
Enhanced Dispatchability of Aircrafts using
Multi-Static Configurations

Christian Engel∗, Eric Jenn†, Peter H. Schmitt∗, Rodrigo Coutinho‡, Tobias Schoofs§

∗ Karlsruhe Institute of Technology (KIT)
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
pschmitt@ira.uka.de engelc@ira.uka.de

† Thales Avionics (THAV)
F31036 Toulouse, France

eric.jenn@fr.thalesgroup.com

‡ Embraer Research and Development
São José dos Campos, Brazil
rmcoutinho@embraer.com.br

§ GMV Portugal
1998 - 025 Lisboa, Portugal
tobias.schoofs@gmv.com

Abstract—This paper describes the reconfiguration strategy
and mechanisms adopted in the Integrated Modular Avionics
(IMA) based platform designed and evaluated in the scope
of the European research and development project DIANA.
The mechanisms aim at improving dispatchability of aircrafts
while keeping a reasonable and limited impact on certification
costs.

The paper first introduces the concept of multi-static
reconfiguration i.e., a set of pre-qualified configurations from
which the active one will be autonomously selected according
to the system health state at system start-up. A configuration
selection mechanism, exploiting a Byzantine Agreement algo-
rithm, is discussed. Particular attention is paid to the proof of
correctness of the adopted algorithm. Practical considerations
concerning its implementation, like, for instance, the authen-
tication protocol to be used are also considered. Finally, the
implementation of the mechanism on top of an ARINC 653
Application Executive is briefly described.

Keywords: Transportation; Architectures and Algorithms;
Distributed and Reconfigurable Architecture; IMA; Byzan-
tine Agreement

I. INTRODUCTION

The Distributed, equipment Independent environment for
Advanced avioNics Applications, short DIANA, is an aero-
nautical research and development project funded through
the European Commission’s 6th Framework Programme,
supported by Windriver, OIS and CES and led by GMV,
Portugal.1 It aims at the definition of an advanced avionics
platform, called AIDA (Architecture for Independent Dis-
tributed Avionics), supporting execution of object-oriented

1Contract FP6 AST-CT-2006-030985, see www.dianaproject.com

applications over virtual machines, secure data distribution
services, and a tool chain supporting model-driven engi-
neering.

The overall objective of AIDA is to reduce the costs of
avionics software development thanks to reduced develop-
ment, validation, integration and recertification time and
effort. These reductions are achieved by using efficient
infrastructure mechanisms such as publish and subscribe
services inspired by the OMG standard DDS (Data Distri-
bution Services) [14], loosely coupled architectures based
on partitions (and inspired by conventional component-
oriented programming), new platform services such as re-
dundant logbooks, “real-time” virtual machines, and mod-
ern development approaches like the use of models inspired
by the OMG standard MDA (Model Driven Architecture)
[13].

Backward compatibility with technological standards
widely accepted in civil aviation is a mandatory condi-
tion to achieve acceptance of new solutions and related
cost reduction. AIDA is therefore based on the Integrated
Modular Avionics (IMA) approach and exploits the ARINC

653 Application Executive (APEX) [2] for all middleware
implementations.

IMA and APEX decouple software functions from under-
lying hardware devices and allows, in consequence, a more
fine-grained assignment of software components to pro-
cessing nodes. AIDA extends IMA by supporting a first and
limited, yet extensible, level of reconfiguration. To avoid a
growth of software complexity beyond acceptable limits (in
particular, in terms of certification effort), reconfiguration
capabilities are actually restricted: At start-up, an AIDA



compliant system selects autonomously the configuration
that matches the system’s health state among a pre-defined
and pre-qualified set of configurations. This approach is
called multi-static reconfiguration.

In principle, multi-static reconfiguration could be applied
to in-flight reconfiguration as well. However, since this
would introduce new challenges to safety, DIANA focuses
on on-ground reconfiguration for the development and
demonstration of the approach.

By reassigning applications to processing resources,
multi-static reconfiguration represents a means to ensure
that the conditions for the aircraft to be allowed take-off,
namely, those of the Minimum Equipment List (MEL), are
satisfied in the presence of one or several failed equipments.
The final result is a potential reduction of the amount of
hardware resources needed to achieve the required level of
dispatchability.

