of all DB Servers. In this way,
for each time period, there exist average values of all metrics
for application components, not for individual instances.

(III) Re-formatting monitoring data: Each row in the
original format of monitoring data is a measurement record for
one metric. The original format needs to be modified since it
should be consistent with the environment usable by the LCS
algorithm. In this step of preparation procedure, all
measurements belonging to the same time interval have been
gathered together as one row in the new format. According to
the new structure, the overall application performance is the
prediction class (endpoint), which we need to enhance as the
main goal and hence deliver the result as early as possible for
the best real-time user experience.

(IV) Converting monitoring data from numeric to binary
format: Machine learning approaches have their own intrinsic
limitations mainly as computational complexity, time-
consuming process and requirements of large data that impact
on their usefulness to function in real-world time-critical use
cases. To come up with these challenges, in our method,
numeric values of all features stored in the reformatted
monitoring data have been converted to binary values.
Therefore, in our proposed LCS algorithm, all rows
representing states of the environment and consequently rules
include attributes that have the binary value. To this end, it is
possible to define a threshold for every single monitoring
metric in different level as well as for the overall application
performance. For instance, the threshold for average CPU
usage for each application component in the infrastructure level
can be considered 80 percent. Then, if the average CPU
utilization is less than 80 percent, it has been converted to 0
and on the other hand, if it is over 80 percent, it has been
converted to 1.

381

VI. ADAPTIVE ARCHITECTURE
The adaptive architecture includes various entities when the

application executes. These entities shown in Fig. 1 operate as
follows.

(I) The purpose of Monitoring Probes/Agents is to collect
data that represents the current state of managed elements
(application, container and infrastructure), and then aggregate
and transfer the measured values to the Monitoring Server and
the Alarm Trigger. The monitored metrics differ from
application to application. The Monitoring Probes/Agents
should be non-intrusiveness [4], scalable [5], robust [6],
interoperable [7] and able to support live-migration [8] as the
essential non-functional monitoring requirements.

(II) The Monitoring Server receives the collected data and
stores it in a TSDB to build a focused and comprehensive
representation of the system state. The TSDB can be
implemented by Apache Cassandra technology which is a
distributed storage system for managing very large amounts of
time-ordered data [9]. The LCS Module also gradually
generates and then updates the prediction model which is a set
of rules. These rules are usable to define in which conditions
the overall application performance meets user requirements.
Concurrently, the Alarm Trigger investigates if the measured
value of monitored overall application performance overpasses
predefined limit. In other words, The Alarm Trigger is a
component which processes the incoming monitoring data
streams and notifies the Self-Adapter when predefined
threshold for the overall application performance is violated.
The Monitoring Server, the Alarm Trigger and the LCS
Module should be tightly coupled, i.e. running on the same
machine in order to save network bandwidth and computational
resources needed for data distribution and processing.

(III) When problems are detected, the Self-Adapter is
invoked to propose suitable adaptation actions based on the
prediction model generated by the LCS Module. This
component is able to automatically identify metrics (e.g. CPU
or memory) that are the most useful parameters to be changed
for the overall application performance. The Self-Adapter
specifies a set of adaptation actions for the Control Agent
allowing the passage of the whole system from a current state
to a desired state. It means that the Self-Adapter reasons which
adaptation changes should be done to adapt the system to the
desired behavior. Adaptation possibilities can be horizontal or
vertical scaling of DB Servers and CC server, or dynamically
live-service migration by moving running containers from the
current infrastructure to another one either at the same data
center or at a different cloud to offer better fitted computational
and/or memory capacity.

(IV)The Control Agent, which has the full control of
application configurations and infrastructure resources, e.g.
VMs/containers, CPU, disk and network bandwidth, finally
carries out the adaptation actions defined by the Self-Adapter.
In addition to the live-migration, this component is able to
increase or decrease the required number of containerized
application components (DB Servers and CC servers)
providing the service on demand even in different cloud data
centers. It is also capable of resizing the CPU resource,
memory capacity, disk storage or network bandwidth.

Fig. 1. Adaptive architecture for component based IoT applications

(V) The Knowledge Base will be used to store the
prediction model and also all information about the current
system metadata, awareness and application configuration for
analysis, reuse, reasoning, optimization and refinement of
design, topology and execution. The knowledge stored in this
component describes profiles of all entities (e.g. application
profile, infrastructure profile, performance profile, adaptation
strategies, etc.), and it is used to interpret monitoring data [10].

VII. GENERATED RULES
Here, we provide few examples of rules that can be

generated by the LCS Module. These rules represent the
performance model of the component based cloud-application.
Following is an example of a generated rule:

(#####################0##########0#####0#### ~ 0)
(rule 1)

In this rule, the first attribute with the value of 0 is
"cpuUsedPercent" at infrastructure level for CC Server
(Apache Tomcat), the second and third attributes (defined as 0)
are "memUsedPercent" and "diskUsed" also at infrastructure
level for DB Server (Cassandra). Other attributes have been set
as "don't care" (#). This rule can be interpreted in this way: If
the average CPU utilization of the host(s) on which CC
Server(s) is(are) running does not exceed its threshold, also if
the average memory usage and the amount of used disk
capacity of the host(s) on which DB Server(s) is(are) running
do not violate their thresholds, the overall application
performance of early warning system is acceptable (0)
considering users’ satisfaction. Therefore, in situations when
the overall application performance is not favorable, the Self-
Adapter should investigate these three metrics to define if they
are violated.

