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Abstract—Many new Internet of Things (IoT) applications 
such a disaster early warning systems, video-streaming, 
automated driving and similar, are increasingly being built by 
using advanced component based software engineering 
approaches. Software components can include various executable 
images, such as container or Virtual Machine images, scripts and 
others. Achieving adequate Quality of Service (QoS) for such 
applications is still a challenging issue due to runtime variations 
in running conditions intrinsic to the cloud, edge and fog 
environments. These types of systems should therefore be 
continuously monitored and hence adapted at various levels 
including infrastructure, container and application levels. In this 
work, we present an adaptation method using a new Incremental 
Learning approach based on Multi-Level Monitoring data. The 
method dynamically generates a set of rules representing a 
performance prediction model that allow us to find potential 
performance bottlenecks and then propose suitable application 
adaptation actions. Adaptation possibilities in this work include 
(1) live-migration of application components (such as containers) 
from the current infrastructure to another one with different 
characteristics, such as CPU, memory, disk or bandwidth 
capacity, and (2) dynamic horizontal or vertical scaling of 
container-based application instances to offer better fitted 
resource capacities. 

Keywords—software engineering; components; multi-level 
monitoring; incremental learning; adaptation 

I.  INTRODUCTION 
Internet of Things (IoT) is a paradigm where 

things/objects/sensors have a pervasive presence in the 
Internet. In recent years, IoT systems, such as early warning 
systems, robots, automated cars and similar, are increasingly 
used by organizations that want to look beyond traditional 
applications. The cloud computing model is a pay-per-use on-
demand offer through which organizations can exploit elastic 
cloud resources and federated cloud environments. As IoT 
applications can be virtualized, cloud computing has become a 
preferable solution for delivery of such applications.  

Achieving high Quality of Service (QoS) and high Quality 
of Experience (QoE) needed by cloud-based IoT applications is 
still a challenging task. Many times end-user requirements for 

high QoE translate to requirements for high-performance 
computing, for example, requirements for the use of high-speed 
processors, memory and bandwidth between the devices and 
the processing software components running in the cloud.  

Offering favorable application performance as service 
quality is still a challenging task particularly due to frequent 
inability to dynamically obtain necessary computing resources 
required by the application, and highly varying environmental 
conditions that can affect the application’s performance during 
runtime. Accordingly, the next generation of IoT systems and 
applications, would need to be highly self-adaptive – they will 
need to be implemented in a way that does not require human 
intervention in their operation [1]. In other words they should 
be able to detect runtime environmental changes and determine 
their own way of reacting in order to continuously adapt the 
deployed services for optimal performance.  

Nowadays, a popular method for the delivery of cloud 
applications is via component based software engineering with 
tools such as Juju and Fabric8 and containers, such as Docker. 
Due to the lightweight nature of containers and their fast boot 
time, it is possible to deploy cloud-based IoT applications in 
various hosting environments faster and more efficiently than 
using Virtual Machines (VMs) [2].  

This research work presents a continuous multi-level 
monitoring for software components, such as containers 
running in the cloud. The generated data are fed as input to a 
Learning Classifier System (LCS) that incrementally learns 
rules representing a prediction model for the application’s QoS. 
The rules can be used to adapt the application’s components 
during runtime and thus maintain the expected QoS. The goal 
is to develop a performance model that is fully supportive to 
determine performance problems that need corrective actions.  

II. METHOD 

A. Modern component based software engineering practices 
In software engineering, there are new tools gaining 

popularity due to possibilities to quickly develop cloud 
applications from scratch. For example, Juju is an open source 
component based modeling tool for service oriented 
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architectures and application deployments with a set of 
predefined components connected together. An application 
developed in Juju can be vertically and horizontally scaled thus 
addressing some important properties of the cloud. Fabric8 is 
another open source platform providing the developer with a 
console for creating, building and deploying micro services, as 
well as running and managing them in continuous manner. The 
SWITCH project also provides its own Interactive 
Development Environment (IDE) for the development of 
component based cloud applications.  

These new software engineering methods and tools are 
intended to radically shorten the software lifecycle. By using 
them, it is possible to build IoT applications based on software 
components and organize the applications into multiple tiers, 
which can be made to execute across federated cloud 
environments. Software components can be persistently 
running in a data center, at the edge of the network, e.g. in 
micro-severs or in fog computing devices, such as 
smartphones, robots, cars and actuators. The present work aims 
to provide learning mechanisms for the adaptation of 
component-based IoT applications, so that they can 
continuously maintain high QoS during their operation in 
multi-cloud environments.  

