
Acta Futura 11 (2018) 91-97

DOI: 10.5281/zenodo.1139268

Acta
Futura

GTOC 9: Results from the University of Colorado at Boulder

(team CU Boulder)

NATHAN L. PARRISH*, DANIEL J. SCHEERES, SIMON TARDIVEL,

CHANDRAKANTH VENIGALLA, JONATHAN AZIZ, MARIELLE PELLEGRINO,

OSCAR FUENTES, STIJN DE SMET

UNIVERSITY OF COLORADO, COLORADO CENTER FOR ASTRODYNAMICS RESEARCH

ECNT 320, 431 UCB, BOULDER, CO 80309-0431

Abstract. This paper describes the strategies

and results of the GTOC9 competition for the team

from the University of Colorado, Boulder. The

goal of the competition was to remove 123 pieces

of space debris for the lowest cost, with cost de-

fined in Euros as a function of fuel mass, number

of launches, and time into the competition window.

The overall strategy for this team was: 1) Find the

set of all possible low-cost chains of debris to visit,

2) Pick from those to define a series of missions

that visit most of the debris, 3) Stitch the remain-

ing 20-30 debris onto the existing chains, 4) Add

1-4 more launches to reach the 5-10 debris that re-

main after stitching, 5) Adjust the dates of each

mission slightly to minimize ∆V , and 6) Find a

series of four maneuvers to transfer from each de-

bris to the next in the fully-integrated dynamics.

The final solution removed all 123 pieces of debris

with 17 launches for a cost of 1150.8 MEUR.

1 Introduction

The GTOC9 competition defines a set of 123 pieces of

debris that are in approximately sun-synchronous or-

bits, with inclination near 98°and semimajor axis near

*Corresponding author, napa0706@colorado.edu

7,000 km. The motion of spacecraft is defined by

numerically integrating Earth point mass gravity per-

turbed by the J2 effect. The dynamics of debris are

the analytical approximation of J2 dynamics, with the

state at any time given by analytically propagating mean

motion, and constant secular drift rates of Right Ascen-

sion of the Ascending Node (RAAN) and argument of

perigee.

We find that the secular drift of the RAAN due to

Earth’s J2 is a primary driver for solutions. The node

drift rate is given by

Ω̇ = −
3

2
J2

(req
p

)2

n cos i (1)

with semilatus rectum p = a(1− e2) and mean motion

n =
√

µ
a3 . Since the eccentricity of all the debris pieces

is nearly zero, the node drift rate Ω̇ is mostly driven

by inclination and semimajor axis. For initial searches

to find chains of debris that can be efficiently visited

by a single spacecraft, we choose to ignore the drift of

argument of perigee. The small eccentricity means that

the cost of changing argument of perigee with fuel is

very small compared to the cost of changing RAAN.

The goal of the competition is to remove all of the

debris for the minimum cost, where cost in MEUR is

91



Acta Futura 11 (2018) / 91-97 Parrish, N. et al.

FIGURE 1. The synodic periods (in years) of the RAAN of

each debris object relative to all other debris objects. The de-

bris are sorted by inclination from low to high. Debris that

differ significantly in inclination have opportunities for trans-

fers as frequently as every 1-3 years. Debris with very similar

inclinations have synodic periods much longer than the 8 year

time limit for the competition.

given by the sum of each launch:

J =

N
∑

i=1

[

ci + 2× 10−6(m0i −mdry)
2
]

. (2)

The launch vehicle cost ci grew linearly from 45 to

55 MEUR over the contest month. The term (m0i −

mdry)
2 favors lower ∆V per mission. More details on

the competition rules are given in [1].

We found that the greatest constraint on the search

space is on time of flight between debris, as this limits

the feasible transfers to debris with similar RAAN. Fig-

ure 1 shows the synodic periods of the RAAN of all the

debris. Most pairs of debris have long synodic periods

relative to the 8 year time limit of the competition, so

transfers are largely limited to rare natural opportuni-

ties.

2 Analytical ∆V

Our first approach to finding low cost transfers between

debris objects was to look at the natural crossings of

debris RAAN. The RAAN drift rate Ω̇ varies per de-

bris object due to variations in semimajor axis and in-

clination. The differential drift rate between two debris

objects causes natural node crossings, which are oppor-

tunities for low ∆V transfers between the two objects at

a particular time. The initial goal in exploring the prob-

lem was to solely use these natural node crossings to

build all missions. However, it soon became clear that

this approach was too limiting – there are not enough

natural node crossings to solve the problem in a small

number of launches, again due to time constraints for

the competition. To find more options for cheap trans-

fers, we developed analytical approximations for the

cost to transfer between any two debris, then surveyed

the available transfers. Transfer ∆V s were approxi-

mated by computing three terms: the cost of matching

RAAN, the cost of matching inclination and semimajor

axis, and the cost of matching the orbit phase (defined

as argument of latitude).