Section 2 discusses multi-static reconfiguration in and
beyond the IMA context. Section 3 introduces the Byzantine
Agreement algorithm used to reach consensus on the health
state of a system. The selected protocol and its adaptation
to the current problem are described and a proof of its
correctness is outlined. Section 4 shows how multi-static
reconfiguration has been implemented on top of the ARINC

653 API. Finally, Section 5 provides some conclusions and
discusses open issues left for future work.

II. FROM STATIC CONFIGURATIONS TO MULTI-STATIC
CONFIGURATIONS

A. The IMA Paradigm

AIDA is based on the concepts of Integrated Modular
Avionics and supports the ARINC 653 APEX [2]. ARINC 653
defines robust partitioning in onboard systems, such that
one processing unit, usually called a module, is able to
host one or more avionics applications and to execute them
independently. Such segregation relies on a combination
of software and hardware mechanisms that provide fault
containment, such that an error in one application cannot
propagate to another application, and more generally that
decouple applications. As consequence, partitioning eases
integration, verification, validation, and certification.

The unit of partitioning is called a partition. A partition
correlates to a program (and the underlying operating envi-
ronment) in a single application environment: it comprises
data, code and its own context configuration attributes.

Partitioning segregates applications in the space and time
domains:

• In the space domain, segregation means that the state
space of an application (its variables, code, logbooks,
IOs, etc.) is protected against any unexpected mod-
ification by another application residing in another
partition.

• In the time domain, segregation means that the tem-
poral characteristics of an application (response time,
jitter, etc.) cannot be affected by the activity of another
application residing in another partition. In practice,
this means that there is no competition for system

resources, such as the CPU, between partitioned ap-
plications. This is ensured, in particular, by a stat-
ically configured scheduling performed by the so-
called Module Operating System, or MOS.

IMA introduces a paradigmatic change in how avionics
systems are seen. In traditional federated approaches, the
avionic system was assembled by subsystems, consisting
of hardware devices inseparably compound with software
items.

IMA substitutes subsystems by standardised modules,
linked together to form a network. This network serves
as a hardware platform to host software applications. Of
course, there are still hardware elements that are specific to
certain functions, like actuators/sensors, data concentrators
and so on, limiting the possible combinations of software
and hardware components, but the much looser coupling
between software and hardware is an essential difference
to the federated design.

B. Configuration and Reconfiguration in IMA-based Sys-
tems

A configuration of an IMA system is to a certain extent
a mapping of software components to hardware resources.
In more formal terms, we will define a configuration as a
function of a set of applications to a set of modules. The set of
modules, a set of applications can be mapped to, is called
the configuration domain of these applications.

IMA configuration design is a critical activity of avionics
system design and integration. The configuration has to
ensure that all functional and non-functional requirements
(integrity, availability, performance, etc.) are met. An ap-
plication controlling cabin pressure, for instance, requires
triple redundancy to meet its availability and integrity
requirements. A less critical application, an on-board main-
tenance system, to pick a simple example, may not require
any redundancy at all.

Fleet managers are concerned with operational dispatch-
ability rates of aircrafts due to costs associated to ground
aircraft management and flight cancellation. To ensure
high dispatchability levels and at the same time assure
appropriate safety operations, avionic system design usu-
ally demands additional hardware redundancy, increasing
equipment costs, weight and power consumption, resulting
in higher fuel consumption.

An aircraft is only able to take-off (dispatch) if the
equipments listed in the Minimum Equipment List (MEL)
are operating properly. To ensure this, the aircraft system’s
health state is determined at start-up. If any essential
aircraft functions (rolled on MEL) do not meet the required
redundancy level, the aircraft is not able to take-off, and a
NO GO indication is placed.

The objective of AIDA’s on-ground reconfiguration is to
meet required dispatchability levels, but without the same
equipment, weight and power consumption penalties. The
idea is to have more than one configuration for subsets
of the available hardware. The alternative configurations
are designed to provide alternative allocations of essential



functions to available hardware resources in a way that
MEL requirements still being attended. This functional
reallocation process could potentially leave some of the
non-critical functions out.

A large number of possible configurations may exist
among which an optimal one shall be selected, possibly
dynamically at runtime. However, to keep complexity and,
hence, certification effort to a reasonable level, acceptable
configurations are defined and qualified offline, during
aircraft development. If failures are detected at system start-
up, the system selects the new configuration among a static
set of configurations. This approach is called multi-static
configuration.

