<?xml version="1.0" ?><!DOCTYPE article PUBLIC '-//TaxonX//DTD Taxonomic Treatment Publishing DTD v0 20100105//EN' '../../nlm/tax-treatment-NS0.dtd'><article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:tp="http://www.plazi.org/taxpub" article-type="research-article" dtd-version="3.0" xml:lang="en">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">Nature Conservation</journal-id>
<journal-title-group>
<journal-title xml:lang="en">Nature Conservation</journal-title>
<abbrev-journal-title xml:lang="en">Nature Conservation</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">1314-6947</issn>
<issn pub-type="epub">1314-3301</issn>
<publisher>
<publisher-name>Pensoft Publishers</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.3897/natureconservation.19.11761</article-id>
<article-categories>
<subj-group subj-group-type="heading"> <subject>Research Article</subject> </subj-group>
</article-categories>
<title-group>
<article-title> Can we successfully monitor a population density decline of elusive invertebrates? A statistical power analysis on <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Lucanus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cervus">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> </article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Thomaes</surname>
<given-names>Arno</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Verschelde</surname>
<given-names>Pieter</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Mader</surname>
<given-names>Detlef</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Sprecher-Uebersax</surname>
<given-names>Eva</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Maria Fremlin</surname>
<given-names/>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Onkelinx</surname>
<given-names>Thierry</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Méndez</surname>
<given-names>Marcos</given-names>
</name>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
<addr-line>Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium</addr-line>
</aff>
<aff id="A2">
<label>2</label>
<addr-line>Hebelstraße 12, D-69190 Walldorf, Germany</addr-line>
</aff>
<aff id="A3">
<label>3</label>
<addr-line>Naturhistorisches Museum Basel, Augustinergasse 2, 4051 Basel, Switzerland</addr-line>
</aff>
<aff id="A4">
<label>4</label>
<addr-line>25 Ireton Road, Colchester, Essex CO3 3AT, United Kingdom</addr-line>
</aff>
<aff id="A5">
<label>5</label>
<addr-line>Rey Juan Carlos University, Area of Biodiversity and Conservation, c/ Tulipán, s/n., E-28933 Móstoles (Madrid), Spain</addr-line>
</aff>
<author-notes>
<fn fn-type="corresp">
<p> Corresponding author: Arno Thomaes ( <email xlink:type="simple">arno.thomaes@inbo.be</email> ) </p>
</fn>
<fn fn-type="edited-by">
<p>Academic editor: A. Campanaro</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>7</month>
<year>2017</year>
</pub-date>
<issue>19</issue>
<fpage>1</fpage>
<lpage>18</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>1</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>4</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Arno Thomaes, Pieter Verschelde, Detlef Mader, Eva Sprecher-Uebersax, Maria Fremlin, Thierry Onkelinx, Marcos Méndez</copyright-statement>
<license license-type="creative-commons-attribution" xlink:href="http://creativecommons.org/licenses/by/4.0" xlink:type="simple">
<license-p>This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="zoobank" xlink:type="simple">http://zoobank.org/D40F07B8-A861-432E-A2C0-8C738BB8A2FD</self-uri>
<abstract>
<label>Abstract</label>
<p> Monitoring global biodiversity is essential for understanding and countering its current loss. However, monitoring of many species is hindered by their difficult detection due to crepuscular activity, hidden phases of the life cycle, short activity period and low population density. Few statistical power analyses of declining trends have been published for terrestrial invertebrates. Consequently, no knowledge exists of the success rate of monitoring elusive invertebrates. Here data from monitoring transects of the European stag beetle, <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Lucanus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cervus">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> , is used to investigate whether the population trend of this elusive species can be adequately monitored. Data from studies in UK, Switzerland and Germany were compiled to parameterize a simulation model explaining the stag beetle abundance as a function of temperature and seasonality. A Monte-Carlo simulation was used to evaluate the effort needed to detect a population abundance decline of 1%/year over a period of 12 years. To reveal such a decline, at least 240 1-hour transect walks on 40 to 100 transects need to be implemented in weekly intervals during warm evenings. It is concluded that monitoring of stag beetles is feasible and the effort is not greater than that which has been found for other invertebrates. Based on this example, it is assumed that many other elusive species with similar life history traits can be monitored with moderate efforts. As saproxylic invertebrates account for a large share of the forest biodiversity, although many are elusive, it is proposed that at least some flagship species are included in monitoring programmes. </p>
</abstract>
<kwd-group>
<label>Keywords</label>
<kwd> <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Lucanus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cervus">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> </kwd>
<kwd>Natura 2000 monitoring</kwd>
<kwd>elusive saproxylic beetles</kwd>
<kwd>Monte-Carlo simulation</kwd>
<kwd>population decline</kwd>
</kwd-group>
</article-meta>
<notes>
<sec sec-type="Citation" id="SECID0EWG">
<title>Citation</title>
<p> Thomaes A, Verschelde P, Mader D, Sprecher-Uebersax E, Fremlin M, Onkelinx T, Méndez M (2017) Can we successfully monitor a population density decline of elusive invertebrates? A statistical power analysis on <italic>Lucanus cervus</italic> . In: Campanaro A, Hardersen S, Sabbatini Peverieri G, Maria Carpaneto G (Eds) Monitoring of saproxylic beetles and other insects protected in the European Union. Nature Conservation 19: 1–18. <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.3897/natureconservation.19.11761">https://doi.org/10.3897/natureconservation.19.11761</ext-link> </p>
</sec>
</notes>
</front>
<body>
<sec sec-type="Introduction" id="SECID0EDH">
<title>Introduction</title>
<p> Monitoring global biodiversity is essential for nature conservation in order to understand and counter its current loss due to anthropogenic disturbances ( <xref ref-type="bibr" rid="B20">Jones et al. 2015</xref> ; <xref ref-type="bibr" rid="B27">Lindenmayer and Likens 2010</xref> ; <xref ref-type="bibr" rid="B37">Reynolds et al. 2011</xref> ). However, it has often been argued that species selected for monitoring or conservation are biased towards more familiar species ( <xref ref-type="bibr" rid="B10">Clark and May 2002</xref> ; <xref ref-type="bibr" rid="B14">Franklin et al. 2011</xref> ; <xref ref-type="bibr" rid="B36">Regan et al. 2008</xref> ), while invertebrates are often under-represented ( <xref ref-type="bibr" rid="B8">Cardoso et al. 2011</xref> ; <xref ref-type="bibr" rid="B11">D’Amen et al. 2013</xref> ; <xref ref-type="bibr" rid="B26">Leather 2013</xref> ). Among other reasons, technical issues, i.e. the difficulty to monitor these species, have been argued. <xref ref-type="bibr" rid="B3">Bosso et al. (2013)</xref> , for example, highlight the difficulty of monitoring the elusive <italic>Rosalia alpina</italic> due to difficult detection in forests and its short life span of adults while <xref ref-type="bibr" rid="B41">Roets et al. (2013)</xref> mention the nocturnal activity, hidden phases of the life cycle and short activity period for the <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Colophon">Colophon</tp:taxon-name-part> </tp:taxon-name> </italic> stag beetle. A monitoring plan should be designed effectively and cost-efficiently (e.g. <xref ref-type="bibr" rid="B27">Lindenmayer and Likens 2010</xref> ; <xref ref-type="bibr" rid="B37">Reynolds et al. 2011</xref> ). Statistical power analysis is a widely acknowledged tool for that goal ( <xref ref-type="bibr" rid="B12">Di Stefano 2003</xref> ; <xref ref-type="bibr" rid="B23">La Morgia et al. 2015</xref> ; <xref ref-type="bibr" rid="B37">Reynolds et al. 2011</xref> ) in which a simulation is used to calculate the probability for correctly rejecting the null hypothesis (H0) when the alternative hypothesis (H1) is true with a given monitoring scenario. In other words, what is the chance of detecting a simulated decline? Monitoring of elusive species, in general, yields a low power (e.g. <xref ref-type="bibr" rid="B20">Jones et al. 2015</xref> ; <xref ref-type="bibr" rid="B46">Steenweg et al. 2016</xref> ; <xref ref-type="bibr" rid="B54">Williams and Thomas 2009</xref> ). Unfortunately, only a few power analysis studies on the populations trends of terrestrial invertebrates have been published in the peer reviewed literature ( <xref ref-type="bibr" rid="B4">Bried and Pellet 2012</xref> ; <xref ref-type="bibr" rid="B25">Lang et al. 2016</xref> ; <xref ref-type="bibr" rid="B42">Schmucki et al. 2016</xref> , all on butterflies). Consequently, the possibility of adequately monitoring the population trends of invertebrates in general and elusive invertebrates in particular has hardly been evaluated. </p>
<p> The European stag beetle, <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Lucanus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cervus">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> (further called the stag beetle), is a good model species to investigate whether the population trend of a strongly elusive terrestrial invertebrate can be adequately monitored. This saproxylic species is often considered as an umbrella species, representing the large saproxylic diversity inhabiting forests and half open landscapes ( <xref ref-type="bibr" rid="B28">Luce 1996</xref> ; <xref ref-type="bibr" rid="B49">Thomaes et al. 2008</xref> ). The stag beetle is included in the second annex of the European Habitats Directive and consequently, species specific protection and monitoring is mandatory for every member state. As this species can only be observed during a very narrow time window ( <xref ref-type="bibr" rid="B7">Campanaro et al. 2016</xref> ; <xref ref-type="bibr" rid="B16">Harvey et al. 2011a</xref> ), it can be argued that monitoring this species would yield insufficient data to evaluate its population trend. The stag beetle life cycle takes 3 to 5 years (Fremlin, Hendriks and Thomaes unpublished data, <xref ref-type="bibr" rid="B39">Rink and Sinsch 2008</xref> ) which are spent mainly in underground dead wood. After eclosion in late summer, the adults overwinter in a quiescent stage and become active above ground for mating and dispersal next summer. After emergence, males live for about 8 weeks while females can live up to 12 weeks ( <xref ref-type="bibr" rid="B16">Harvey et al. 2011a</xref> ). Even then, the species remains mostly hidden underground, being active during a short period around sunset ( <xref ref-type="bibr" rid="B7">Campanaro et al. 2016</xref> ; <xref ref-type="bibr" rid="B38">Rink and Sinsch 2007</xref> ). Furthermore, the activity of adults strongly depends on temperature ( <xref ref-type="bibr" rid="B16">Harvey et al. 2011a</xref> ; <xref ref-type="bibr" rid="B40">Rink and Sinsch 2011</xref> ; <xref ref-type="bibr" rid="B45">Sprecher-Uebersax 2001</xref> ; <xref ref-type="bibr" rid="B49">Thomaes et al. 2008</xref> ). Finally, relative humidity, rain, wind speed and other weather variables have been found to influence the stag beetles’ activity (e.g. <xref ref-type="bibr" rid="B15">Fremlin and Fremlin 2010</xref> ; <xref ref-type="bibr" rid="B38">Rink and Sinsch 2007</xref> ). However, as these variables are likely to be related to temperature and none of them has been tested in combination with temperature, conclusions should be interpreted carefully. Finally, the stag beetles’ activity is suggested to depend on the moon cycle ( <xref ref-type="bibr" rid="B29">Mader 2009</xref> ) but this has not been confirmed by <xref ref-type="bibr" rid="B45">Sprecher-Uebersax (2001)</xref> and <xref ref-type="bibr" rid="B7">Campanaro et al. (2016)</xref> . </p>