B. Learning Classifier System 
A Learning Classifier System (LCS) is aimed at identifying 

a set of rules that can be stored and used in a Knowledge Base, 
such as Jena Fuseki. The rules can be applied in order to make 
performance predictions based on behavior models. The goal is 
to develop an adaptive system which is able to learn how to 
perform specific adaptation actions under specific conditions. 
The LCS module includes three fundamental components: (I) 
Environment, (II) Learning machine, and (III) Rule 
compaction. 

(I) Environment: The environment is the source of data 
upon which the LCS learns. As an example, shown in Table I, 
the environment could be a dataset with some number of 
training instances. Each instance has some independent 
attributes that can traditionally have the value of 0 or 1. 
Moreover, each instance has a single endpoint referred to 
action. This endpoint is the main variable in the data that we 
are trying to predict. 

To generate this dataset, an implemented monitoring 
approach able to measure a wide variety of different attributes 
in the execution environment is proposed. The objective is to 
autonomously maintain such applications’ performance 
considered as the endpoint in the dataset and hence deliver 
seamless user experience in different conditions.  

(II) Learning machine: The learning machine iterates over 
the dataset repeatedly until some stop criteria are met, or the 
maximum number of learning iterations is reached. As the 
result, the learning machine generates a set of rules together 
considered as the prediction model. The model will be used to 
predict the behavior of application performance as single 
endpoint based on other attributes. 

 

 

TABLE I.  BINARY LEARNING INSTANCES FOR RULES 

Endpoint 
Attributes 

Attribute 1 Attribute 2 Attribute N 

1 0 1 1 

0 1 1 0 

… … … … 

1 0 0 1 

 

(III) Rule compaction: Once the last learning iteration is 
reached, the resulting rules can be applied as the model. 
However, there is often a post-processing step called “rule 
compaction” applied to the resulting model after the last 
learning iteration. Rule compaction strategies typically seek to 
remove poor, redundant or inexperienced rules from the 
prediction model. In this way, rule compaction simplifies the 
model, improves interpretability, and even can enhance 
predictive performance. 

C. Rule population (P) 
Rules typically take the form of an {IF:THEN} expression, 

e.g. {IF 'condition' THEN 'action'}. An individual rule is not 
itself a prediction model, since the rule is only applicable when 
its condition is satisfied. The entire population of rules 
collectively forms the prediction model. Each attribute in a rule 
can be 0, 1, or '#' as "don't care" symbol (also referred as wild 
card). For example, the rule (#1###0### ~ 1) as {condition ~ 
action} can be interpreted in this way: IF the second attribute = 
1 AND the sixth attribute = 0 (regardless of other attributes) 
THEN the prediction class = 1. In the example, the second and 
sixth attributes have been specified in this rule, while the others 
were generalized. A rule along with its associated parameters 
(such as accuracy, fitness and numerosity) is often referred as a 
classifier. In Michigan-style LCS as the most common type of 
LCS algorithm, classifiers are contained within a population 
([P]) that has a user defined maximum number of classifiers. 
The [P] starts out empty (i.e. there is no need to randomly 
initialize a rule population). Classifiers will instead be initially 
introduced to [P] with a covering mechanism.  

As explained before, the learning machine is the core of an 
LCS and includes several interacting components that operate 
in a step-wise learning cycle: (Step 1) Training, (Step 2) 
Matching, (Step 3) Covering, (Step 4) Updating, (Step 5) 
Subsuming, (Step 6) Genetic algorithm, (Step 7) Deleting. 

(Step 1) Training: The beginning step in incremental 
learning is getting a training instance from the environment. 
For online learning, LCS will obtain a completely new training 
instance for each iteration from the environment. 