How reconfiguration can be implemented by platform-
independent IMA-based middleware is currently investi-
gated in the FP7 project SCARLETT2. Similar to DIANA,
SCARLETT aims at on-ground reconfiguration, by reassing-
ing partitioned software components on faulty modules to
healthy ones.

SCARLETT foresees a set of platform functions to support
reconfiguration, such as data-loading, monitoring and fault
detection and power supply to switch modules on and
off [17]. Failures are detected and repaired if possible
by monitoring systems. In the case of a non-repairable
failure, an event is sent to a central supervisor component
that starts a transistion to an alternative configuration, by
unloading and uploading partitions or by restarting and
stopping modules.

The AIDA platform adopts an alternate solution to such
a centralised approach. The main argument to do so is
integrity and availability. In a centralized architecture, the
non-detected failure of the centralized supervisor has a
potential impact on all controlled functions, so the de-
pendability requirements applicable to the supervisor are at
least as high as the dependability requiremnts for the most
demanding function, without even considering the impact
of the joint failure of multiple independent functions. In
practice, the supervision function will itself rely on a
redundant physical architecture.

In a non reconfigurable architecture, this is not neces-
sarily a big issue: in any case, the aircraft will be stucked
on ground if any critical hardware equipment of the MEL is
not available, so the availability of the aircraft (hence, its
dispatchability) is directly determined by the availability of
any of those equipments (if we are only considering that
aspect). In that case, the supervisor does not need to be
more available than any critical function. Actually, it shall
be as available as the combination of all elements in the
MEL.

In a reconfigurable architecture, things are different:
decoupling software and hardware and providing some
flexibility to map the one to the other allows critical
functions to be available as long as there is a compatible
configuration of available hardware. This does not stand for
the supervisor which shall be available before any reconfig-
uration. This does not mean that the centralized approach

2Contract FP7 AAT-2007-RTD-1-211439, see: www.scarlettproject.eu

does not work, but the reconfiguration function is treated
in a specific way whereas in the distributed approach,
all functions, including the one managing reconfiguration
benefit from multi-static reconfiguration.

AIDA, instead, uses a distributed approach where middle-
ware components, controlling reconfiguration events, are
hosted on each module in the configuration domain. This
way, the dependability of a critical application is distributed
among all nodes in the configuration domain, no single
module is alone in charge of the critical action of selecting
an alternative configuration.

In an AIDA system, each module determines its own
health state on start-up, by means of power-up built-
in tests (PBIT). Afterwards, all modules within the same
configuration domain exchange their health state, again rep-
resented, for instance, by the PBIT result, using a Byzantine
Agreement protocol. The protocol ensures that all non-
faulty modules will eventually obtain the same view of
the health states of all interacting modules, even in case of
arbitrary faults. This view is called the system health state.

The system health state is mapped to a configuration
using a static list of configurations. If the configuration
corresponding to the current system health state differs
from the active configuration, all non-faulty modules select
the new configuration and reboot. The new configuration
then acts as the default configuration until the system is
repaired and the default configuration is reset.

Figure 1 shows a simplified reconfiguration scenario.
There are two configurations, denoted C0 and C1. C0 is
the default configuration, C1 is a configuration that remaps
applications on modules M1 – M3 in the case of failure of
module M4.

Figure 1: A Reconfiguration Example

In C0, five applications are hosted on the modules.
Applications A – C are listed on the MEL, A with triple
redundancy and B with double redundancy. With module
M4 lost, the third instance of A must be hosted somewhere
else or a NO GO indication will be placed. Configuration
C1 takes advantage of the non-criticality of D and E: D



on module M3 ist substituted by the third instance of A, E
is dropped. C1, thus, complies to the MEL and the aircraft
can remain in service. The dropped functions D and E will
be reactived when the aircraft reaches a location where the
faulty module can be replaced and C0 restored as default.

In our approach, human involvement has been reduced to
a minimum. It is assumed that the pilot is always informed
(in terms of some high-level view of the system, such
as available functions or equipments), but not forced to
confirm the change of a configuration. The only situation
where configurations have to be replaced manually, is the
resetting of the default configuration. However, this task
will be part of the fault correction that already implies
human activity.