<p> Different monitoring protocols have been evaluated for the stag beetle: acoustic larval detection ( <xref ref-type="bibr" rid="B17">Harvey et al. 2011b</xref> ), baited or unbaited traps (e.g. <xref ref-type="bibr" rid="B9">Chiari et al. 2014</xref> ) and direct observations of living and/or dead beetles along transects (e.g. <xref ref-type="bibr" rid="B6">Campanaro et al. 2011</xref> ; <xref ref-type="bibr" rid="B7">Campanaro et al. 2016</xref> ; <xref ref-type="bibr" rid="B15">Fremlin and Fremlin 2010</xref> ; <xref ref-type="bibr" rid="B29">Mader 2009</xref> ; <xref ref-type="bibr" rid="B45">Sprecher-Uebersax 2001</xref> ). <xref ref-type="bibr" rid="B51">Vrezec et al. (2012</xref> b) found detection efficiency of evening transects (>90%) to be higher than that of trunk surveys and pit fall traps in the ground or attached to a tree (about 30–50%). Other techniques of trapping or indirect monitoring have also yielded poor results ( <xref ref-type="bibr" rid="B9">Chiari et al. 2014</xref> ; <xref ref-type="bibr" rid="B17">Harvey et al. 2011b</xref> ). Consequently, a walked transect in the evening currently seems to be the best available sampling technique. As it is a generally well known species, a citizen science approach with many simultaneous transects is a feasible monitoring strategy ( <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="http://www.stagbeetlemonitoring.org">www.stagbeetlemonitoring.org</ext-link> ). Few transects have been followed up nearly daily. In most cases, a weekly follow up has been used with a fixed day (e.g. <xref ref-type="bibr" rid="B6">Campanaro et al. 2011</xref> ) or with a variable day depending on the weather ( <xref ref-type="bibr" rid="B7">Campanaro et al. 2016</xref> ). Finally, it can be argued whether monitoring days should be concentrated around the short activity peak or over a longer period ( <xref ref-type="bibr" rid="B7">Campanaro et al. 2016</xref> ; <xref ref-type="bibr" rid="B15">Fremlin and Fremlin 2010</xref> ; <xref ref-type="bibr" rid="B51">Vrezec et al. 2012</xref> a). Due to the short activity period within a day, only one evening transect can be walked per observer and, due to the short season, only a limited number of days per year are suitable for monitoring, especially under colder climatic conditions. Consequently, cost efficiency is low and the power of such monitoring can be questioned. </p>
<p> Here, data have been used from three transects in north-western Europe which have been monitored nearly daily for seven up to ten years to parameterize a simulation model that estimates the stag beetles’ relative abundance. This model is then adjusted to include a population decline of 1%/year and used for a Monte-Carlo simulation. This decline was derived from European guidelines ( <xref ref-type="bibr" rid="B13">European Topic Centre on Biological Diversity 2011</xref> ) which state that a population decline of more than 1%/year within 12 years (short term) or 24 years (long term) should result in a negative report for this species. Finally, different monitoring scenarios are evaluated using the simulated data in order to determine the effort needed to successfully detect this population decline (power analysis). We hypothesize that despite a very narrow window of activity and a high variability in abundance, the stag beetle can still be successfully monitored with a moderate monitoring cost when the monitoring scenario is adapted to the phenology of this species. </p>
</sec>
<sec sec-type="materials|methods" id="SECID0EIHAC">
<title>Materials and methods</title>
<sec sec-type="Abbreviations" id="SECID0EMHAC">
<title>Abbreviations</title>
<p>C-Season: Centred measurement for the day of the season which is equal in each year calculated as: (Julian date (1 to 365) – 170) /30</p>
<p>T-Season: Centred measurement for the day of the season but shifted based on the temperature of that specific year to accommodate a season that was triggered by a certain temperature calculated as: (Julian date (1 to 365) – first day with 18°C or more + 1) /30</p>
<p>
<abbrev xlink:title="Median Absolute Bias" id="ABBRID0EUHAC">MAB</abbrev> : Median absolute bias on the trend estimation calculated as the median value of the absolute difference between the trend introduced in the simulation and the trend estimated by the validation model. </p>
</sec>
<sec sec-type="Data" id="SECID0EYHAC">
<title>Data</title>
<p> The data were compiled from three published studies on transects that have been monitored daily during the activity period of the stag beetle, i.e. mid-May till early July, for several years (Table <xref ref-type="table" rid="T1">1</xref> , full data published as <xref ref-type="bibr" rid="B50">Thomaes et al. 2016</xref> ). The first transect is located in Basel (Switzerland) and was monitored between 1991 and 2000. The transect was walked from 21:00h to 22:15h (see <xref ref-type="bibr" rid="B45">Sprecher-Uebersax 2001</xref> for further details). The second transect lies in Colchester (UK) and was followed up from 2005 to 2011. Stag beetles were recorded along the transect from 21:00h till 22:00h (from 2008 onwards, the transect was shortened from 21:30h till 22:00h, see <xref ref-type="bibr" rid="B15">Fremlin and Fremlin 2010</xref> for further details). The last transect lies in Tairnbach (Germany) and was followed up from 2008 to 2014. This transect was walked between 21:00h and 22:00h and stag beetles, amongst other insects, were recorded (see <xref ref-type="bibr" rid="B29">Mader 2009</xref> ; <xref ref-type="bibr" rid="B30">Mader 2013</xref> for further details). The three sites represent quite distant and extreme situations in north-western Europe: Colchester lies near the western distribution border of the species and comprises a very Atlantic climate; the site in Basel is situated at 262 m asl. and might represent a more mountainous population of this species while Tairnbach represents a more eastern situation for the populations in north-western Europe (although the species is found up to the Ural mountains). Furthermore, each site represents a different typical habitat for the species (Table <xref ref-type="table" rid="T1">1</xref> ). The methodology of slowly walking a short transect in about one hour is very similar for the three transects. However, these studies inevitably encompass small differences in monitoring protocol (e.g. length and duration of the transect walk and starting time) which were optimised to local conditions or needs. Nevertheless, it is believed that sampling methods were sufficiently consistent to provide reliable and comparable estimates of temporal variation in population abundance when the duration of the transect walk is used as offset. A similar method of combining monitoring data was used by <xref ref-type="bibr" rid="B31">Meyer et al. (2010)</xref> . Weather data (air temperature, rain, wind, relative humidity and air pressure) during the transect walks were compiled from nearby weather stations (Basel: Lufthygieneamt in <xref ref-type="bibr" rid="B45">Sprecher-Uebersax 2001</xref> , Colchester: <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="http://www.tijou.co.uk">http://www.tijou.co.uk</ext-link> in <xref ref-type="bibr" rid="B15">Fremlin and Fremlin 2010</xref> & Tairnbach: <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="http://www.worldweatheronline.com">http://www.worldweatheronline.com</ext-link> ). Rain and air pressure data are not available for Basel. Moon cycle data were calculated as the visible part of the moon as a percentage ( <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="http://aa.usno.navy.mil/data/docs/MoonFraction.php">http://aa.usno.navy.mil/data/docs/MoonFraction.php</ext-link> ). Data compilation resulted in 1610 transect walks. </p>
<table-wrap id="T1" position="float" orientation="portrait">
<label>Table 1.</label>
<caption>
<p>Metadata of the stag beetle transect walks including location, longitude, latitude, altitude, start, end year, habitat, duration and reference to the protocol and number of transect walks (#).</p>
</caption>
<table id="TID0E5MBG" rules="all">
<tbody>
<tr>
<th rowspan="1" colspan="1">Location</th>
<th rowspan="1" colspan="1">Long (°E)</th>
<th rowspan="1" colspan="1">Lat (°N)</th>
<th rowspan="1" colspan="1">Alt (m)</th>
<th rowspan="1" colspan="1">start year</th>
<th rowspan="1" colspan="1">end year</th>
<th rowspan="1" colspan="1">Habitat</th>
<th rowspan="1" colspan="1">Duration of transect walk</th>
<th rowspan="1" colspan="1">Reference for protocol</th>
<th rowspan="1" colspan="1">#</th>
</tr>
<tr>
<td rowspan="1" colspan="1">Tairnbach (Germany)</td>
<td rowspan="1" colspan="1">8.75</td>
<td rowspan="1" colspan="1">49.25</td>
<td rowspan="1" colspan="1">191</td>
<td rowspan="1" colspan="1">2008</td>
<td rowspan="1" colspan="1">2014</td>
<td rowspan="1" colspan="1">Forest edge</td>
<td rowspan="1" colspan="1">1h</td>
<td rowspan="1" colspan="1">
<xref ref-type="bibr" rid="B29">Mader (2009)</xref>
</td>
<td rowspan="1" colspan="1">681</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Basel (Switzerland)</td>
<td rowspan="1" colspan="1">7.58</td>
<td rowspan="1" colspan="1">47.57</td>
<td rowspan="1" colspan="1">262</td>
<td rowspan="1" colspan="1">1991</td>
<td rowspan="1" colspan="1">2000</td>
<td rowspan="1" colspan="1">Park</td>
<td rowspan="1" colspan="1">1.25h</td>
<td rowspan="1" colspan="1">
<xref ref-type="bibr" rid="B45">Sprecher-Uebersax (2001)</xref>
</td>
<td rowspan="1" colspan="1">510</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Colchester (UK)</td>
<td rowspan="1" colspan="1">0.88</td>
<td rowspan="1" colspan="1">51.88</td>
<td rowspan="1" colspan="1">28</td>
<td rowspan="1" colspan="1">2005</td>
<td rowspan="1" colspan="1">2011</td>
<td rowspan="1" colspan="1">Urban</td>
<td rowspan="1" colspan="1">0.5–1h</td>
<td rowspan="1" colspan="1"> Fremlin and Fremlin ( <xref ref-type="bibr" rid="B15">2010</xref> ) </td>
<td rowspan="1" colspan="1">459</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec sec-type="Model selection" id="SECID0EOOAC">
<title>Model selection</title>
<p> It is assumed that the number of individuals observed along the transects mirrors the local population density as there is no population density function available for this species. This situation is common for many monitored species ( <xref ref-type="bibr" rid="B37">Reynolds et al. 2011</xref> ). Two variants of a generalised additive model ( <abbrev xlink:title="Generalised Additive Model" id="ABBRID0EYOAC">GAM</abbrev> ) with Poisson family and log link explaining the number of stag beetles observed during the 1610 transect walks were compared. The first part is identical for both model variants and includes an offset, the transect (Basel, Colchester, Tairnbach) and the year per transect interaction. The natural logarithm of the duration of the transect walk (in hours) was added as the offset term. In this way the models express the abundance per hour of monitoring rather than the observed abundance ( <xref ref-type="bibr" rid="B56">Zuur et al. 2009</xref> ). The interaction between year and transect will give the log-linear trend for each transect. The year was centred to the first year of the transect to enhance the numerical stability of the model. </p>
<p> As mentioned in the introduction, the stag beetle abundance shows a strong seasonal and temperature-dependent pattern. Therefore, the second part estimates the temperature effect using a spline smoother. This smoother was included to gain insight into the relationship between temperature and stag beetle abundance, being linear or multi-polynomial. The latter option is based on the observation that stag beetles’ activity increases until they are fully active from 18°C onwards ( <xref ref-type="bibr" rid="B15">Fremlin and Fremlin 2010</xref> ; <xref ref-type="bibr" rid="B16">Harvey et al. 2011a</xref> ; <xref ref-type="bibr" rid="B18">Hawes 2008</xref> ; <xref ref-type="bibr" rid="B38">Rink and Sinsch 2007</xref> ; <xref ref-type="bibr" rid="B44">Smit and Krekels 2008</xref> ). To prevent that the smoother would fit every detailed random temperature effect, the maximum degrees of freedom was set to four. The third part of the model explains the seasonal effect using two different variants (C-Season or T-Season). C-Season represents a constant season over the different years. A centred measurement was used to enhance the numerical stability of the model calculated as the Julian date (1 to 365) minus 170 (as a mean value) and divided by 30 to get a result in approximated months. T-Season represents a shifted season based on the temperature of that specific year to accommodate a stag beetle season that is triggered by a certain temperature. <xref ref-type="bibr" rid="B51">Vrezec et al. (2012</xref> a) have argued that stag beetle emergence depends on the temperature resulting in such a shifting season. Therefore, the first day of T-Season was defined as the first transect day with 18°C or higher, resulting in a negative season before that day. Days of this shifted season were again divided by 30. C-Season or T-Season was included with a spline smoother (with a maximum of four degrees of freedom): </p>
<p># stag beetles ~ Intercept + offset (log(transect duration)) + transect + year:transect + s(temperature) + s(C-Season)</p>
<p>or</p>
<p># stag beetles ~ Intercept + offset (log(transect duration)) + transect + year:transect + s(temperature) + s(T-Season)</p>