(Step 2) Matching: The next step is finding all rules in the 
population [P] that have a condition matching the attributes 
values of the training instance. In other words, every rule in [P] 
is now compared to the training instance to see which rules 
match. A rule matches a training instance if all feature values 
specified in the rule condition are equivalent to the 
corresponding feature value in the training instance. For 
example, assuming the training instance is (001001 ~ 0), these 
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rules would match: (###0## ~ 0), (00###1 ~ 0), (#01001 ~ 1), 
but these rules would not (1##### ~ 0), (000##1 ~ 0), (#0#1#0 
~ 1). In matching step, the endpoint (action or prediction class) 
specified by the rule is not taken into consideration. At the end, 
matching rules are moved to a match set [M]. As a result, the 
[M] may contain classifiers that propose conflicting actions. 
Afterwards, since we are performing supervised learning, [M] 
will be divided into a correct set [C] and an incorrect set [I]. A 
matching rule goes into the [C] if it proposes the correct action 
(based on the known action of the training instance), otherwise 
it goes into [I]. At this point, if no rule has been made into 
either [M] or [C], then the covering step will be applied. 

(Step 3) Covering (as rule discovery): Covering is one of 
two mechanisms that can introduce new rules to [P] also 
known as “rule discovery”. Covering randomly generates a rule 
that matches the current training instance. It works by 
generating a rule condition which randomly specifies a subset 
of attribute values in the current training instance, and applies 
wild cards (‘#’) to the rest. The action or prediction class for 
the rule is set to the class of the current training instance. 
Assuming the training instance is (001001 ~ 0), covering might 
generate any of the following rules: (#0#0## ~ 0), (001001 ~ 
0), (#010## ~ 0). Covering step not only ensures that during 
each learning cycle there is at least one correct, matching rule 
in [C], but also any rule initialized into the population [P] will 
match at least one training instance. As mentioned before, [P] 
typically starts off empty. Because of this, covering step serves 
as a form of smart population initialization. 

(Step 4) Updating: Parameters of any rule in [M] are 
updated to reflect the new experience gained from the current 
training instance. For example, we can simply update the 
accuracy of a rule. Rule accuracy is calculated by dividing the 
number of times the rule was in the correct set [C] by the 
number of times it was in the match set [M]. Rule fitness is 
also updated in this step, and is commonly calculated as a 
power function based on the inverse of rule accuracy. 
Numerosity of a classifier means the number of copies of this 
classifier in the population [P] (if there are multiple copies). 
Classifiers in the correct set [C] will see an increase in both 
accuracy as well as fitness. Classifiers in the incorrect set [I] 
will see a decrease in the accuracy and fitness. 

(Step 5) Subsuming: In particular, rules that specify fewer 
attributes are likely to appear in match set [M] more frequently. 
Subsuming step is a generalization mechanism that merges 
classifiers that cover redundant parts of the problem space. In 
this way, it helps to decrease the size of population set [P] by 
subsuming a classifier to a more general classifier (and its 
numerosity has been increased). In other words, the subsuming 
step examines pairs of rules and looks for a situation in which 
one of the rules is a subsumer of another one. For example, rule 
(#####0 ~ 0) is a subsumer of (##1#00 ~ 0). A subsumer rule 
must cover all of the problem space of another rule, and must 
be more general and accurate while the more specific rule is 
eliminated from the population [P]. 

(Step 6) Genetic algorithm (as rule discovery): This step 
applies a simple Genetic Algorithm (GA) as the second type of 
rule discovery mechanisms. While other heuristics could be 
used to discover rules, the GA is most commonly used. In fact, 

only two new ‘offspring’ rules are typically generated by the 
GA and added to the rule population [P] during each learning 
cycle. 

(Step 7) Deleting: The last step in the LCS learning cycle is 
to enforce the limited size of the rule population using deletion 
in order to maintain the maximum population size. The 
probability of a classifier being selected for deletion is 
inversely proportional to its fitness. Other factors such as the 
classifier’s numerosity can be applied to increase the 
probability of deletion (e.g. numerosity divided by fitness). 
This keeps [P] from being overrun by just a few rules with 
large numerosities. When a classifier is selected for deletion, its 
numerosity parameter is reduced by one. When the numerosity 
of a classifier is reduced to zero, it is removed entirely from the 
population [P].  

Whether or not rule compaction has been applied, the 
output of an LCS algorithm is a population of classifiers which 
can be applied to making predictions on unseen instances as 
testing data. During the prediction step, the population [P] does 
not continue to learn from incoming testing data. A test 
instance is passed to [P] where a match set [M] is formed as 
usual. Rules in the match set [M] can predict different actions. 
Therefore a voting scheme will be applied in this situation.  