A Byzantine Agreement protocol has been selected to
take into account faults that may result in arbitrary be-
haviour of the affected module – more precisely, such
a behaviour, called a Byzantine fault, is a fault presenting
different symptoms to different observers [6].

There are two arguments that strongly suggest consider-
ing Byzantine faults:

• There is evidence that those faults actually occur (see
[6]);

• The effort to prove that they cannot occur or are, at
least, not relevant in the current context appears to
be much higher than using well known algorithms
designed to cover this kind of faults.

The idea to use Byzantine Agreement protocols in avion-
ics systems is not new. The theoretical underpinnings have
been established in the pioneering papers [15], [11]. One
of the first applications to avionic systems was proposed in
[20] for clock synchronisation. In the late 70ies and 80ies,
the SIFT and MAFT architectures have been proposed [8]
to detect failures in on-board computers and to switch to
redundant equipment to tolerate them. This comes already
close to the use of Byzantine Agreement protocols in
AIDA. However, AIDA differs in various respects. First,
the architectural environment, IMA, is radically distinct
from the federated approach of the SIFT and MAFT ar-
chitectures. MAFT, for instance, foresees two computers
forming a node in an avionic network: the application
processor, hosting the application component itself and the
operation controller, acting as processor in the Byzantine
Agreement protocol. In sharp contrast, AIDA reduces on-
board hardware to save volume, weight and consequently
operational costs. Application components are distributed
on a set of modules, such that each module hosts one or
more applications.

Second, AIDA exploits IMA to enable a more fine-grained
level of redundancy: the unit of redundancy is not the
module, but the partition. There are much more possible
reconfiguration scenarios for this granularity level. This
implies stronger reliability; but it also implies a more
complex definition and selection of configurations. Multi-
static reconfiguration aims at tackling this complexity.

III. THE BYZANTINE AGREEMENT PROTOCOL

We consider a set M of available modules that may
either be faulty or non-faulty. The protocol is initiated by a
distinguished module, called the transmitter, sending some
information. In our application this information will be the
result of its own PBIT, to all other modules, which will
be called the receivers. The receivers then communicate
among themselves to reach a consensus on the health state
of the transmitter. To obtain the complete health state of the
system this protocol has to be repeated with every module
in turn in the role of the transmitter.

Byzantine agreement protocols come in two major va-
rieties, which are for historical reasons called protocols
with oral messages or with written messages. In the oral
message model a faulty receiver may either drop a received
message or resend messages with arbitrary values. In
the written message model a faulty receiver may drop a
message or forward the (extended) message but only with
the unchanged received value. To guarantee this behavior in
an implementation, messages must be authenticated. In the
literature the term signed messages is therefore sometimes
used instead of written messages.

The goal is to find algorithms that compute for every
receiver rr its opinion hst(rr) on the health state of the
transmitter satisfying the following two properties:

Validity If the transmitter tt is non-faulty then for all
non-faulty receivers hst(rr) is the value sent by
tt.

Agreement Any two non-faulty receivers rr1, rr2 agree,
i.e., hst(rr1) = hst(rr2).

Numerous algorithms have been published that ensure
these two properties for oral and written messages. Most
proposed algorithms divide message communication into
individual rounds. The number of rounds is thus one dimen-
sion in the evaluation of the algorithm. Another dimension
is the number of modules required to withstand a certain
number of byzantine faults. Let us denote by f the number
of faulty modules. The protocols with oral messages need at
least 3f +1 modules and f +1 rounds while in the case with
written messages f+2 modules and f+1 rounds suffice, see
e.g., [11], [7] or the comprehensive survey on consensus
problems in [4]. Since in our application the benefits from
greater fault resilience and the possibility to add application
specific optimizations outweigh the additional efforts of
using some signature scheme we decided to use a protocol
with signed messages.

We will shortly describe our version of the Byzantine
agreement algorithm Byz(m, f), where m is the number of
modules in M and f is the number of faulty modules. In
the worst case m = f + 2. But in general, dependability
analysis will allow us to determine a smaller number f

such that the probability of a joint failure of more than f

modules is so small that it can be neglected with respect
to the overall dependability objective.