<p>The two variants of the explanatory model were, in the first place, evaluated based on the analysis of the model residuals in relation to model variables. As both variants performed equally well, the best model was finally selected by the AIC criterion (see results). Model residuals were plotted against weather variables that were not used in the model (see section 2.1) and moon cycle data to detect any remaining variability and correlation coefficients were calculated to decide whether to include these variables in the explanatory model.</p>
</sec>
<sec sec-type="Monte-Carlo simulation of a 1% population decline" id="SECID0EBAAE">
<title>Monte-Carlo simulation of a 1% population decline</title>
<p> New data sets were created consisting of 10 up to 100 transects, with each transect simulated for 12 years (cfr. <xref ref-type="bibr" rid="B13">European Topic Centre on Biological Diversity 2011</xref> ). Transects data was generated from 10 May till 4 July each year to accommodate an 8 weeks period that included the abundance peak of the stag beetle and that was mainly within the monitoring range of the original transects. The duration of the transect walk was set to 1 hour. </p>
<p> The observed temperature data was modelled with a generalised linear mixed model ( <abbrev xlink:title="Generalised Linear Mixed Model" id="ABBRID0ENAAE">GLMM</abbrev> ) including season as a second degree polynomial as explanatory variable and transect and year as crossed random effects: </p>
<p>Temperature ~ Intercept-temperature + C-Season + C-Season² + (1|Transect) + (1|Year)</p>
<p> To generate simulated temperature data, the <abbrev xlink:title="Generalised Linear Mixed Model" id="ABBRID0EUAAE">GLMM</abbrev> with the original coefficients was converted to a GLM by changing the random effects in normally distributed fixed effects with zero as mean and their sigma as variance. The auto-correlation was set to 0.7, based on visual and empirical interpretation (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.1). Fur ther, we added a normal distributed random part to the intercept with zero mean and a low standard deviation (σ=0.01) between simulations. </p>
<p> The number of stag beetles observed per transect walk was simulated based on the selected explanatory model from the model selection. To facilitate the simulation, this <abbrev xlink:title="Generalised Additive Model" id="ABBRID0EABAE">GAM</abbrev> model was simplified to a GLM simulation model including a second degree polynomial of temperature and third degree polynomial of C-Season, based on the degrees of freedom in the original model. The third degree of temperature was not used in the simulation model as its significance in the explanatory model depended on the year:transect interaction and is therefore not an overall population characteristic but a statistical compensation for this interaction. Moreover, the temperature effect of a second or third degree polynomial on the number of stag beetles observed remains very similar (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.2). Year and transect were included as normally distributed fixed effects with zero as mean and their variance based on the explanatory model. Each transect was given a fixed trend which encompasses a 1% population decline per year (cfr. <xref ref-type="bibr" rid="B13">European Topic Centre on Biological Diversity 2011</xref> ). The model can be presented as: </p>
<p># stag beetles ~ rpois(Expected count /transect duration)</p>
<p> Log (Expected count /transect duration) = Intercept + transect <sub>i</sub> + year <sub>j</sub> + poly(temperature, 2) </p>
<p> + poly(C-Season, 3) + ((1–0.12) <sup>1/12</sup> ) * year </p>
<p> transect <sub>i</sub> ~ Normal(0, sd <sub>transect</sub> ) </p>
<p> year <sub>j</sub> ~Normal(0, sd <sub>year</sub> ) </p>
</sec>
<sec sec-type="Statistical power analysis" id="SECID0EDCAE">
<title>Statistical power analysis</title>
<p> Four monitoring scenarios (Weekly, Warmest of 7d, Peak temperature and Daily) were applied to the simulated data to comply with different monitoring protocols. In the Weekly scenario, each transect was monitored weekly during one up to eight weeks centred around the period with peak abundance. In the Warmest of 7d scenario, the transect was monitored on the warmest day of each week representing a monitoring protocol that depends on the weather forecast for the coming seven days. This is a simplification of the method proposed by <xref ref-type="bibr" rid="B7">Campanaro et al. (2016)</xref> where only the days from Monday till Thursday were used for monitoring. In the Peak temperature scenario, the monitoring started on the first day with a temperature of 18°C or higher and was continued for one up to eight consecutive days. These three scenarios (each including one up to eight days of monitoring per year and transect) were compared with a Daily scenario which includes daily monitoring during one up to eight weeks (7 to 56 days per year and transect). </p>
<p> On the subsets of data sampled with the different scenarios, a GLM validation model was fitted similar to the simulation model, but without year and transect effects to improve the processing time (they could be left out as these were centred around zero). If the subset included data of less than four weeks, then C-Season was left out of the validation model as the period is too short to fit the season effect properly. When modelling data from the Peak temperature scenario, both temperature and C-Season were left out of the validation model for the same reason. From each validation model, the parameter estimate and p-value for year were extracted. </p>
<p> Simulations were run 1000 times for each of the different simulation options, i.e. 10 to 100 transects (sample size), one to eight days/weeks of monitoring per year and transect (frequency) and for each of the four scenarios. Power (1 - type II error) was calculated as the percentages of p<0.05 (type I error) with parameter estimate <1 (i.e. prediction of a declining trend) for each of the simulation options. Based on these results, the minimum effort (= frequency * sample size) needed to reach a power > 90% was assessed. A threshold of 90% has been repeatedly suggested for reliable trend detection (e.g. <xref ref-type="bibr" rid="B31">Meyer et al. 2010</xref> ; <xref ref-type="bibr" rid="B47">Steidl et al. 1997</xref> ) in order to balance type II and type I errors ( <xref ref-type="bibr" rid="B12">Di Stefano 2003</xref> ). The median absolute bias on the trend estimation ( <abbrev xlink:title="Median Absolute Bias" id="ABBRID0E6CAE">MAB</abbrev> ) for each scenario was also calculated to evaluate the accuracy of the trend estimation. <abbrev xlink:title="Median Absolute Bias" id="ABBRID0EDDAE">MAB</abbrev> is sometimes used as an alternative for the power to optimise the effort of monitoring ( <xref ref-type="bibr" rid="B20">Jones et al. 2015</xref> ; <xref ref-type="bibr" rid="B23">La Morgia et al. 2015</xref> ). </p>
<p> Finally, the power of three existing monitoring protocols was calculated: two in Flanders and one in Slovenia. In Flanders (Northern Belgium) a monitoring protocol for this species was designed including 36 transects and eight weeks of monitoring during the presumed warmest day of the week ( <xref ref-type="bibr" rid="B48">Thomaes 2014</xref> ), further called the Flanders scenario. As a start-up, this protocol was downscaled to 15 transects with three to eight weeks of monitoring (scenario Warmest of 7d) and 30 other transects that would be monitored only once a year (Flanders start-up). This downscaling was due to the fact that few volunteers have experience with stag beetles. It was simulated as three transects with eight, seven and six weeks of monitoring, two transects with five, four and three and 30 transects with one yearly random monitoring in a three week period around the abundance peak. In Slovenia, the monitoring includes two transects that are walked yearly plus eight that are walked every two years with three assessments within a period of about five weeks (Al Vrezec, pers. comm.). To assess its power, this protocol was implemented as a five week period with monitoring in the first, third and fifth week with the scenario Warmest of 7d. Al statistics were performed in R 3.3.1 ( <xref ref-type="bibr" rid="B35">R Core Team 2015</xref> ) with mgcv, lme4 and ggplot2 as libraries ( <xref ref-type="bibr" rid="B55">Wood 2011</xref> ; <xref ref-type="bibr" rid="B2">Bates et al. 2014</xref> ; <xref ref-type="bibr" rid="B53">Wickham 2009</xref> ). </p>
</sec>
</sec>
<sec sec-type="Results" id="SECID0EFEAE">
<title>Results</title>
<sec sec-type="Model selection" id="SECID0EJEAE">
<title>Model selection</title>
<p> The model with C-Season had a lower AIC (7971) than the model variant with T-season (AIC = 8743) meaning that the hypotheses presented in <xref ref-type="bibr" rid="B51">Vrezec et al. (2012</xref> a) explaining the emergence of stag beetles at a certain temperature threshold could not be confirmed. Therefore, the model variant with C-Season (Table <xref ref-type="table" rid="T2">2</xref> and Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.3) was used as a selected explanatory model. The smoother for temperature (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.2) confirmed the finding that stag beetles are fully active from about 18°C onwards (see earlier). Model residuals showed no relation with other weather variables or moon cycle data (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.4), so no updates were made to include these variables in the explanatory model. As all these weather data were correlated with temperature (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.5), it can be assumed that temperature is a robust variable of weather conditions in general. </p>
<table-wrap id="T2" position="float" orientation="portrait">
<label>Table 2.</label>
<caption>
<p> Coefficients of the explanatory <abbrev xlink:title="Generalised Additive Model" id="ABBRID0ESFAE">GAM</abbrev> model variant with lowest AIC which explains the stag beetle abundance. The table includes coefficients and their significance, estimated degrees of freedom for the smoothers of C-season and temperature and percentage deviation explained by the model (%dev. expl.: % deviation explained). </p>
</caption>
<table id="TID0EWTBG" rules="all">
<tbody>
<tr>
<th rowspan="1" colspan="6">Coefficients</th>
<th rowspan="1" colspan="2">edf</th>
<th rowspan="1" colspan="1">%dev. expl.</th>
</tr>
<tr>
<th rowspan="1" colspan="3">Transect</th>
<th rowspan="1" colspan="3">Year x Transect</th>
<th rowspan="1" colspan="1">s(Temp)</th>
<th rowspan="1" colspan="1">s(C-Season)</th>
<th rowspan="1" colspan="1"/>
</tr>
<tr>
<th rowspan="1" colspan="1">Basel</th>
<th rowspan="1" colspan="1">Colchester</th>
<th rowspan="1" colspan="1">Tairnbach</th>
<th rowspan="1" colspan="1">Basel</th>
<th rowspan="1" colspan="1">Colchester</th>
<th rowspan="1" colspan="1">Tairnbach</th>
<th rowspan="1" colspan="1"/>
<th rowspan="1" colspan="1"/>
<th rowspan="1" colspan="1"/>
</tr>
<tr>
<td rowspan="1" colspan="1"> -1.13 <sup>***</sup> </td>
<td rowspan="1" colspan="1"> 0.24 <sup>***</sup> </td>
<td rowspan="1" colspan="1">-0.11</td>
<td rowspan="1" colspan="1"> -0.12 <sup>***</sup> </td>
<td rowspan="1" colspan="1"> 0.11 <sup>***</sup> </td>
<td rowspan="1" colspan="1"> 0.26 <sup>***</sup> </td>
<td rowspan="1" colspan="1"> 2.898 <sup>***</sup> </td>
<td rowspan="1" colspan="1"> 2.991 <sup>***</sup> </td>
<td rowspan="1" colspan="1">47.4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<sup>***</sup> : <0.001 </p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec sec-type="Statistical power analysis" id="SECID0EAJAE">
<title>Statistical power analysis</title>
<p> Only with three of the four scenarios, a power of 90% was achievable but the effort and number of transects needed differed (Figure <xref ref-type="fig" rid="F1">1</xref> ). The lowest effort to reach this power corresponded to the Warmest of 7d scenario with 80 transects and 2 days per year and transect (resulting in 160 days/y) (Figure <xref ref-type="fig" rid="F2">2</xref> ). With the same scenario, many other options were possible to yield a power of 90% with 30 up to 100 transects with respectively 8 and 2 days per year and transect resulting in an effort between 180 and 240 days/y. The Weekly scenario required a slightly higher effort, at least 240 days/y with a combination of 80 transects and 3 days per year and transect. Again, many other options were also possible and only needed a slightly higher effort. The Daily scenario had the highest effort needed to reach a power of 90%. Here, an effort of 420 days/y was needed with a combination of either 20, 30 or 60 transects and respectively 3, 2 or 1 week of monitoring per year and transect. However, it was the only scenario that allowed successful monitoring with 20 transects. With the Peak temperature scenario, it was not possible to reach a power of 90%; with 100 transects and 8 days per year and transect, a power of 88.5% was reached. Based on the fairly coincidental lines in Figure <xref ref-type="fig" rid="F2">2</xref> , it is clear that the scenario and effort are of main importance to optimise the power, while the individual combinations of number of transects and frequency are of lesser importance. </p>
