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Abstract 
Knowing which sounds can be produced 
by a simulated vocal model is not trivial. 
Being able to map this out can be inter-
esting for applications that make use of 
the extended capabilities of a voice, e.g. 
singing. Novelty search is proposed as a 
method to explore acoustic capabilities 
of articulatory models, leveraging the 
representations of a human-like auditory 
perception model. 

Introduction 
Knowing which sounds a voice can 
make is not an easy question to answer, 
but important for singers, especially 
when they are still in training. It can be 
a help in deciding on what you should 
spend your practice time. If you know 
for sure that your physiology does not 
afford the production of certain kinds of 
sounds, then you can stop striving for it, 
and conversely – maybe even more im-
portantly – if you know that a sound is 
possible, but you do not know how to 
make it yet, it is an incentive for vocal 
exploration. 

Despite computer-implemented ar-
ticulatory-acoustic models being more 
observable than the vocal mechanism of 
a living person, their acoustic potentials 
are not easily deducible from their im-
plementations because of the non-linear 
relationships between the articulatory 
control parameters, their acoustic conse-
quences and human auditory perception. 
Thus, when studying these models in 
terms of their suitability to emulate sing-
ing, one is faced with a similar question 
as the living singer: What sounds can 
this model actually produce? Some lim-
itations might be obvious from the 

model specifications (e.g. only vowels), 
while others (e.g. What timbres are 
within reach?) might be much more dif-
ficult to answer by only looking at the 
model design.  

In contrast to methods that attempt 
to optimize model parameters to fit a 
certain auditory target (e.g. the vowel a) 
we propose using novelty search 
(Gomes, Mariano, & Christensen, 2015; 
Lehman & Stanley, 2011) to automate 
the exploration of the model parameter 
space to find sounds perceived as mean-
ingfully different. To conduct a novelty 
search, we have to specify a dissimilarity 
measure. As we are aiming for the do-
main of (human) singing, this measure 
should preferably be informed by human 
auditory perception. Machine hearing as 
the modeling of human auditory percep-
tion is a field of study in itself, with a 
good introductory text in Lyon (2017). 
Finally, this method produces a corpus 
of sounds exhibiting the sonic variety 
that the model can produce, together 
with the input parameters that produce 
them. 

There are several benefits to produc-
ing sound and parameter collections   
that attempt to acoustically characterize 
a vocal model. Most obviously, having 
such a corpus enables a characterization 
and possibly a taxonomy in terms of 
what the model can do. Furthermore, 
through the analysis of overlap and dif-
ferences, these corpora can form a basis 
for comparing one model with other 
models as well as with corpora of human 
utterances. Studying whether similar 
sounds were produced by similar articu-
latory configurations and vice versa 
might also be revealing. If an 
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articulatory voice model makes a suffi-
ciently close approximation of a real hu-
man voice, this would hold the promise 
of giving a useful pointer to human sing-
ers as to how to achieve this sound with 
their own instruments. 

In the following, we first shortly re-
view some related work and then delve 
into the three components of this exper-
iment: Articulatory vocal models, nov-
elty search, and human-like perception 
models. Then, we give some specifics of 
the experiments we intend to perform 
and of which we might be able to report 
some preliminary results at Fonetik 
2024. While some of the named benefits 
can apply to both articulatory and non-
articulatory vocal models, we limit our 
scope to the former category. We end 
with a discussion and conclusion. 

Related work 
As an articulatory-acoustic model can be 
seen as a synthesizer with a specific pa-
rameter set, exploring the sound space of 
a musical synthesizer is conceptually the 
same problem as the one described 
above. Novelty search has been used in 
that context to generate diverse sounds 
(e.g. Masuda & Saito, 2023), albeit in a 
sound matching context. 

In the realm of speech, there have 
been several attempts to emulate the pro-
cess of baby-babbling, in which a baby 
explores its vocal endowments and 
learns to produce syllables. This process 
is simulated with the Maeda (1979, 
1990) model by Moulin-Frier et al.  
(2014) and by Philippsen (2021) in the 
context of Vocal Tract Lab (Birkholz, 
2013). While these systems implement 
goal-directed and intrinsically motivated 
exploration, they do not attempt to ex-
plore model potential as such. 

Non-articulatory Singing Voice 
Synthesis has been around since at least 
1977 with the KTH MUSSE system 
(Sundberg, 2006). In those early years it 
was mainly a research instrument for 
analysis by synthesis aimed at percep-
tion and musical performance research. 