In a simple voting scheme, the action (prediction class) 
with the strongest supporting “votes” from matching rules 
wins, and becomes the selected prediction. The strength of the 
vote for a single rule (a single classifier) is commonly 
proportional to its numerosity and fitness (Classifier Vote = 
Numerosity * Fitness). Or another simple voting scheme can be 
to sum the votes of all rules proposing the same prediction 
class and chose the class with the highest overall vote. 

III. INTERNET OF THINGS APPLICATIONS 
A typical example for IoT services is represented in a 

layered architecture consisting of Sensors (e.g. DHT11), 
Remote Terminal Units (e.g. Modbus RTU), IP Gateways (e.g. 
TA900e or Cisco-ASA), Database Server (Apache Cassandra 
server), Contact Centre Server (Apache Web servers) and 
perhaps, Call Operators (dedicated and ad-hoc agents). 

The Call Operators decide whether or not to send an alert to 
emergency systems or to the public entities. The Call Centre 
server checks sensed data stored in Database Server and 
statistics in real-time and sends notifications (such as e-mail, 
text messages or voice call via SIP based IP telephony or 
ordinary PSTN) to Call Operators, if values are outside 
predetermined thresholds for sensors. The Database Server is a 
Time Series Database which is used for storing and handling 
sensed values indexed by time. The IP Gateway is a node that 
allows communication between networks. It receives data over 
direct radio link or GSM/GPRS from sensors, aggregates the 
data and sends the data to the database. Remote terminal units 
(RTUs) connect to sensors in the process and convert sensor 
signals to digital data.  Sensors can measure temperature, 
barometric pressure, humidity and other environmental 
variables.  
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Sensors, RTU and IP Gateway cannot be virtualized as 
these components have physical items like attached antennas. 
In this research work, the CC Server and DB Server are 
software components that have been implemented by using 
Docker containers and can thus be deployed in a federated 
cloud environment. 

IV. MULTI-LEVEL MONITORING 
A multi-level monitoring tool was developed to monitor the 

application’s execution environment at infrastructure-level, 
which includes VM-level monitoring and end-to-end link 
quality monitoring, at container-level and at application-level.  

JCatascopia [3] has been chosen as baseline technology and 
extended. In comparison with JCatascopia, the new system 
concentrates on end-to-end network monitoring, including the 
collection of metrics such as Packet Loss, Throughput, 
Average Delay and Jitter. See Table II for more details.  

Our monitoring system uses an agent-based client-server 
approach which is able to support a fully interoperable, highly 
scalable and light-weight architecture. The distributed nature of 
this monitoring framework quenches the runtime overhead of 
system to a number of Monitoring Agents running across 
different cloud resources.  

The system offers a framework to measure, store and report 
monitoring metrics from different layers of the underlying 
cloud infrastructure, as well as possible overall performance 
metrics from the deployed application.  

TABLE II.  MONITORING METRICS 

Level Metric Description 

Call Centre 
Server 

requestCount 
processingTime 
requestThroughp
ut 

Number of requests served since 
last collection 
Average request processing time  
Rate at which requests are 
processed 

Database 
Server 

readLatency 
writeLatency 

Keyspace read latency 
Keyspace write latency 

Container-
level 

rx_bytes  
rx_packets 
tx_bytes 
tx_packets 
cpu_usage 
memory_usage 
blkio_io_bytes_r
ead 
blkio_io_bytes_
write 

Bytes received 
Packets received 
Bytes sent 
Packets sent 
%CPU usage of container  
%Memory usage of container 
Bytes read from hard disk 
Bytes written to hard disk 

Infrastructure 

cpuUsedPercent 
memUsed 
memUsedPercent 
diskFree 
diskUsed 
netPacketsIn 
netPacketsOut 
netBytesIn 
netBytesOut 

%CPU utilization of VM 
Current memory usage of VM 
%Memory usage of VM 
Amount of available disk capacity  
Amount of used disk capacity 
Packets in per second 
Packets out per second 
Bytes in per second 
Bytes out per second 

 

V. USING THE LCS ENVIRONMENT 
According to the LCS algorithm, the environment can be 

considered as dataset upon which the learning machine can 
make the prediction model. For an IoT application, the 
preparation of this environment has four different pre-
processing steps: (I) Producing monitoring data, (II) Averaging 
monitoring data, (III) Re-formatting monitoring data, and (IV) 
Converting monitoring data from numeric to binary format. 