<p> The <abbrev xlink:title="Median Absolute Bias" id="ABBRID0EUJAE">MAB</abbrev> criteria provided very similar results compared to the power (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.6). All scenarios with a power above 90%, yielded a low <abbrev xlink:title="Median Absolute Bias" id="ABBRID0E3JAE">MAB</abbrev> (i.e. 0.01 to 0.04 or 1.4–3.7% of the real trend) and vice versa (Suppl. material <xref ref-type="supplementary-material" rid="S1">1</xref> : Figure A.7). Thus, the <abbrev xlink:title="Median Absolute Bias" id="ABBRID0EGKAE">MAB</abbrev> criteria yielded little additional insight for selecting the optimal scenario and effort. </p>
<p>The original monitoring for Flanders, Flanders scenario, yielded a power of 95% within 12y. The Flanders start-up scenario still had a power of 79%. The scenario of Slovenia, with only ten transects, yielded a power of 23%. This was quite low but, for a period of 24y the power increased to 81%.</p>
<fig id="F1" position="float" orientation="portrait">
<label>Figure 1.</label>
<caption>
<p> Statistical power for different scenarios, number of transects and frequency as number of days (for Peak temperature, Weekly and Warmest of 7d) or weeks (for Daily) per year and transect for monitoring the stag beetle ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Lucanus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cervus">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ). </p>
</caption>
<graphic xlink:href="nature_conservation-19-001-g001.jpg" position="float" orientation="portrait" xlink:type="simple" id="oo_147371.jpg"/>
</fig>
<fig id="F2" position="float" orientation="portrait">
<label>Figure 2.</label>
<caption>
<p> Statistical power for different scenarios, efforts as number of days/year (limited to 1000) and number of transects for monitoring the stag beetle ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Lucanus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cervus">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ). </p>
</caption>
<graphic xlink:href="nature_conservation-19-001-g002.jpg" position="float" orientation="portrait" xlink:type="simple" id="oo_147372.jpg"/>
</fig>
</sec>
</sec>
<sec sec-type="Discussion" id="SECID0E3LAE">
<title>Discussion</title>
<p>With the statistical power analysis presented, it was shown that it is at least feasible to monitor population density changes of the stag beetle with an effort of 240 days/y. This effort can be applied successfully with different combinations of scenarios, number of transects (between 30 and 100) and frequency. Before concluding which monitoring strategy and effort is most advisable to employ, the impact and alternatives for the missing density function, the limitations of the data used and the consequences of methods used for the results of the power analysis will be discussed first.</p>
<p> One of the main methodological problems for population trend analysis is the use of a relative abundance measure (here number of stag beetles found along a transect) to estimate the absolute population size (e.g. <xref ref-type="bibr" rid="B4">Bried and Pellet 2012</xref> ; <xref ref-type="bibr" rid="B24">LaCommare et al. 2012</xref> ; <xref ref-type="bibr" rid="B54">Williams and Thomas 2009</xref> ). In many cases, the relationship between them is unknown and consequently a linear relationship must be assumed ( <xref ref-type="bibr" rid="B24">LaCommare et al. 2012</xref> ). Although a linear relationship might often be reasonable, several exceptions have been mentioned including differential population declines across sexes or life-history stages ( <xref ref-type="bibr" rid="B43">Shea et al. 2006</xref> ; <xref ref-type="bibr" rid="B37">Reynolds et al. 2011</xref> ). For example, it is known that stag beetle transect walks are biased towards observations of male adults (e.g. <xref ref-type="bibr" rid="B51">Vrezec et al. 2012</xref> b). Consequently, threats affecting males in a selective way might result in an overestimate of the real population decline. Solutions that have been suggested to cope with this are distance sampling, mark-recapture procedures and presence-absence methods. Distance sampling is not realistic to apply to flying insects and mark-recapture procedures have yielded little recaptures for stag beetles (e.g. <xref ref-type="bibr" rid="B9">Chiari et al. 2014</xref> ). <xref ref-type="bibr" rid="B21">Joseph et al. (2006)</xref> determined that for low density and hard-to-detect species, presence-absence methods equated or outperformed abundance methods at tracking changes in population size. For the stag beetle, this does not seem to be the case as the effort suggested by <xref ref-type="bibr" rid="B7">Campanaro et al. (2016)</xref> to assess the presence is 3 transect walks per year and transect which is comparable to some of our conclusions. However, presence-absence methods in general need many more transects than abundance methods so the overall effort will be higher. </p>
<p> The between-site variation on the number of the stag beetles observed is difficult to assess as only three sites have been monitored. <xref ref-type="bibr" rid="B1">Bart et al. (2004)</xref> mention that the variability in habitat and environment between sites is important when balancing the number of sites and monitoring frequency per site. As our three sites represent quite distant locations and habitats in north-western Europe, the results can be interpreted as based on maximal between-site variation and, consequently, as estimates of the outer limits of effort needed for monitoring the species in north-western Europe or countries within this region. Outside this region, the species response to temperature and season might differ and possibly also the effort needed to monitor it. <xref ref-type="bibr" rid="B24">LaCommare et al. (2012)</xref> , <xref ref-type="bibr" rid="B33">Pais et al. (2014)</xref> and <xref ref-type="bibr" rid="B20">Jones et al. (2015)</xref> also concluded that the optimal monitoring strategy might differ across locations. Consequently, care must be taken when applying the results in other parts of the range of the species. For example, it might be expected that the species is less temperature restricted in warmer climates and consequently lower effort is needed. Furthermore, if the monitoring covers a large area, more variability between sites is likely to be expected and therefore more transects should be selected ( <xref ref-type="bibr" rid="B31">Meyer et al. 2010</xref> ; <xref ref-type="bibr" rid="B34">Pollock et al. 2002</xref> ). </p>
<p>The most efficient way of monitoring the stag beetle seems to involve a scenario with weekly transects walks during the warmest evening. The scenario with transect walks concentrated after a first evening with 18°C or higher seems to have missed the period with abundance peak resulting in a very low power. Possibly, the stag beetle emergence in this region is triggered by lower temperatures and this causes the mismatch. However, if this peak period can be predicted, then the power of such a monitoring scenario might be much higher. When T-season is used in the simulation model instead of C-season, the Peak temperature scenario has the lowest effort needed to reach a power of 90% (results not shown). This is due to the fact that the simulation model and data sampling are then ideally tuned as both are based on the same hypothesis i.e. the period with abundance peak starts on the first evening with a temperature of 18°C. In reality, the start of this peak might be more complex and therefore more difficult to predict. Especially in different regions, stag beetle emergence might be expected to respond differently and thus different monitoring protocols might be needed for each region if this were to be applied. Consequently, it might be difficult to organise a large network of transects and instruct volunteers if the monitoring differs at each transect depending on the local temperature or climate zone. In that case, it might be easier to have transects that need to be walked weekly on the warmest day or even on a fixed day.</p>
<p>The Warmest of 7d scenario is simulated with the simplifications of a perfect weather forecast (i.e. the warmest evening is known at the beginning of the week) and so, in reality, the power might decrease slightly due to an imperfect weather forecast. However, as the power of the Weekly scenario is quite similar, this effect is expected to be limited. For more southern locations, this effect might be even smaller as days with unsuitable weather become rare.</p>
<p> An advantage of the Warmest of 7d above the Peak temperature scenario is that the effect of season remains evaluated. By this, changes in seasonality can also be detected. For example, climate change is expected to negatively affect the activity period ( <xref ref-type="bibr" rid="B40">Rink and Sinsch 2011</xref> ) which might not be detected with a Peak temperature scenario. Furthermore, data sampled in other periods (due to different monitoring strategies) or additional transect walks can still be included in the analysis as season and temperature remain in the validation model. This is not possible for the Peak temperature scenario where season and temperature are left out of the validation model and consequently balanced data is needed, thus making this scenario less robust (cfr. <xref ref-type="bibr" rid="B42">Schmucki et al. 2016</xref> ). </p>
<p>Daily sampling clearly results in oversampling of a site in terms of population trend detection and is therefore not advised when trying to optimise the monitoring effort. However, this sampling technique might be very useful when only a limited number of transects is available or to study other population parameters, e.g. gaining insight into the period with peak abundance.</p>
<p> When comparing different options with the same effort, it seems that, in the presented simulation, the number of transects and frequency has little additional impact on the power. Thus, different combinations can be used to bring this monitoring into practice. Due to some simplifications that were included in the simulation, e.g. constant seasonal effects at all locations and equal decline at all sites, it is not advisable to use the lowest sufficient effort calculated but rather select a more robust estimate of the effort needed. Therefore, it is concluded that any combination with the Warmest of 7d scenario and an effort of minimal 240 days per year and between 40 and 100 transects can be used to realise the monitoring of this species to detect the given trend. A higher number of transects only slightly improves the power (cfr. <xref ref-type="bibr" rid="B31">Meyer et al. 2010</xref> ). However, it is also important to take into account the costs for selecting and installing additional transects and finding and training volunteers (cfr. <xref ref-type="bibr" rid="B20">Jones et al. 2015</xref> ; <xref ref-type="bibr" rid="B25">Lang et al. 2016</xref> ; <xref ref-type="bibr" rid="B54">Williams and Thomas 2009</xref> ). Therefore, it might be more realistic to realise only 40 transects with 6 days of monitoring per year and transect than 80 transects with 3 days per year and transect. </p>
<p> When comparing our results with other studies, it is concluded that the effort needed to monitor this elusive stag beetle (240 surveys/y) is not higher than for other invertebrates. <xref ref-type="bibr" rid="B4">Bried and Pellet (2012)</xref> concluded that the minimum allowable effort for occupancy monitoring of the Karner blue butterfly was 360 (40 sites x 9 surveys) for the spring generation and 200 (20 sites x 10 surveys) for the summer generation. <xref ref-type="bibr" rid="B22">Keizer-Vlek et al. (2012)</xref> found that more than 1000 sites must be sampled to detect a 40% change in the frequency for monitoring rare river inhabiting macroinvertebrates (50 sites for common species). <xref ref-type="bibr" rid="B25">Lang et al. (2016)</xref> found the need for about 600 to 2200 transect and four survey events to detect a population decline of frequent and rare butterflies respectively. However, as the scales, methods and detection thresholds differ, a one to one comparison is not possible. </p>
<p> Based on the current study, it is assumed that many other elusive species with similar life history traits can likely be monitored with a similar magnitude of effort. Many other stag beetles species share the short activity period, crepuscular activity and temperature dependence (e.g. <xref ref-type="bibr" rid="B41">Roets et al. 2013</xref> ) and thus it is likely that comparable efforts are needed to study them. Other saproxylic beetles, like <italic>Rosalia alpina</italic> , <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Morimus">Morimus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="asper">asper</tp:taxon-name-part> </tp:taxon-name> </italic> or <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus" reg="Cerambyx">Cerambyx</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species" reg="cerdo">cerdo</tp:taxon-name-part> </tp:taxon-name> </italic> (all European Habitats Directive species), also share these life history traits despite being mainly monitored by trapping (respectively <xref ref-type="bibr" rid="B3">Bosso et al. 2013</xref> ; <xref ref-type="bibr" rid="B5">Buse et al. 2008</xref> ; <xref ref-type="bibr" rid="B51">Vrezec et al. 2012</xref> b) and consequently might need efforts of comparable magnitude. </p>