While MUSSE started as an analog sig-
nal processing system driven by a rule-
based performance system, nowadays 
the field is dominated by dataset driven 
neural approaches (Cho et al., 2021; Cui 
et al., 2024; e.g. Katahira, Adachi, Tai, 
Takashima, & Takiguchi, 2020; Shimizu 
et al., 2022; Sugahara et al., 2023) and 
achieves a very high degree of natural-
ness, which allows it to be used in digital 
music production.  

Articulatory-acoustic models 
Kröger (2022) surveys computer-imple-
mented articulatory models for speech 
since the 1960s. Where these models 
originally had the goal of producing 
high-quality speech through replicating 
the human speech organs, they have long 
been outperformed by non-articulatory 
models in this domain. Nowadays they 
mainly serve as a research tool. These 
models have control parameters that cor-
respond to configurations of the articu-
lators, which can be either static posi-
tions or dynamic trajectories. Of the 21 
articulatory models described in the sur-
vey, we are interested only in the 10 
models with an acoustic component, i.e. 
that can produce sound. It should be 
mentioned that all these models are 
meant primarily for speech research, so 
certain design choices might have been 
made that do not suit singing very well. 
This would be another reason to explore 
and analyze their capabilities.  

For our purposes, the models should 
have an existing, fast implementation 
that is available for research use, as nov-
elty search requires many iterations. Ex-
amples of implementations are the 
Maeda model as a part of DIVA (Guen-
ther, 2006; Tourville & Guenther, 2011)i 
and Vocal Tract Lab ii , but also 
gnuspeech iii  and Thapen’s Pink Trom-
boneiv. 

Novelty search 
Lehman and Stanley (2008, 2010, 2011) 
promote novelty search as an alternative 
to objective driven optimization in 



 
Proceedings from FONETIK 2024, Department of Linguistics, Stockholm University 

 77 

deceptive problem spaces, i.e. problems 
where the solver tends to get stuck in lo-
cal minima. In their evolutionary algo-
rithms, they use novelty as a criterion in-
stead of a typical fitness function that 
measures proximity to a goal. Just like a 
typical optimizing fitness function, nov-
elty is defined in the phenotypical space. 
In our case we choose the auditory per-
ception domain as the phenotypical 
space, further called “perception space”. 
Contrary to typical fitness, novelty is de-
fined in relation to neighboring points in 
a space, not in relation to a fixed objec-
tive.  

Let 𝑝  be an articulatory parameter 
vector for a vocal model 𝑉𝑀. Through 
the vocal model, we obtain a sampled 
acoustic waveform 𝑥 = 𝑉𝑀(𝑝) . The 
perception model PM then projects 𝑥 
into the perception space 𝑧	 = 	𝑃𝑀(𝑥). 
We then define the novelty 𝜌(𝑧) at some 
evolutionary iteration as the sparseness 
of its neighborhood with respect to 
sounds so far generated by the model. 
We adapt the definition of sparseness by 
Lehman & Stanley (2011), thus defining 
the novelty 𝑧 as the mean distance to its 
k nearest neighbors:  

𝜌(𝑧) = !
"
∑ 𝑑𝑖𝑠𝑡"
#$! (𝑧, 𝜇#)  (1) 

where 𝑑𝑖𝑠𝑡(∙,∙) is a dissimilarity meas-
ure defined in the perception space. The 
neighbors 𝜇#come from the current pop-
ulation generated by the evolutionary al-
gorithm, as well as from a possible ar-
chive of sounds that has been kept over 
the course of the calculations.  As 𝜌(𝑧) 
increases, the closest neighbors are at a 
larger distance, meaning that the current 
sound collection is sparser around point 
𝑧	in perception space.  

The novelty search algorithm tries 
in every iteration to maximize the 
sparseness for every produced sound. In 
a genetic algorithm, this will make the 
population diverge to different regions 
of the perception space. 

As mentioned before, one can keep 
an archive of previously calculated 
sounds, which can be included as 

neighbors in the sparsity calculation. 
Sounds can be included in the archive on 
different grounds e.g. based on a novelty 
threshold, or at random with a certain 
probability (Gomes et al., 2015). 

The intended result of the novelty 
search algorithm is an exploration of the 
goal-space that should be significantly 
more effective than a random walk and 
that does not get stuck in local minima. 

Novelty search might require a con-
siderable number of evolutionary gener-
ations to give a good idea of a model’s 
capabilities. Initially, therefore, we must 
work with fast vocal and perception 
models, and parallelize the procedure as 
much as possible.  