Every module m ∈M keeps an initially empty set val(m)

of seen values and every message contains the list of its
previous senders snd. A message sent by a non-faulty



module will reach its receiver in less than T time units.
More precisely, T is an upper bound for the time that will
pass between a non-faulty module i receiving a message,
processing and sending it to j and the moment when j

receives it.
Step 1 The transmitter sends a signed message to all

receivers.
Step 2 If t ≥ (f + 1) ∗ T goto step 4 (global time-out).
Step 3 Receiving a message with value v, sender list snd

at time t receiver rr proceeds as follows
v ∈ val(rr) or t > length(snd) ∗T discard

message, goto step 2.
length(snd) ≥ f + 1 Add v to val(rr), goto

step 2.
otherwise Add v to val(rr). Receiver rr signs

the message and resends it to all re-
ceivers not in snd and updates snd by
adding itself and goes to step 2.

Step 4 Return hst(rr) = sel(val(rr)).

A sensible choice for sel is the function that yields
sel({v}) = v and sel(V ) = faulty if V is empty or contains
more than one element.

The algorithm Byz(m, f) differs from those presented
in [7] and [18, Section 2.2] in that it is formulated as
an iterative instead of a recursive algorithm, mentions
some of the data structures needed for implementation,
and addresses the issue of time-out explicitely. Algorithms
close to ours are to be found in [11] and [9, Section
2.6.1]. We follow the usual abstraction that a failure in
communication is attributed to the sending module. This
has the consequence that any message sent by a non-faulty
module is assumed to arrive.

Theorem 1. Byz(n, f) satisfies the validity and agreement
property.

Proof Since by the signed message assumption no new
values can be introduced by the receivers validity is trivially
statified. For any message with value v and sender list snd

it is easily established that for all j ∈ snd we must have
v ∈ val(j).

To argue that agreement is satisfied, we will prove
the stronger claim that val(i) = val(j) for all non-faulty
modules i, j.

Since the selection function is common to all modules
this entails hst(i) = hst(j). We thus assume for two
arbitrary modules i, j ∈M that v ∈ val(i) holds and aim to
show v ∈ val(j).

Consider the message with value v and sender list snd

when i first saw v. For future reference let t denote the time
when i did receive this message. If j ∈ snd then v ∈ val(j)

by the previous observation. So we assume from now on
j 6∈ snd. We have in any case t ≤ length(snd) ∗ T . If
length(snd) ≤ f then i did send value v to j, who did
receive it within the given time bounds. If length(snd) ≥
f +1 then there must for cardinality reasons be a non-faulty
module k ∈ snd. Since the sender list snd1 of the message
that k forwarded to i is an initial segment of the list snd, we

know that j is not in snd1. Thus k forwarded it also to j.
Since k was chosen as a non-faulty module the assumptions
of our model imply that j did in fact receive the message,
say at time t1. We still need to convince ourselves that
j did not discard it. Since we found k on the sender list
snd we know that k did not discard the message snd2 it
received at time, say t2. From the protocol specification
we thus know t2 < length(snd2) ∗T . Since lenght(snd1) =

lenght(snd2) + 1 and the assumption on T guarantees that
at t1 ≤ t2 + T this implies t1 < length(snd1) ∗ T and j did
indeed not discard the message. Thus v ∈ val(j).

As can be seen from the proof the correctness of the
algorithm strongly depends on the proper choice of the
time bound T .

If we strengthen the assumptions on the time bound T

and require in addition for all modules i, j with i faulty:
either i does not send a message to j or it is guaranteed
that the message arrives within T time units. Under these
assumptions the guard t > length(snd) ∗ T can be dropped
in Step 3 and only the global time-out is retained.

The algorithm Byz(m, f) has been specified with the
Event-B tool and its correctness formally verified using the
Rodin platform, [1]. To the best of our knowledge this is
the first time a Byzantine protocol using written messages
has been analysed using deductive verification. The formal
verification in [18, Section 8.4] uses model checking and
covers only systems with three modules, and under some
simplifications also systems with 4 modules. Details of
our verification may be found in the technical report [10].
Formal correctness proofs for Byzantine algorihms with
oral messages using the interactive verification system PVS
have been reported in [12].

As a next step towards an implementation we should
decide on which signature schemes should be used. In [18]
the use of cyclic redundancy checks (CRC) (see [16]) is
proposed. This is a plausible choice since CRC works well
to detect accidental changes.