<p> It is concluded that it is possible to monitor a rather small population density decline of 1% per year for the elusive stag beetle with a moderate monitoring cost of 240 transect walks per year. Based on this example, it is assumed that many other elusive species with similar life history traits can be monitored with moderate efforts. This finding is especially important as saproxylic insects represent a large share of the total forest biodiversity (e.g. <xref ref-type="bibr" rid="B32">Müller et al. 2008</xref> , <xref ref-type="bibr" rid="B19">Horak et al. 2012</xref> ) although many are elusive. Based on the current finding, we propose that at least some flagship species of this group are included in species monitoring programmes as their monitoring seems feasible. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. Thanks to two anonymous reviewers for improving an earlier version of this paper.</p>
<p>Special issue published with the contribution of the LIFE financial instrument of the European Union.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Bart</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Burnham</surname> <given-names>KP</given-names> </name> <name name-style="western"> <surname>Dunn</surname> <given-names>EH</given-names> </name> <name name-style="western"> <surname>Francis</surname> <given-names>CM</given-names> </name> <name name-style="western"> <surname>Ralph</surname> <given-names>CJ</given-names> </name> </person-group> ( <year>2004</year> ) Goals and strategies for estimating trends in landbird abundance. Journal of Wildlife Management 68: 611–626. <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.2193/0022-541X(2004)068[0611:GASFET]2.0.CO;2">https://doi.org/10.2193/0022-541X(2004)068[0611:GASFET]2.0.CO;2</ext-link> </mixed-citation>
</ref>
<ref id="B2">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Bates</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Maechler</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Bolker</surname> <given-names>B</given-names> </name> <name name-style="western"> <surname>Walker</surname> <given-names>S</given-names> </name> </person-group> ( <year>2014</year> ) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="http://CRAN.R-project.org/package=lme4">http://CRAN.R-project.org/package=lme4</ext-link> . </mixed-citation>
</ref>
<ref id="B3">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Bosso</surname> <given-names>L</given-names> </name> <name name-style="western"> <surname>Rebelo</surname> <given-names>H</given-names> </name> <name name-style="western"> <surname>Garonna</surname> <given-names>AP</given-names> </name> <name name-style="western"> <surname>Russo</surname> <given-names>D</given-names> </name> </person-group> ( <year>2013</year> ) <article-title> Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle <italic>Rosalia alpina</italic> . </article-title> <source>Journal for nature conservation</source> <volume>21</volume> : <fpage>72</fpage> – <lpage>80</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.jnc.2012.10.003">https://doi.org/10.1016/j.jnc.2012.10.003</ext-link> </mixed-citation>
</ref>
<ref id="B4">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Bried</surname> <given-names>JT</given-names> </name> <name name-style="western"> <surname>Pellet</surname> <given-names>J</given-names> </name> </person-group> ( <year>2012</year> ) <article-title>Optimal design of butterfly occupancy surveys and testing if occupancy converts to abundance for sparse populations.</article-title> <source>Journal of Insect Conservation</source> <volume>16</volume> : <fpage>489</fpage> – <lpage>499</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/s10841-011-9435-2">https://doi.org/10.1007/s10841-011-9435-2</ext-link> </mixed-citation>
</ref>
<ref id="B5">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Buse</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Ranius</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Assmann</surname> <given-names>T</given-names> </name> </person-group> ( <year>2008</year> ) <article-title>An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer.</article-title> <source>Conservation Biology</source> <volume>22</volume> : <fpage>329</fpage> – <lpage>337</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1523-1739.2007.00880.x">https://doi.org/10.1111/j.1523-1739.2007.00880.x</ext-link> </mixed-citation>
</ref>
<ref id="B6">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Campanaro</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Toni</surname> <given-names>I</given-names> </name> <name name-style="western"> <surname>Hardersen</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Grasso</surname> <given-names>DA</given-names> </name> </person-group> ( <year>2011</year> ) <article-title> Monitoring of <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> by means of remains of predation ( <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Coleoptera</tp:taxon-name-part> </tp:taxon-name> : <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="family">Lucanidae</tp:taxon-name-part> </tp:taxon-name> ). </article-title> <source>Entomologia Generalis</source> <volume>33</volume> : <fpage>79</fpage> – <lpage>89</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1127/entom.gen/33/2011/79">https://doi.org/10.1127/entom.gen/33/2011/79</ext-link> </mixed-citation>
</ref>
<ref id="B7">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Campanaro</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Zapponi</surname> <given-names>L</given-names> </name> <name name-style="western"> <surname>Hardersen</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Méndez</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Al</surname> <given-names>Fulaij N</given-names> </name> <name name-style="western"> <surname>Audisio</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Bardiani</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Carpaneto</surname> <given-names>GM</given-names> </name> <name name-style="western"> <surname>Corezzola</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Della</surname> <given-names>Rocca F</given-names> </name> <name name-style="western"> <surname>Harvey</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Hawes</surname> <given-names>C</given-names> </name> <name name-style="western"> <surname>Johnson</surname> <given-names>H</given-names> </name> <name name-style="western"> <surname>Kadej</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Karg</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Rink</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Smolis</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Sprecher</surname> <given-names>E</given-names> </name> <name name-style="western"> <surname>Thomaes</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Toni</surname> <given-names>I</given-names> </name> <name name-style="western"> <surname>Vrezec</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Zauli</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Zilioli</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Chiari</surname> <given-names>S</given-names> </name> </person-group> ( <year>2016</year> ) <article-title>A European monitoring protocol for the stag beetle a saproxylic flagship species.</article-title> <source>Insect Conservation and Diversity</source> <volume>9</volume> : <fpage>574</fpage> – <lpage>584</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/icad.12194">https://doi.org/10.1111/icad.12194</ext-link> </mixed-citation>
</ref>
<ref id="B8">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Cardoso</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Erwin</surname> <given-names>TL</given-names> </name> <name name-style="western"> <surname>Borges</surname> <given-names>PAV</given-names> </name> <name name-style="western"> <surname>New</surname> <given-names>TR</given-names> </name> </person-group> ( <year>2011</year> ) <article-title>The seven impediments in invertebrate conservation and how to overcome them.</article-title> <source>Biological Conservation</source> <volume>144</volume> : <fpage>2647</fpage> – <lpage>2655</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2011.07.024">https://doi.org/10.1016/j.biocon.2011.07.024</ext-link> </mixed-citation>
</ref>
<ref id="B9">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Chiari</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Zauli</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Audisio</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Campanaro</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Donzelli</surname> <given-names>PF</given-names> </name> <name name-style="western"> <surname>Romiti</surname> <given-names>F</given-names> </name> <name name-style="western"> <surname>Svensson</surname> <given-names>GP</given-names> </name> <name name-style="western"> <surname>Tini</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Carpaneto</surname> <given-names>GM</given-names> </name> </person-group> ( <year>2014</year> ) <article-title> Monitoring presence abundance and survival probability of the stag beetle <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> using visual and odour-based capture methods: implications for conservation. </article-title> <source>Journal of Insect Conservation</source> <volume>18</volume> : <fpage>99</fpage> – <lpage>109</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/s10841-014-9618-8">https://doi.org/10.1007/s10841-014-9618-8</ext-link> </mixed-citation>
</ref>
<ref id="B10">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Clark</surname> <given-names>JA</given-names> </name> <name name-style="western"> <surname>May</surname> <given-names>RM</given-names> </name> </person-group> ( <year>2002</year> ) <article-title>Taxonomic bias in conservation research.</article-title> <source>Science</source> <volume>297</volume> : <fpage>191</fpage> – <lpage>192</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1126/science.297.5579.191b">https://doi.org/10.1126/science.297.5579.191b</ext-link> </mixed-citation>
</ref>
<ref id="B11">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>D’Amen</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Bombi</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Campanaro</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Zapponi</surname> <given-names>L</given-names> </name> <name name-style="western"> <surname>Bologna</surname> <given-names>MA</given-names> </name> <name name-style="western"> <surname>Mason</surname> <given-names>F</given-names> </name> </person-group> ( <year>2013</year> ) <article-title>Protected areas and insect conservation: questioning the effectiveness of Natura 2000 network for saproxylic beetles in Italy.</article-title> <source>Animal Conservation</source> <volume>16</volume> : <fpage>370</fpage> – <lpage>378</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/acv.12016">https://doi.org/10.1111/acv.12016</ext-link> </mixed-citation>
</ref>
<ref id="B12">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Di Stefano</surname> <given-names>J</given-names> </name> </person-group> ( <year>2003</year> ) <article-title>How much power is enough? Against the development of an arbitrary convention for statistical power calculations.</article-title> <source>Functional Ecology</source> <volume>17</volume> : <fpage>707</fpage> – <lpage>709</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1046/j.1365-2435.2003.00782.x">https://doi.org/10.1046/j.1365-2435.2003.00782.x</ext-link> </mixed-citation>
</ref>
<ref id="B13">
<mixed-citation xlink:type="simple">
<institution>European Topic Centre on Biological Diversity</institution> ( <year>2011</year> ) Assessment and reporting under Article 17 of the Habitats Directive Explanatory Notes Guidelines for the period 2007–2012. Brussels: European Topic Centre on Biological Diversity. <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="https://goo.gl/Vb8ndY">https://goo.gl/Vb8ndY</ext-link> </mixed-citation>
</ref>
<ref id="B14">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Franklin</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Regan</surname> <given-names>HM</given-names> </name> <name name-style="western"> <surname>Hierl</surname> <given-names>LA</given-names> </name> <name name-style="western"> <surname>Deutschman</surname> <given-names>DH</given-names> </name> <name name-style="western"> <surname>Johnson</surname> <given-names>BS</given-names> </name> <name name-style="western"> <surname>Winchell</surname> <given-names>CS</given-names> </name> </person-group> ( <year>2011</year> ) <article-title>Planning implementing and monitoring multiple-species habitat conservation plans.</article-title> <source>American Journal of Botany</source> <volume>98</volume> : <fpage>559</fpage> – <lpage>571</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.3732/ajb.1000292">https://doi.org/10.3732/ajb.1000292</ext-link> </mixed-citation>