For instance, if "memUsedPercent" and "diskUsed" for DB
Server are not presenting a problem, however
"cpuUsedPercent" for CC Server is inappropriately very high,
regardless of other monitoring attributes, the Self-Adapter
suggests increasing the CPU power of the existing virtual
machine(s) on which CC Server(s) is(are) running. In this
situation, if vertical scaling is not feasible for example since
maximum CPU capacity is already reached, the proposed

LCS Module
Monitoring Server

Alarm-Trigger
GUI Web Server

382

adaptation plan could be other approaches e.g. live-service
migration by moving running CC Server container(s) from the
current infrastructure to another one either at the same data
center or at a different cloud to offer better fitted computational
resources.

As another example, the following rule can be also inferred
by the LCS Module as one of the rules in the performance
model:

(#1### ~ 1)
(rule 2)

In this rule, the attribute with the value of 1 is
"processingTime" at application level for CC Server (Apache
Tomcat). Other attributes have been also defined as "don't
care" (#). This rule can be interpreted in this way: If the
average response time of CC Server component is unsuitable
since it is more than associated threshold, the overall
application performance is not acceptable (1). Therefore, in
situations when the overall application performance is not
appropriate, the Self-Adapter should also consider this metric
("processingTime") to determine, if it is violated. For instance,
if it is over the threshold, regardless of other monitoring
attributes, the Self-Adapter proposes to dynamically increase
the number of running containerized CC Server in order to
enhance the overall application performance.

VIII. CONCLUSION
Our presented adaptation method uses a multi-level

monitoring system since the adaption of applications should be
tuned and handled at various levels of cloud environments—
infrastructure, container and application. This work introduced
a rule-based adaptation method using the LCS algorithm to
automatically adapt the application performance to changing
conditions at runtime. In order to achieve this particular aim,
the proposed LCS algorithm creates the performance model
which is a set of rules. These rules are able to identify any
monitored attributes that need corrective adaptation actions. In
this way, preventing and predicting potential application
performance drops will give more time to take action like
horizontal or vertical scaling of application components, or
dynamically live-service migration by moving from the current
infrastructure to another one either at the same data center or at
a different cloud to offer better fitted computational, memory,
disk or network capacity.

ACKNOWLEDGMENT
The research and development presented in this article have

received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreements
No. 643963 (SWITCH project: Software Workbench for
Interactive, Time Critical and Highly self- adaptive cloud
applications) and No. 644179 (ENTICE project: dEcentralized
repositories for traNsparent and efficienT vIrtual maChine
opErations).

REFERENCES
[1] M. Koprivica. 2013, “Self-adaptive requirements-aware intelligent

things,” International Journal of Internet of Things vol. 2 (1), 2013, 4
pages, DOI:10.5923/j.ijit.20130201.01

[2] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, and M.
Steinder, “Docker containers across multiple clouds and data centers,”
in: 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), 2015, pp. 368–371.

[3] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “JCatascopia: Monitoring
Elastically Adaptive Applications in the Cloud,” in Proceedings of the
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), IEEE, Chicago, 2014, pp. 226-235.

[4] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, P. Martin, and V.
Stankovski, “Runtime network-level monitoring framework in the
adaptation of distributed time-critical cloud applications,” in
Proceedings of the 22nd International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'16), Las
Vegas, 2016, 6 pages.

[5] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with lattice,” in Proceedings of 2011 IEEE/IFIP Network Operations and
Management Symposium Workshops (NOMS Wksps), IEEE, 2011, pp.
239-246.

[6] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,
“A survey of cloud monitoring tools: Taxonomy, capabilities and
objectives,” Journal of Parallel and Distributed Computing, 74 (10),
2014, pp. 2918-2933.

[7] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. U.
Khan, A. Guabtni, and V. Bhatnagar, “An overview of the commercial
cloud monitoring tools: research dimensions, design issues, and state-of-
the-art,” Computing, 97(4), 2015, pp. 357-377.

[8] A. Nadjaran-Toosi, R. N. Calheiros, and R. Buyya, “Interconnected
cloud computing environments: Challenges, taxonomy, and survey,”
ACM Computing Surveys (CSUR) 47 (1), 2014, 47 p.

[9] D. Namiot, “Time Series Databases,” in Proceedings of the XVII
International Conference Data Analytics and Management in Data
Intensive Domains (DAMDID/RCDL’2015), Russia, 2015, pp. 132-137.

[10] F. Zablith, G. Antoniou, M. d'Aquin, G. Flouris, H. Kondylakis, E.
Motta, D. Plexousakis, and M. Sabou, “Ontology evolution: a process-
centric survey,” The Knowledge Engineering Review, 30 (1), 2015, pp.
45-75.

383