(I) Producing monitoring data: To enhance the 
performance of an application component (e.g. Database 
Server), one adaptation action can be adding more instances of 
this component to the pool of servers so that load can be spread 
across multiple instances for one application component. In a 
table of collected metrics, rows belong to metrics measured 
periodically in different times for all Database Servers, all Call 
Centre Servers and all end-to-end links. The value of metrics 
can be Long, Double or Float. 

(II) Averaging monitoring data: Our solution periodically 
measures the average value for all metrics at each time, e.g. the 
average read and write latency of all DB Servers. In this way, 
for each time period, there exist average values of all metrics 
for application components, not for individual instances. 

(III) Re-formatting monitoring data: Each row in the 
original format of monitoring data is a measurement record for 
one metric. The original format needs to be modified since it 
should be consistent with the environment usable by the LCS 
algorithm. In this step of preparation procedure, all 
measurements belonging to the same time interval have been 
gathered together as one row in the new format. According to 
the new structure, the overall application performance is the 
prediction class (endpoint), which we need to enhance as the 
main goal and hence deliver the result as early as possible for 
the best real-time user experience. 

(IV) Converting monitoring data from numeric to binary 
format: Machine learning approaches have their own intrinsic 
limitations mainly as computational complexity, time-
consuming process and requirements of large data that impact 
on their usefulness to function in real-world time-critical use 
cases. To come up with these challenges, in our method, 
numeric values of all features stored in the reformatted 
monitoring data have been converted to binary values. 
Therefore, in our proposed LCS algorithm, all rows 
representing states of the environment and consequently rules 
include attributes that have the binary value. To this end, it is 
possible to define a threshold for every single monitoring 
metric in different level as well as for the overall application 
performance. For instance, the threshold for average CPU 
usage for each application component in the infrastructure level 
can be considered 80 percent. Then, if the average CPU 
utilization is less than 80 percent, it has been converted to 0 
and on the other hand, if it is over 80 percent, it has been 
converted to 1. 
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VI. ADAPTIVE ARCHITECTURE 
The adaptive architecture includes various entities when the 

application executes. These entities shown in Fig. 1 operate as 
follows. 

(I) The purpose of Monitoring Probes/Agents is to collect 
data that represents the current state of managed elements 
(application, container and infrastructure), and then aggregate 
and transfer the measured values to the Monitoring Server and 
the Alarm Trigger. The monitored metrics differ from 
application to application. The Monitoring Probes/Agents 
should be non-intrusiveness [4], scalable [5], robust [6], 
interoperable [7] and able to support live-migration [8] as the 
essential non-functional monitoring requirements.  

(II) The Monitoring Server receives the collected data and 
stores it in a TSDB to build a focused and comprehensive 
representation of the system state. The TSDB can be 
implemented by Apache Cassandra technology which is a 
distributed storage system for managing very large amounts of 
time-ordered data [9]. The LCS Module also gradually 
generates and then updates the prediction model which is a set 
of rules. These rules are usable to define in which conditions 
the overall application performance meets user requirements. 
Concurrently, the Alarm Trigger investigates if the measured 
value of monitored overall application performance overpasses 
predefined limit. In other words, The Alarm Trigger is a 
component which processes the incoming monitoring data 
streams and notifies the Self-Adapter when predefined 
threshold for the overall application performance is violated. 
The Monitoring Server, the Alarm Trigger and the LCS 
Module should be tightly coupled, i.e. running on the same 
machine in order to save network bandwidth and computational 
resources needed for data distribution and processing. 

(III) When problems are detected, the Self-Adapter is 
invoked to propose suitable adaptation actions based on the 
prediction model generated by the LCS Module. This 
component is able to automatically identify metrics (e.g. CPU 
or memory) that are the most useful parameters to be changed 
for the overall application performance. The Self-Adapter 
specifies a set of adaptation actions for the Control Agent 
allowing the passage of the whole system from a current state 
to a desired state. It means that the Self-Adapter reasons which 
adaptation changes should be done to adapt the system to the 
desired behavior. Adaptation possibilities can be horizontal or 
vertical scaling of DB Servers and CC server, or dynamically 
live-service migration by moving running containers from the 
current infrastructure to another one either at the same data 
center or at a different cloud to offer better fitted computational 
and/or memory capacity. 