</ref>
<ref id="B15">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Fremlin</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Fremlin</surname> <given-names>D</given-names> </name> </person-group> ( <year>2010</year> ) <article-title> Weather-dependence of <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> L. ( <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Coleoptera</tp:taxon-name-part> </tp:taxon-name> : <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="superfamily">Scarabaeoidea</tp:taxon-name-part> </tp:taxon-name> : <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="family">Lucanidae</tp:taxon-name-part> </tp:taxon-name> ) activity in a Colchester urban area. </article-title> <source>Essex Naturalist (New Series)</source> <volume>27</volume> : <fpage>214</fpage> – <lpage>230</lpage> . </mixed-citation>
</ref>
<ref id="B16">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Harvey</surname> <given-names>DJ</given-names> </name> <name name-style="western"> <surname>Gange</surname> <given-names>AC</given-names> </name> <name name-style="western"> <surname>Hawes</surname> <given-names>CJ</given-names> </name> <name name-style="western"> <surname>Rink</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Abdehalden</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Al</surname> <given-names>Fulaij N</given-names> </name> <name name-style="western"> <surname>Asp</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Ballerio</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Bartolozzi</surname> <given-names>L</given-names> </name> <name name-style="western"> <surname>Brustel</surname> <given-names>H</given-names> </name> <name name-style="western"> <surname>Cammaerts</surname> <given-names>R</given-names> </name> <name name-style="western"> <surname>Carpaneto</surname> <given-names>GM</given-names> </name> <name name-style="western"> <surname>Cederberg</surname> <given-names>B</given-names> </name> <name name-style="western"> <surname>Chobot</surname> <given-names>K</given-names> </name> <name name-style="western"> <surname>Cianferoni</surname> <given-names>F</given-names> </name> <name name-style="western"> <surname>Drumont</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Ellwanger</surname> <given-names>G</given-names> </name> <name name-style="western"> <surname>Ferreira</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Grosso-Silva</surname> <given-names>JM</given-names> </name> <name name-style="western"> <surname>Gueorguiev</surname> <given-names>B</given-names> </name> <name name-style="western"> <surname>Harvey</surname> <given-names>W</given-names> </name> <name name-style="western"> <surname>Hendriks</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Istrate</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Jansson</surname> <given-names>N</given-names> </name> <name name-style="western"> <surname>Jelaska</surname> <given-names>LS</given-names> </name> <name name-style="western"> <surname>Jendek</surname> <given-names>E</given-names> </name> <name name-style="western"> <surname>Jovic</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Kervyn</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Krenn</surname> <given-names>HW</given-names> </name> <name name-style="western"> <surname>Kretschmer</surname> <given-names>K</given-names> </name> <name name-style="western"> <surname>Legakis</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Lelo</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Moretti</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Merkl</surname> <given-names>O</given-names> </name> <name name-style="western"> <surname>Palma</surname> <given-names>RM</given-names> </name> <name name-style="western"> <surname>Neculiseanu</surname> <given-names>Z</given-names> </name> <name name-style="western"> <surname>Rabitsch</surname> <given-names>W</given-names> </name> <name name-style="western"> <surname>Rodriguez</surname> <given-names>SM</given-names> </name> <name name-style="western"> <surname>Smit</surname> <given-names>JT</given-names> </name> <name name-style="western"> <surname>Smith</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Sprecher-Uebersax</surname> <given-names>E</given-names> </name> <name name-style="western"> <surname>Telnov</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Thomaes</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Thomsen</surname> <given-names>PF</given-names> </name> <name name-style="western"> <surname>Tykarski</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Vrezec</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Werner</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Zach</surname> <given-names>P</given-names> </name> </person-group> ( <year>2011a</year> ) <article-title> Bionomics and distribution of the stag beetle <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> (L.) across Europe. </article-title> <source>Insect Conservation and Diversity</source> <volume>4</volume> : <fpage>23</fpage> – <lpage>38</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1752-4598.2010.00107.x">https://doi.org/10.1111/j.1752-4598.2010.00107.x</ext-link> </mixed-citation>
</ref>
<ref id="B17">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Harvey</surname> <given-names>DJ</given-names> </name> <name name-style="western"> <surname>Hawes</surname> <given-names>CJ</given-names> </name> <name name-style="western"> <surname>Gange</surname> <given-names>AC</given-names> </name> <name name-style="western"> <surname>Finch</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Chesmore</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Farr</surname> <given-names>I</given-names> </name> </person-group> ( <year>2011b</year> ) <article-title> Development of non-invasive monitoring methods for larvae and adults of the stag beetle <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> . </article-title> <source>Insect Conservation and Diversity</source> <volume>4</volume> : <fpage>4</fpage> – <lpage>14</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1752-4598.2009.00072.x">https://doi.org/10.1111/j.1752-4598.2009.00072.x</ext-link> </mixed-citation>
</ref>
<ref id="B18">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Hawes</surname> <given-names>C</given-names> </name> </person-group> ( <year>2008</year> ) <article-title> Tracking the movements of stag beetles <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> L. ( <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Coleoptera</tp:taxon-name-part> </tp:taxon-name> : <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="family">Lucanidae</tp:taxon-name-part> </tp:taxon-name> ) in the built environment. </article-title> <source>Landscape and Urban Planning</source> <volume>63</volume> : <fpage>131</fpage> – <lpage>138</lpage> . </mixed-citation>
</ref>
<ref id="B19">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Horak</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Chobot</surname> <given-names>K</given-names> </name> <name name-style="western"> <surname>Horakova</surname> <given-names>J</given-names> </name> </person-group> ( <year>2012</year> ) <article-title>Hanging on by the tips of the tarsi: A review of the plight of the critically endangered saproxylic beetle in European forests.</article-title> <source>Journal for nature conservation</source> <volume>20</volume> : <fpage>101</fpage> – <lpage>108</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.jnc.2011.09.002">https://doi.org/10.1016/j.jnc.2011.09.002</ext-link> </mixed-citation>
</ref>
<ref id="B20">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Jones</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Davidson</surname> <given-names>RJ</given-names> </name> <name name-style="western"> <surname>Gardner</surname> <given-names>JPA</given-names> </name> <name name-style="western"> <surname>Bell</surname> <given-names>JJ</given-names> </name> </person-group> ( <year>2015</year> ) <article-title>Evaluation and optimisation of underwater visual census monitoring for quantifying change in rocky-reef fish abundance.</article-title> <source>Biological Conservation</source> <volume>186</volume> : <fpage>326</fpage> – <lpage>336</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2015.03.033">https://doi.org/10.1016/j.biocon.2015.03.033</ext-link> </mixed-citation>
</ref>
<ref id="B21">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Joseph</surname> <given-names>LN</given-names> </name> <name name-style="western"> <surname>Field</surname> <given-names>SA</given-names> </name> <name name-style="western"> <surname>Wilcox</surname> <given-names>C</given-names> </name> <name name-style="western"> <surname>Possingham</surname> <given-names>HP</given-names> </name> </person-group> ( <year>2006</year> ) <article-title>Presence-absence versus abundance data for monitoring threatened species.</article-title> <source>Conservation Biology</source> <volume>20</volume> : <fpage>1679</fpage> – <lpage>1687</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1523-1739.2006.00529.x">https://doi.org/10.1111/j.1523-1739.2006.00529.x</ext-link> </mixed-citation>
</ref>
<ref id="B22">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Keizer-Vlek</surname> <given-names>HE</given-names> </name> <name name-style="western"> <surname>Verdonschot</surname> <given-names>PFM</given-names> </name> <name name-style="western"> <surname>Verdonschot</surname> <given-names>RCM</given-names> </name> <name name-style="western"> <surname>Goedhart</surname> <given-names>PW</given-names> </name> </person-group> ( <year>2012</year> ) <article-title>Quantifying spatial and temporal variability of macroinvertebrate metrics.</article-title> <source>Ecological Indicators</source> <volume>23</volume> : <fpage>384</fpage> – <lpage>393</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.ecolind.2012.04.025">https://doi.org/10.1016/j.ecolind.2012.04.025</ext-link> </mixed-citation>
</ref>
<ref id="B23">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>La Morgia</surname> <given-names>V</given-names> </name> <name name-style="western"> <surname>Calmanti</surname> <given-names>R</given-names> </name> <name name-style="western"> <surname>Calabrese</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Focardi</surname> <given-names>S</given-names> </name> </person-group> ( <year>2015</year> ) <article-title>Cost-effective nocturnal distance sampling for landscape monitoring of ungulate populations.</article-title> <source>European Journal of Wildlife Research</source> <volume>61</volume> : <fpage>285</fpage> – <lpage>298</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/s10344-014-0898-9">https://doi.org/10.1007/s10344-014-0898-9</ext-link> </mixed-citation>
</ref>
<ref id="B24">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>LaCommare</surname> <given-names>KS</given-names> </name> <name name-style="western"> <surname>Brault</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Self-Sullivan</surname> <given-names>C</given-names> </name> <name name-style="western"> <surname>Hines</surname> <given-names>EM</given-names> </name> </person-group> ( <year>2012</year> ) <article-title>Trend detection in a boat-based method for monitoring sirenians: Antillean manatee case study.</article-title> <source>Biological Conservation</source> <volume>152</volume> : <fpage>169</fpage> – <lpage>177</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2012.02.021">https://doi.org/10.1016/j.biocon.2012.02.021</ext-link> </mixed-citation>
</ref>
<ref id="B25">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Lang</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Buehler</surname> <given-names>C</given-names> </name> <name name-style="western"> <surname>Dolek</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Roth</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Züghart</surname> <given-names>W</given-names> </name> </person-group> ( <year>2016</year> ) <article-title> Estimating sampling efficiency of diurnal <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Lepidoptera</tp:taxon-name-part> </tp:taxon-name> in farmland. </article-title> <source>Journal of Insect Conservation</source> <volume>20</volume> : <fpage>35</fpage> – <lpage>48</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/s10841-015-9837-7">https://doi.org/10.1007/s10841-015-9837-7</ext-link> </mixed-citation>
</ref>
<ref id="B26">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Leather</surname> <given-names>SR</given-names> </name> </person-group> ( <year>2013</year> ) <article-title>Institutional vertebratism hampers insect conservation generally; not just saproxylic beetle conservation.</article-title> <source>Animal Conservation</source> <volume>16</volume> : <fpage>379</fpage> – <lpage>380</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/acv.12068">https://doi.org/10.1111/acv.12068</ext-link> </mixed-citation>