We explain the method from [18] by an example with
three modules and two rounds. Module 1, acting as the
transmitter, sends messages with value D to module 2 and
3:

Mod1 → Mod2 : M12 = D:(CRC(D,K12),CRC(D,K13))
Mod1 → Mod3 : M13 = D:(CRC(D,K12),CRC(D,K13))

Here Kij = Kji are keys (polynomials) commonly known
to each pair {i, j} of modules. Module 2 checks the
integrity of the message, as far as it can do it, by
computing CRC(D,K12) and compares it with the value
received in the first position. If no error is found module
2 forwards the message to module 3. Module 3 acts
symmetrically. There is not explicit slot for snd, the list
of previous senders, but obviously this information can
be retrieved. Let us look at an example where a faulty
transmitter sends the following two inconsistent messages

Mod1 → Mod2 : M12 = 0:(CRC(0,K12),CRC(1,K13))
Mod1 → Mod3 : M13 = 1:(CRC(0,K12),CRC(1,K13))

Both modules, Mod2 and Mod3, believe in the integrity



of the received messages and resend it

Mod2 → Mod3 : M23 = 0:(CRC(0,K12),CRC(1,K13))
Mod3 → Mod2 : M32 = 1:(CRC(0,K12),CRC(1,K13))

Module 3 discards M23 as not integral and votes for 1 as
its guess for the value sent by the transmitter. Module 2
likewise discards M32 and votes for 0. Thus the agreement
property of the protocol is violated.

How can Theorem 1 be true in the face of this example?
The problem arises in that Mod2 is not able to detect
that message M23 is inconsistent, but the receiver Mod3

will find this out. Thus the situation arises where Mod2

sends message M23, but this message is not received.
According to our modeling assumptions Mod2 has to be
counted as faulty. The same applies to module Mod3. We
are thus looking at a system with three faulty modules. It is
easily seen that any authentication scheme where different
modules use different keys to check incoming messages
will lead to the same behavior.

A possible solution, already investigated in [18], could
rely on assymetric public/private keys protocols, and this
is actually the one we employed for the development
of AIDA. However, the cost of those algorithms is very
high, so we are currently investigating how they could be
”relaxed” e.g., by reducing the length of the key, so as to
still provide a ”sufficient” error detection coverage and to
comply with both space and time constraints of airborne
systems. Preliminary theoretical investigations have been
put forward in [5].

IV. IMPLEMENTATION, APPLICATION AND RESULTS

The algorithm has been implemented on two demonstra-
tors, a simplified Flight Warning System (FWS), developed
by THALES and a cabin Airconditioning system (A/C),
developed by NLR.

Each of the two demonstrators is implemented on three
nodes; the FWS uses two PowerPC modules with the
VxWorks 653 operating system by Windriver and an Intel
PC with the VxSim simulator, also by Windriver. The A/C
application is hosted on two Intel PCs, run by GMV’s ARINC

653 simulator SIMA and a PowerPC module with VxWorks
653.

Two fault scenarios have been defined for each demon-
strator, with either a PowerPC or an Intel node failing. The
faults have been injected both, by simulation of wrong PBIT

results and, simply, by not activating the respective module.
The heterogeneity of the systems had to be taken into

account in the design, coding and parametrisation of the
multi-static reconfiguration. First, an overall timeout, valid
for all modules had to be found. To achieve this, the
algorithm has been benchmarked on the different target
systems. The main problem turned out to be the start-
up procedure. No synchronised start-up had been defined
for the demonstrators and, even worse, different start-
up scenarios – for demonstration to an audience and for
benchmarking in the lab – have been identified. Finally,
different tolerance delays, between two seconds and two
minutes, and overall timeouts, between twenty seconds and

three minutes, have been chosen for different demonstration
purposes.

Another issue that had to be solved, is the module reset
and passivation mechanism. For the reset, the ARINC 653
health monitor has been used on VxWorks, VxSim and
SIMA. An application error is raised by the reconfiguration
engine that is not handled within the partition and, hence,
propagated to the partition health monitor where RESET was
defined as the corresponding error response action.

The passivation was handled differently; SIMA provides
a shutdown function that can be called from a priviledged
system partition. VxWorks 653, however, does not offer
such a functionality. Instead, the Multiple Module Sched-
ules service, defined in ARINC 653 Part 2 [3], has been
exploited by switching to an empty schedule.