Human-like perception models  
With our focus on singing, it is im-
portant that perception be focused on 
music, not on speech. For example, two 
or three formants might be enough to 
characterize speech vowels, but not for 
conveying the timbral resolution that is 
necessary for singing. 

As mentioned in the previous sec-
tion, we need a dissimilarity measure 
that is not defined in the articulatory 
space, but in perception space. In order 
to aim for sounds that are meaningfully 
different to humans, we need an auditory 
dissimilarity measure that reflects hu-
man perception.   

One way to achieve this is to lever-
age methods that aim to directly emulate 
the signal processing in human hearing 
as measured by psychoacoustic experi-
ments, e.g. the gammatone (Patterson, 
Allerhand, & Giguère, 1995) and gam-
machirp (Irino & Unoki, 1998) fil-
terbanks. Another strategy is to model 
the functional components of the audi-
tory system, like Lyon’s (2017) CAR-
FAC and SAI models, that emulate the 
cochlea and the auditory representation 
in the brain stem. More recently, deep 
learning strategies with the same goal 
have appeared (e.g. Baby, Van Den 
Broucke, & Verhulst, 2021). 
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In the previously mentioned studies 
on baby-babbling (Moulin-Frier et al., 
2014; Philippsen, 2021), the authors 
make use of ad-hoc auditory perception 
models. Moulin-Frier et al. (2014) de-
vise a strategy that includes only the in-
tensity and the first two formant fre-
quencies, while Philippsen (2021) uses 
three formants for her experiments with 
static sounds. When working with dy-
namic vocal trajectories, she starts out 
with MFCC features.  As with the fil-
terbanks above, this entails that samples 
of different length also tend to be con-
sidered as very different. Philippsen mit-
igates this by embedding these features 
with a small RNN and a subsequent di-
mensionality reduction by PCA and 
LDA.  

The recent appearance of the deep 
learning-based CLAP-model (Elizalde, 
Deshmukh, Al Ismail, & Wang, 2023; 
Elizalde, Deshmukh, & Wang, 2024; 
Wu et al., 2023) trained on massive 
amounts of sound and text captions 
might offer another way of tackling this 
problem. Its embeddings (fixed length 
vector representation of audio) offer an 
audio representation that is cheap to 
compute and relates to human percep-
tion through the human involvement in 
the selection of the sound recordings in 
its dataset as well as through their text 
captions. This might be one of the first 
things to try. 

Forthcoming experiments 
As this study is still in an early stage, we 
cannot show any experimental results 
yet. We hope to be able to show some 
preliminary results in the conference 
presentation. Similar to Lehman & Stan-
ley (2010) we intend to implement nov-
elty search based on a genetic algorithm, 
for which we will have to define the 
mapping between the genome and the 
articulatory control parameters that af-
fords the genetic operations of crossover 
and mutation in a meaningful way. We 
will start with static vowels, and subse-
quently possibly expand our scope to 

consonants and more dynamic situa-
tions. Apart from listening to the gener-
ated sound samples, more rigorous eval-
uation could comprise statistical anal-
yses of the audio features present in the 
generated corpus, as well as the extent to 
which the articulatory input parameter 
ranges have been used.  

Discussion 
One question that only the experiments 
can answer is whether novelty search 
will work in high-dimensional percep-
tive goal spaces. Lehman & Stanley 
(2011) show that increasing the dimen-
sionality does not hurt performance in 
their use case, but the NEAT algorithm 
they are using (Stanley & Miikkulainen, 
2002) evolves behavioral neural archi-
tectures. In their case, it is the behavior 
exhibited by these architectures that 
should be novel. In addition, NEAT also 
has a built-in tendency to generate archi-
tectures that increase in complexity over 
time. 

Secondly, our hope is that the gen-
erated corpora could be a way to investi-
gate the quantal theory of speech (Ste-
vens, 1989). According to this theory, 
there are certain regions in the articula-
tory space that are acoustically stable in 
the sense that larger parameter changes 
do not entail big changes in sound. Con-
versely, there are also regions where 
smaller parameter changes have a big 
impact. As a result, aiming well into the 
middle of the stable regions makes 
speech, and possibly even singing, ro-
bust to inevitable noise in vocal control.  
Last but not least, we hope that the re-
sulting corpora might become good da-
tasets to train inverse dynamics for these 
articulatory models, meaning that a ma-
chine learning model that is given a 
sound efficiently could generate the pa-
rameters that would produce that sound. 

Conclusion 
In this report on work in progress we 
have presented the motivation behind 
and the ingredients of our coming 
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experiments with novelty search to char-
acterize the singing potential of articula-
tory-acoustic vocal models.  
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