</ref>
<ref id="B27">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Lindenmayer</surname> <given-names>DB</given-names> </name> <name name-style="western"> <surname>Likens</surname> <given-names>GE</given-names> </name> </person-group> ( <year>2010</year> ) <article-title>The science and application of ecological monitoring.</article-title> <source>Biological Conservation</source> <volume>143</volume> : <fpage>1317</fpage> – <lpage>1328</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2010.02.013">https://doi.org/10.1016/j.biocon.2010.02.013</ext-link> </mixed-citation>
</ref>
<ref id="B28">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Luce</surname> <given-names>JM</given-names> </name> </person-group> ( <year>1996</year> ) <article-title> <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> (Linnaeus 1758). </article-title> In: <person-group> <name name-style="western"> <surname>van Helsdingen</surname> <given-names>PJW</given-names> </name> <name name-style="western"> <surname>Willemse</surname> <given-names>L</given-names> </name> <name name-style="western"> <surname>Speight</surname> <given-names>MCD</given-names> </name> </person-group> ( <role>Eds</role> ) <issue-title>Background information on invertebrates of the Habitats Directive and the Bern Convention.</issue-title> <source> Part I: <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="subphylum">Crustacea</tp:taxon-name-part> </tp:taxon-name> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Coleoptera</tp:taxon-name-part> </tp:taxon-name> and <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Lepidoptera</tp:taxon-name-part> </tp:taxon-name> . Council of Europe, Strasbourg </source> , <fpage>53</fpage> – <lpage>58</lpage> . </mixed-citation>
</ref>
<ref id="B29">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Mader</surname> <given-names>D</given-names> </name> </person-group> ( <year>2009</year> ) Populationsdynamik ökologie und schutz des hirschkäfers ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ) im Raum um Heidelberg und Mannheim. Verlag regionalkultur, Ubstadt-Weiher, 1–418. </mixed-citation>
</ref>
<ref id="B30">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Mader</surname> <given-names>D</given-names> </name> </person-group> ( <year>2013</year> ) Biochronology and selenodynamics of moselle apollo stag beetle and other insects in 2013 in comparison with earlier years. Documenta naturae Sonderband, München, 1–656. </mixed-citation>
</ref>
<ref id="B31">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Meyer</surname> <given-names>CFJ</given-names> </name> <name name-style="western"> <surname>Aguiar</surname> <given-names>LMS</given-names> </name> <name name-style="western"> <surname>Aguirre</surname> <given-names>LF</given-names> </name> <name name-style="western"> <surname>Baumgarten</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Clarke</surname> <given-names>FM</given-names> </name> <name name-style="western"> <surname>Cosson</surname> <given-names>J-F</given-names> </name> <name name-style="western"> <surname>Villegas</surname> <given-names>SE</given-names> </name> <name name-style="western"> <surname>Fahr</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Faria</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Furey</surname> <given-names>N</given-names> </name> <name name-style="western"> <surname>Henry</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Hodgkison</surname> <given-names>R</given-names> </name> <name name-style="western"> <surname>Jenkins</surname> <given-names>RKB</given-names> </name> <name name-style="western"> <surname>Jung</surname> <given-names>KG</given-names> </name> <name name-style="western"> <surname>Kingston</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Kunz</surname> <given-names>TH</given-names> </name> <name name-style="western"> <surname>Cristina</surname> <given-names>MacSwiney G M</given-names> </name> <name name-style="western"> <surname>Moya</surname> <given-names>I</given-names> </name> <name name-style="western"> <surname>Pons</surname> <given-names>J-M</given-names> </name> <name name-style="western"> <surname>Racey</surname> <given-names>PA</given-names> </name> <name name-style="western"> <surname>Rex</surname> <given-names>K</given-names> </name> <name name-style="western"> <surname>Sampaio</surname> <given-names>EM</given-names> </name> <name name-style="western"> <surname>Stoner</surname> <given-names>KE</given-names> </name> <name name-style="western"> <surname>Voigt</surname> <given-names>CC</given-names> </name> <name name-style="western"> <surname>von Staden</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Weise</surname> <given-names>CD</given-names> </name> <name name-style="western"> <surname>Kalko</surname> <given-names>EKV</given-names> </name> </person-group> ( <year>2010</year> ) <article-title>Long-term monitoring of tropical bats for anthropogenic impact assessment: Gauging the statistical power to detect population change.</article-title> <source>Biological Conservation</source> <volume>143</volume> : <fpage>2797</fpage> – <lpage>2807</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2010.07.029">https://doi.org/10.1016/j.biocon.2010.07.029</ext-link> </mixed-citation>
</ref>
<ref id="B32">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Müller</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Bubler</surname> <given-names>H</given-names> </name> <name name-style="western"> <surname>Kneib</surname> <given-names>T</given-names> </name> </person-group> ( <year>2008</year> ) <article-title>Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany.</article-title> <source>Journal of Insect Conservation</source> <volume>12</volume> : <fpage>107</fpage> – <lpage>124</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/s10841-006-9065-2">https://doi.org/10.1007/s10841-006-9065-2</ext-link> </mixed-citation>
</ref>
<ref id="B33">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Pais</surname> <given-names>MP</given-names> </name> <name name-style="western"> <surname>Henriques</surname> <given-names>S</given-names> </name> <name name-style="western"> <surname>Costa</surname> <given-names>MJ</given-names> </name> <name name-style="western"> <surname>Cabral</surname> <given-names>HN</given-names> </name> </person-group> ( <year>2014</year> ) <article-title>Topographic complexity and the power to detect structural and functional changes in temperate reef fish assemblages: The need for habitat-independent sample sizes.</article-title> <source>Ecological Indicators</source> <volume>45</volume> : <fpage>18</fpage> – <lpage>27</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.ecolind.2014.03.018">https://doi.org/10.1016/j.ecolind.2014.03.018</ext-link> </mixed-citation>
</ref>
<ref id="B34">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Pollock</surname> <given-names>KH</given-names> </name> <name name-style="western"> <surname>Nichols</surname> <given-names>JD</given-names> </name> <name name-style="western"> <surname>Simons</surname> <given-names>TR</given-names> </name> <name name-style="western"> <surname>Farnsworth</surname> <given-names>GL</given-names> </name> <name name-style="western"> <surname>Bailey</surname> <given-names>LL</given-names> </name> <name name-style="western"> <surname>Sauer</surname> <given-names>JR</given-names> </name> </person-group> ( <year>2002</year> ) <article-title>Large – scale wildlife monitoring studies: statistical methods for design and analysis.</article-title> <source>Environmetrics</source> <volume>13</volume> : <fpage>105</fpage> – <lpage>119</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1002/env.514">https://doi.org/10.1002/env.514</ext-link> </mixed-citation>
</ref>
<ref id="B35">
<mixed-citation xlink:type="simple">
<institution>R Core Team</institution> ( <year>2015</year> ) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="http://www.r-project.org">www.r-project.org</ext-link> </mixed-citation>
</ref>
<ref id="B36">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Regan</surname> <given-names>HM</given-names> </name> <name name-style="western"> <surname>Hierl</surname> <given-names>LA</given-names> </name> <name name-style="western"> <surname>Franklin</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Deutschman</surname> <given-names>DH</given-names> </name> <name name-style="western"> <surname>Schmalbach</surname> <given-names>HL</given-names> </name> <name name-style="western"> <surname>Winchell</surname> <given-names>CS</given-names> </name> <name name-style="western"> <surname>Johnson</surname> <given-names>BS</given-names> </name> </person-group> ( <year>2008</year> ) <article-title>Species prioritization for monitoring and management in regional multiple species conservation plans.</article-title> <source>Diversity and Distributions</source> <volume>14</volume> : <fpage>462</fpage> – <lpage>471</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1472-4642.2007.00447.x">https://doi.org/10.1111/j.1472-4642.2007.00447.x</ext-link> </mixed-citation>
</ref>
<ref id="B37">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Reynolds</surname> <given-names>JH</given-names> </name> <name name-style="western"> <surname>Thompson</surname> <given-names>WL</given-names> </name> <name name-style="western"> <surname>Russell</surname> <given-names>B</given-names> </name> </person-group> ( <year>2011</year> ) <article-title>Planning for success: Identifying effective and efficient survey designs for monitoring.</article-title> <source>Biological Conservation</source> <volume>144</volume> : <fpage>1278</fpage> – <lpage>1284</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2010.12.002">https://doi.org/10.1016/j.biocon.2010.12.002</ext-link> </mixed-citation>
</ref>
<ref id="B38">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Rink</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Sinsch</surname> <given-names>U</given-names> </name> </person-group> ( <year>2007</year> ) <article-title>Radio-telemetric monitoring of dispersing Stag Beetles: implications for conservation.</article-title> <source>Journal of Zoology</source> <volume>272</volume> : <fpage>235</fpage> – <lpage>243</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1469-7998.2006.00282.x">https://doi.org/10.1111/j.1469-7998.2006.00282.x</ext-link> </mixed-citation>
</ref>
<ref id="B39">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Rink</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Sinsch</surname> <given-names>U</given-names> </name> </person-group> ( <year>2008</year> ) <article-title> Bruthabitat und Larvalentwicklung des Hirschkäfers ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ). </article-title> <source>Entomologische Zeitschrift</source> <volume>118</volume> : <fpage>229</fpage> – <lpage>236</lpage> . </mixed-citation>
</ref>
<ref id="B40">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Rink</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Sinsch</surname> <given-names>U</given-names> </name> </person-group> ( <year>2011</year> ) <article-title> Warm summers negatively affect duration of activity period and condition of adult stag beetles ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ). </article-title> <source>Insect Conservation and Diversity</source> <volume>4</volume> : <fpage>15</fpage> – <lpage>22</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1752-4598.2009.00073.x">https://doi.org/10.1111/j.1752-4598.2009.00073.x</ext-link> </mixed-citation>
</ref>
<ref id="B41">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Roets</surname> <given-names>F</given-names> </name> <name name-style="western"> <surname>Pryke</surname> <given-names>JS</given-names> </name> <name name-style="western"> <surname>McGeoch</surname> <given-names>MA</given-names> </name> </person-group> ( <year>2013</year> ) <article-title> Abiotic variables dictate the best monitoring times for the endangered Table Mountain stag beetle ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Colophon</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">westwoodi</tp:taxon-name-part> </tp:taxon-name> </italic> Gray 1832 <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Coleoptera</tp:taxon-name-part> </tp:taxon-name> : <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="family">Lucanidae</tp:taxon-name-part> </tp:taxon-name> ). </article-title> <source>Journal of Insect Conservation</source> <volume>17</volume> : <fpage>279</fpage> – <lpage>285</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/s10841-012-9507-y">https://doi.org/10.1007/s10841-012-9507-y</ext-link> </mixed-citation>
</ref>