The system-specific code has been implemented in a
system partition that answers service requests by the par-
tition, hosting the reconfiguration enginge. There is one
generic system partition per module, implementing also
other system-specific services that may be requested by
applications. This way, the overhead, introduced by the
reconfiguration approach, is kept to a minimum.

The reconfiguration engine is hosted on one partition per
module. This partition is connected to the reconfiguration
engines on other modules by queuing ports that implement
the channels in the Byzantine Agreement protocol. This
is depicted in figure 2. Note that it is possible to connect
payload applications to the reconfiguration engine by queu-
ing ports. A middleware component is available to request
information about the active configuration.

Figure 2: The AIDA Reconfiguration Engine

Again, the Multiple Module Schedules service has been
used to keep the overhead as small as possible: After
a successful completion of the algorithm, i.e., when at
the end of the algorithm the new configuration is equal
to the current configuration, a switch to a schedule is
requested that does not contain the execution windows for
the reconfiguration engine anymore. In consequence, the
reconfiguration engine will not consume any time resources
after the system has entered the operational phase. Note
that this behaviour excludes communication between the
reconfiguration engine and applications. Which option to



chose depends on application requirements and available
system resources.

In the demonstrators, a standard RSA algorithm has been
used for message authentication. By shortening the key
length, as mentioned in Section III, the algorithm may be
optimised in terms of memory and time consumption.

How configurations are defined with respect to of files
and formats, depends on the operating system. In gen-
eral, each configuration consists of a set of binaries and
configuration files that are loaded into memory at start-
up. Typically, the loader searches for a file according to
some naming convention which serves as entry point to
a given configuration. In the demonstrators, this file is
changed on behalf of the reconfiguration engine by means
of a helper script, running on the host. For a real solution,
this helper must be substituted by a component in the OS

infrastructure.

V. CONCLUSION AND FUTURE WORK

The AIDA platform makes a first step towards an optimal
usage of available computation resources. It proposes solu-
tions to take benefit from the genericity of the IMA platform,
its capability to decouple application and hardware, and its
strong partitioning features. With respect to other solutions,
AIDA favors a truly distributed reconfiguration logic, and
offers resilience to Byzantine faults.

In the paper, we have essentially addressed platform
independence at hardware level, on the basis of IMA and
ARINC 653 Application Programming Interface. Towards
the same goal, DIANA also investigated the use of Java
for the development of real-time airborne applications.
This aspect is addressed in more details in paper [19]. In
particular, both demonstration applications (simplified FWS

and Airconditioning systems) have been developed using
ATEGO’s innovative real-time version of Java.

Among the various issues only partially covered in
DIANA, is the management of configurations. Indeed, each
configuration is a system of its own that has to be defined,
integrated and validated separately. A tool to support this
activity has been specified in the scope of the DIANA

project, but, due to limitations on time and budget, it has
not been developed. In consequence, the intragration of
the alternative configurations had to be done manually.
The problems encountered during this activity helped the
project team to better understand the requirements for
a tool chain supporting reconfiguration, in particular for
supporting different target platforms.

An issue that is still open at project end, is a good
integration of alternative configurations in one modelling
approach. Currently, different models on all levels of the
modelling tool chain, such as Platform Independent Models
(PIM) and Platform Specific Models (PSM), have to be
developed and maintained. This remains an issue for future
research.

Management of physical inputs and outputs (IOs) is
another complex issue that has not been studied in detail
during the project and that definitely needs further analysis

and tool support. Indeed, IO introduce a strong physical
coupling between application and modules, and strongly
constraints the applicable reconfiguration schemes. Similar
constraints stem from the sharing of network resources,
which are strongly affected by reconfigurations.

Finally, tolerance to Byzantine faults is restricted to the
management of the system, and the proposed mechanism
is not accessible to applications. This limit could also
be overcome, and this feature could also be proposed as
a means to support specific quality of service for data
distribution.

REFERENCES

[1] Jean-Raymond Abrial. A system development process with Event-B
and the Rodin platform. In Michael Butler, Michael G. Hinchey, and
María M. Larrondo-Petrie, editors, ICFEM, volume 4789 of Lecture
Notes in Computer Science, pages 1–3. Springer, 2007.