(IV)The Control Agent, which has the full control of 
application configurations and infrastructure resources, e.g. 
VMs/containers, CPU, disk and network bandwidth, finally 
carries out the adaptation actions defined by the Self-Adapter. 
In addition to the live-migration, this component is able to 
increase or decrease the required number of containerized 
application components (DB Servers and CC servers) 
providing the service on demand even in different cloud data 
centers. It is also capable of resizing the CPU resource, 
memory capacity, disk storage or network bandwidth.  

 

Fig. 1. Adaptive architecture for component based IoT applications 

(V) The Knowledge Base will be used to store the 
prediction model and also all information about the current 
system metadata, awareness and application configuration for 
analysis, reuse, reasoning, optimization and refinement of 
design, topology and execution. The knowledge stored in this 
component describes profiles of all entities (e.g. application 
profile, infrastructure profile, performance profile, adaptation 
strategies, etc.), and it is used to interpret monitoring data [10].  

VII. GENERATED RULES 
Here, we provide few examples of rules that can be 

generated by the LCS Module. These rules represent the 
performance model of the component based cloud-application. 
Following is an example of a generated rule: 

(#####################0##########0#####0#### ~ 0) 
(rule 1) 

In this rule, the first attribute with the value of 0 is 
"cpuUsedPercent" at infrastructure level for CC Server 
(Apache Tomcat), the second and third attributes (defined as 0) 
are "memUsedPercent" and "diskUsed" also at infrastructure 
level for DB Server (Cassandra). Other attributes have been set 
as "don't care" (#). This rule can be interpreted in this way: If 
the average CPU utilization of the host(s) on which CC 
Server(s) is(are) running does not exceed its threshold, also if 
the average memory usage and the amount of used disk 
capacity of the host(s) on which DB Server(s) is(are) running 
do not violate their thresholds, the overall application 
performance of early warning system is acceptable (0) 
considering users’ satisfaction. Therefore, in situations when 
the overall application performance is not favorable, the Self-
Adapter should investigate these three metrics to define if they 
are violated.  

For instance, if "memUsedPercent" and "diskUsed" for DB 
Server are not presenting a problem, however 
"cpuUsedPercent" for CC Server is inappropriately very high, 
regardless of other monitoring attributes, the Self-Adapter 
suggests increasing the CPU power of the existing virtual 
machine(s) on which CC Server(s) is(are) running. In this 
situation, if vertical scaling is not feasible for example since 
maximum CPU capacity is already reached, the proposed 

LCS Module
Monitoring Server

Alarm-Trigger
GUI Web Server
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adaptation plan could be other approaches e.g. live-service 
migration by moving running CC Server container(s) from the 
current infrastructure to another one either at the same data 
center or at a different cloud to offer better fitted computational 
resources. 

As another example, the following rule can be also inferred 
by the LCS Module as one of the rules in the performance 
model: 

(#1######################################### ~ 1) 
(rule 2) 

In this rule, the attribute with the value of 1 is 
"processingTime" at application level for CC Server (Apache 
Tomcat). Other attributes have been also defined as "don't 
care" (#). This rule can be interpreted in this way: If the 
average response time of CC Server component is unsuitable 
since it is more than associated threshold, the overall 
application performance is not acceptable (1). Therefore, in 
situations when the overall application performance is not 
appropriate, the Self-Adapter should also consider this metric 
("processingTime") to determine, if it is violated. For instance, 
if it is over the threshold, regardless of other monitoring 
attributes, the Self-Adapter proposes to dynamically increase 
the number of running containerized CC Server in order to 
enhance the overall application performance. 

VIII. CONCLUSION 
Our presented adaptation method uses a multi-level 

monitoring system since the adaption of applications should be 
tuned and handled at various levels of cloud environments—
infrastructure, container and application. This work introduced 
a rule-based adaptation method using the LCS algorithm to 
automatically adapt the application performance to changing 
conditions at runtime. In order to achieve this particular aim, 
the proposed LCS algorithm creates the performance model 
which is a set of rules. These rules are able to identify any 
monitored attributes that need corrective adaptation actions. In 
this way, preventing and predicting potential application 
performance drops will give more time to take action like 
horizontal or vertical scaling of application components, or 
dynamically live-service migration by moving from the current 
infrastructure to another one either at the same data center or at 
a different cloud to offer better fitted computational, memory, 
disk or network capacity. 
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