<ref id="B42">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Schmucki</surname> <given-names>R</given-names> </name> <name name-style="western"> <surname>Pe’er</surname> <given-names>G</given-names> </name> <name name-style="western"> <surname>Roy</surname> <given-names>DB</given-names> </name> <name name-style="western"> <surname>Stefanescu</surname> <given-names>C</given-names> </name> <name name-style="western"> <surname>Van Swaay</surname> <given-names>CAM</given-names> </name> <name name-style="western"> <surname>Oliver</surname> <given-names>TH</given-names> </name> <name name-style="western"> <surname>Kuussaari</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Van Strien</surname> <given-names>AJ</given-names> </name> <name name-style="western"> <surname>Ries</surname> <given-names>L</given-names> </name> <name name-style="western"> <surname>Settele</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Musche</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Carnicer</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Schweiger</surname> <given-names>O</given-names> </name> <name name-style="western"> <surname>Brereton</surname> <given-names>TM</given-names> </name> <name name-style="western"> <surname>Harpke</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Heliola</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Kuehn</surname> <given-names>E</given-names> </name> <name name-style="western"> <surname>Julliard</surname> <given-names>R</given-names> </name> </person-group> ( <year>2016</year> ) <article-title>A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes.</article-title> <source>Journal of Applied Ecology</source> <volume>53</volume> : <fpage>501</fpage> – <lpage>510</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/1365-2664.12561">https://doi.org/10.1111/1365-2664.12561</ext-link> </mixed-citation>
</ref>
<ref id="B43">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Shea</surname> <given-names>K</given-names> </name> <name name-style="western"> <surname>Wolf</surname> <given-names>N</given-names> </name> <name name-style="western"> <surname>Mangel</surname> <given-names>M</given-names> </name> </person-group> ( <year>2006</year> ) <article-title>Influence of density dependence on the detection of trends in unobserved life-history stages.</article-title> <source>Journal of Zoology</source> <volume>269</volume> : <fpage>442</fpage> – <lpage>450</lpage> . </mixed-citation>
</ref>
<ref id="B44">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Smit</surname> <given-names>JT</given-names> </name> <name name-style="western"> <surname>Krekels</surname> <given-names>RFM</given-names> </name> </person-group> ( <year>2008</year> ) Vliegend hert in Mander: Beheerplan 2009–2013 [Stag beetle in Mander: management plan 2009–2013]. EIS Nederland and Bureau Natuurbalans - Limes Divergens. Leiden – Nijmegen, 1–103. </mixed-citation>
</ref>
<ref id="B45">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Sprecher-Uebersax</surname> <given-names>E</given-names> </name> </person-group> ( <year>2001</year> ) Studien zur biologie und phänologie des hirschkäfers im raum Basel: mit empfehlungen von schutzmassnahmen zur erhaltung und förderung des bestandes in der region ( <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="order">Coleoptera</tp:taxon-name-part> </tp:taxon-name> : <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="family">Lucanidae</tp:taxon-name-part> </tp:taxon-name> <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> L.). PHD Thesis. Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel (Basel). </mixed-citation>
</ref>
<ref id="B46">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Steenweg</surname> <given-names>R</given-names> </name> <name name-style="western"> <surname>Whittington</surname> <given-names>J</given-names> </name> <name name-style="western"> <surname>Hebblewhite</surname> <given-names>M</given-names> </name> <name name-style="western"> <surname>Forshner</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Johnston</surname> <given-names>B</given-names> </name> <name name-style="western"> <surname>Petersen</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Shepherd</surname> <given-names>B</given-names> </name> <name name-style="western"> <surname>Lukacs</surname> <given-names>PM</given-names> </name> </person-group> ( <year>2016</year> ) <article-title>Camera-based occupancy monitoring at large scales: Power to detect trends in grizzly bears across the Canadian Rockies.</article-title> <source>Biological Conservation</source> <volume>201</volume> : <fpage>192</fpage> – <lpage>200</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2016.06.020">https://doi.org/10.1016/j.biocon.2016.06.020</ext-link> </mixed-citation>
</ref>
<ref id="B47">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Steidl</surname> <given-names>RJ</given-names> </name> <name name-style="western"> <surname>Hayes</surname> <given-names>JP</given-names> </name> <name name-style="western"> <surname>Schauber</surname> <given-names>E</given-names> </name> </person-group> ( <year>1997</year> ) <article-title>Statistical power analysis in wildlife research.</article-title> <source>Journal of Wildlife Management</source> <volume>61</volume> : <fpage>270</fpage> – <lpage>279</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.2307/3802582">https://doi.org/10.2307/3802582</ext-link> </mixed-citation>
</ref>
<ref id="B48">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Thomaes</surname> <given-names>A</given-names> </name> </person-group> ( <year>2014</year> ) <article-title>Blauwdruk kevers [Blue print beetles].</article-title> In: <person-group> <name name-style="western"> <surname>De Knijf</surname> <given-names>G</given-names> </name> <name name-style="western"> <surname>Westra</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Onkelinx</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Quataert</surname> <given-names>P</given-names> </name> <name name-style="western"> <surname>Pollet</surname> <given-names>M</given-names> </name> </person-group> ( <role>Eds</role> ) <issue-title>Monitoring Natura 2000-soorten en overige soorten prioritair voor het Vlaams beleid: blauwdrukken soortenmonitoring in Vlaanderen [Monitoring Natura 2000 species and other Flemish priority species: blue print for the species monitoring in Flanders].</issue-title> <source>Instituut voor Natuur- en Bosonderzoek, Brussels</source> , <fpage>47</fpage> – <lpage>58</lpage> . </mixed-citation>
</ref>
<ref id="B49">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Thomaes</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Kervyn</surname> <given-names>T</given-names> </name> <name name-style="western"> <surname>Maes</surname> <given-names>D</given-names> </name> </person-group> ( <year>2008</year> ) <article-title> Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ). </article-title> <source>Biological Conservation</source> <volume>141</volume> : <fpage>1400</fpage> – <lpage>1410</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2008.03.018">https://doi.org/10.1016/j.biocon.2008.03.018</ext-link> </mixed-citation>
</ref>
<ref id="B50">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Thomaes</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Mader</surname> <given-names>D</given-names> </name> <name name-style="western"> <surname>Sprecher-Uebersax</surname> <given-names>E</given-names> </name> <name name-style="western"> <surname>Fremlin</surname> <given-names>M</given-names> </name> </person-group> ( <year>2016</year> ) Stag beetle ( <italic> <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> </italic> ) monitoring data. Mendeley Data v2. <ext-link xlink:type="simple" ext-link-type="uri" xlink:href="https://data.mendeley.com/datasets/nj5w2bkkdc/2">https://data.mendeley.com/datasets/nj5w2bkkdc/2</ext-link> [dataset] </mixed-citation>
</ref>
<ref id="B51">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Vrezec</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Ambrožič</surname> <given-names>Š</given-names> </name> <name name-style="western"> <surname>Kapla</surname> <given-names>A</given-names> </name> </person-group> ( <year>2012</year> ) a Dodatne raziskave kvalifikacijskih vrst Natura 2000 ter izvajanje spremljanja stanja populacij izbranih ciljnih vrst hroščev v letu 2012: <italic> Carabus variolosus <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Lucanus</tp:taxon-name-part> <tp:taxon-name-part taxon-name-part-type="species">cervus</tp:taxon-name-part> </tp:taxon-name> Rosalia alpina <tp:taxon-name> <tp:taxon-name-part taxon-name-part-type="genus">Morimus</tp:taxon-name-part> </tp:taxon-name> funereus Graphoderus bilineatus </italic> . Končnoporočilo – Nacionalni Inštitut Zabiologijo, Ljubljana, 1–84. </mixed-citation>
</ref>
<ref id="B52">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Vrezec</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Ambrožič</surname> <given-names>Š</given-names> </name> <name name-style="western"> <surname>Kapla</surname> <given-names>A</given-names> </name> </person-group> ( <year>2012</year> ) <article-title>b An overview of sampling methods tests for monitoring schemes of saproxylic beetles in the scope of Natura 2000 in Slovenia.</article-title> In: <person-group> <name name-style="western"> <surname>Jurc</surname> <given-names>M</given-names> </name> </person-group> ( <role>Ed.</role> ) <issue-title>Saproxylic beetles in Europe: monitoring biology and conservation, Ljubljana (Slovenia), June 2010.</issue-title> <source>Slovenian Forestry Institute Sliva Slovenica, Ljubljana</source> , <fpage>73</fpage> – <lpage>90</lpage> . </mixed-citation>
</ref>
<ref id="B53">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Wickham</surname> <given-names>H</given-names> </name> </person-group> ( <year>2009</year> ) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, 1–90. <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/978-0-387-98141-3">https://doi.org/10.1007/978-0-387-98141-3</ext-link> </mixed-citation>
</ref>
<ref id="B54">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Williams</surname> <given-names>R</given-names> </name> <name name-style="western"> <surname>Thomas</surname> <given-names>L</given-names> </name> </person-group> ( <year>2009</year> ) <article-title>Cost-effective abundance estimation of rare animals: testing performance of small-boat surveys for killer whales in British Columbia.</article-title> <source>Biological Conservation</source> <volume>142</volume> : <fpage>1542</fpage> – <lpage>1547</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1016/j.biocon.2008.12.028">https://doi.org/10.1016/j.biocon.2008.12.028</ext-link> </mixed-citation>
</ref>
<ref id="B55">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Wood</surname> <given-names>SN</given-names> </name> </person-group> ( <year>2011</year> ) <article-title>Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models.</article-title> <source>Journal of the Royal Statistical Society (B)</source> <volume>73</volume> : <fpage>3</fpage> – <lpage>36</lpage> . <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1111/j.1467-9868.2010.00749.x">https://doi.org/10.1111/j.1467-9868.2010.00749.x</ext-link> </mixed-citation>
</ref>
<ref id="B56">
<mixed-citation xlink:type="simple">
<person-group> <name name-style="western"> <surname>Zuur</surname> <given-names>A</given-names> </name> <name name-style="western"> <surname>Ieno</surname> <given-names>EN</given-names> </name> <name name-style="western"> <surname>Walker</surname> <given-names>N</given-names> </name> <name name-style="western"> <surname>Saveliev</surname> <given-names>AA</given-names> </name> <name name-style="western"> <surname>Smith</surname> <given-names>GM</given-names> </name> </person-group> ( <year>2009</year> ) Mixed Effects Models and Extensions in Ecology with R. Springer-Verlag, New York, 1–468. <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.1007/978-0-387-87458-6">https://doi.org/10.1007/978-0-387-87458-6</ext-link> </mixed-citation>
</ref>
</ref-list>
<sec sec-type="supplementary-material"> <title>Supplementary materials</title> <supplementary-material id="S1" position="float" orientation="portrait" xlink:type="simple">
<label>Supplementary material 1</label>
<caption>
<p>Figures of statistical support</p>
</caption>
<p> Link: <ext-link xlink:type="simple" ext-link-type="doi" xlink:href="10.3897/natureconservation.19.11761.suppl1">https://doi.org/10.3897/natureconservation.19.11761.suppl1</ext-link> </p>
<p>Data type: statistical data</p>
<p>Explanation note: Different figures wich give statistical support to the paper. These figures are refered to within this paper.</p>
<media xlink:href="nature_conservation-19-001-s001.docx" mimetype="application" mime-subtype="vnd.openxmlformats-officedocument.wordprocessingml.document" position="float" orientation="portrait" xlink:type="simple" id="oo_147374.docx"/>
<permissions>
<license xlink:type="simple">
<license-p>This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.</license-p>
</license>
</permissions>
<attrib specific-use="authors">Arno Thomaes, Pieter Verschelde, Detlef Mader, Eva Sprecher-Uebersax, Maria Fremlin, Thierry Onkelinx, Marcos Méndez</attrib>
</supplementary-material> </sec> </back>
</article>