[2] Airlines Electronic Engineering Committee (AEEC). Avionics Appli-
cations Software Standard Interface (ARINC Specification 653 Part
1 – Required Services). ARINC Inc., 2006.

[3] Airlines Electronic Engineering Committee (AEEC). Avionics Appli-
cations Software Standard Interface (ARINC Specification 653 Part
2 – Extended Services). ARINC Inc., 2008.

[4] Michael Barborak, Miroslaw Malek, and Anton Dahbura. The
consensus problem in fault-tolerant computing. ACM Comput. Surv.,
25(2):171–220, 1993.

[5] Malte Borcherding. Partially authenticated algorithms for Byzantine
agreement. In K. Yetongnon and S. Hariri, editors, Proc. 9th
Int.Conference on Parallel and Distributed Computing Systems
(PDCS’96) , Dijon, pages 8–11, September 1996.

[6] Kevin Driscoll, Brendan Hall, Håkan Sivencrona, and Phili Zumsteg.
Byzantine fault tolerance, from theory to reality. In S. Anderson
et al., editor, Proc. SAFECOMP, volume 2788 of LNCS, pages 235–
248. Springer, 2003.

[7] Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement
with authentication: Observations and applications in tolerating
hybrid and link faults. In Ravishankar K. Iyer, Michele Morganti,
W. Kent Fuchs, and Virgil Gligor, editors, Dependable Computing
for Critical Applications—5, volume 10 of Dependable Computing
and Fault Tolerant Systems, pages 139–157, Champaign, IL, Sept.
1995. IEEE Computer Society.

[8] Roger M. Kieckhafer, Chris J. Walter, Alan M. Finn, and Philip M.
Thambidurai. The maft architecture for distributed fault tolerance.
IEEE Transactions on Computers, 37(4):398–405, April 1988.

[9] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan
Kaufmann Publishers, 2007.

[10] Roman Krenický and Mattias Ulbrich. Deductive verification of
a Byzantine agreement protocol. Technical Report 2010-7, KIT,
Institute for Theoretical Computer Science, 2010.

[11] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages,
4(3):382–401, July 1982.

[12] Patrick Lincoln and John Rushby. A formally verified algorithm for
interactive consistency under a hybrid fault model. In Fault-Tolerant
Computing Symposium, FTCS 23, pages 402–411, Toulouse, France,
June 1993. IEEE Computer Society.

[13] The Object Management Group (OMG). Model Driven Architecture
Guide - omg/03-06-01. OMG, 2006.

[14] The Object Management Group (OMG). Data Distribution Service
for Real-Time Systems - OMG Specification omg/07-01-01. OMG,
2007.

[15] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching
agreement in the presence of faults. J. ACM, 27(2):228–234, 1980.

[16] W. W. Peterson and D. T. Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49:228 – 235, 1961.

[17] Claire Pagetti Thierry Planche Pierre Bieber, Eric Noulard and
François Vialard. Prelimenary design of future reconfigurable IMA
platforms. In APRES, Grenoble, October 2009.

[18] David Powell. A Generic Fault-Tolerant Architecture for Real-Time
Dependable Systems. Kluwer Academic Publishers, 2001.



[19] Tobias Schoofs, Eric Jenn, Stéphane Leriche, Kelvin Nilsen, Ludovic
Gauthier, and Marc Richard-Foy. Use of perc pico in the aida avion-
ics platform. In M. Teresa Higuera-Toledano and Martin Schoeberl,
editors, JTRES, ACM International Conference Proceeding Series,
pages 169–178. ACM, 2009.

[20] John H. Wensley, Milton W. Green, Karl N. Levitt, and Robert E.
Shostak. The design, analysis, and verification of the sift fault-
tolerant system. In ICSE, pages 458–469, 1976.

VI. GLOSSARY
A/C Airconditioning
AIDA Architecture for Independent Distributed Avionics
APEX Application Executive
API Application Programming Interface
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DDS Data Distribution Services
EC European Commission
FP Framework Programme
FWS Flight Warning System
IMA Integrated Modular Avionics
IO Input/Output
MAFT Multicomputer Architecture for Fault Tolerance
MDA Model-Driven Architecture
MEL Miminum Equipment List
MOS Module Operating System
OS Operating System
PBIT Power-up Built-In Test
PIM Platform Independent Model
PSM Platform Specific Model
SIFT Software Implemented Fault Tolerance