The change in RAAN rate ∆Ω̇ required to force the

nodes to cross was calculated by setting a fixed transfer

time (in most cases, 20 days) and calculating the dif-

ference in RAAN between the two debris objects at the

fixed rendezvous time. The ∆V required to achieve the

desired ∆Ω̇ was approximated by assuming circular or-

bits and small changes in either inclination or semima-

jor axis. Under these assumptions, we get the follow-

ing expressions for change of the node rate correspond-

ing to a change in inclination (∆iΩ̇) and to a change in

semimajor axis (∆aΩ̇).

∆iΩ̇ =
∂Ω̇

∂i
∆i (3)

= −Ω̇ tan i∆i (4)

∆aΩ̇ =
∂Ω̇

∂a
∆a (5)

= −
7

2
Ω̇
∆a

a
(6)

We can then write a simple relationship between orbit

element change and its corresponding ∆V as follows:

∆i =

√

a

µ
∆V (7)

∆a = 2a

√

a

µ
∆V (8)

92 DOI: 10.5281/zenodo.1139268



GTOC 9: Results from the University of Colorado at Boulder (team CU Boulder)

Combining these last equations gives us final relation-

ships between a desired ∆Ω̇ and its corresponding ∆V .

∆Vi = ∆iΩ̇
2

3J2R2

a3

sin i
(9)

∆Va = ∆aΩ̇
2

21J2R2

a3

cos i
(10)

Interestingly, comparing the efficiency of changing ∆Ω̇
with an inclination change vs with a semimajor axis

change by taking the ratio ri/a = ∆iΩ̇/∆aΩ̇ shows that

they are equally efficient at tan i = −7, or i = 98.13◦.

For inclinations greater than 98.13◦, a semimajor axis

change is more efficient, while for inclinations less than

98.13◦, an inclination change is more efficient. One im-

portant caveat here is that for more aggressive maneu-

vers such as those used in “stitching” (see section 4),

the assumptions made here break down. In these cases,

a less efficient (but more accurate) approximation was

used.

For large maneuvers, ∆V was instead approximated

by solving Eqn 1 for either semimajor axis or inclina-

tion. The ∆V is then computed as the minimum re-

quired to change either semimajor axis or inclination.

We did not consider cases where both semimajor axis

and inclination were changed. If semimajor axis is

used to change RAAN, the ∆V comes from the vis-

viva equation. If inclination is used, then the maneuver

cost is given by ∆Vi ≈ 2V sin(∆i
2
). Both ∆V s were

calculated, and the smaller of the two was selected as

the optimal transfer.

The cost to match inclination and semimajor axis

of the target debris was approximated with a Hohmann

transfer. The inclination change maneuver is combined

with one of the semimajor axis maneuvers, and is cho-

sen to occur at the radius of apogee of the orbit with the

larger semimajor axis.

The final term of the ∆V approximation is the cost

of matching the target debris’ argument of latitude. This

term was considered separate from the others and was

approximated assuming circular orbits and ignoring the

precession of the argument of perigee. Two phasing

maneuvers are performed: one at the very start of the

transfer time, and one at the very end. This approxima-

tion is the least accurate of the three terms, but it is also

the smallest component. Adding this term effectively

penalized shorter transfers, and it brought the total ap-

proximate cost closer to the truth.

Overall, we found that the approximate ∆V was ac-

curate to within ±30% of the final integrated transfer.

3 Building Blocks

With the analytical estimate for ∆V described above,

we then pre-computed all the possible chains of debris

with an efficient algorithm, subject to the following cri-

teria: Transfer time is exactly 20 days, the ∆V for each

debris-to-debris transfer is ≤ 500m/s, and the average

∆V of all the transfers in a chain is ≤ 200m/s. This

resulted in approximately 500,000 chains of debris with

between 5-10 debris per chain.

Every chain was sorted by the rarity of the debris it

contains, so that the debris that appear least frequently

in all of the pre-computed chains are more likely to be

selected early in the algorithm, while the debris that ap-

pear most frequently are left to the end. This was guided

by the intuition that frequently-appearing debris will be

easier to stitch on to existing chains later.

A randomized greedy search was then used to com-

bine pre-computed chains together to find campaigns of

missions that each visit unique debris at unique times.

By randomizing the search, many possible campaigns

of missions were generated, and the most promising

were passed on to the next step.

After seeing the success other teams had with vari-

ous genetic algorithms for this step, we recognize that

the greatest improvement in score could be made by

choosing a better set of initial chains.

4 The Stitcher

The building blocks algorithm was run several thousand

times, and it would typically find 10-15 sets of chains

that visit 75-95 of the 123 debris. The remaining debris

were then left to the “stitcher” to attach to these chains,

one by one.

4.1 The stitcher toolset

The stitcher toolset consisted of many routines, from

computation of a single stitching action at the lowest

level, to updating an entire campaign at its highest level.

At this level, it would take as input a campaign, defined

as a set of N missions visiting K debris. The algorithm

would then proceed to attach the remaining debris to

any of the missions. The stitcher would end with two

exit conditions: if all debris were successfully attached,

or if it was impossible to stitch some last debris to the

already existing missions.

We will describe two important aspects of the

stitcher: first how we optimized the low-level stitching

DOI: 10.5281/zenodo.1139268 93



Acta Futura 11 (2018) / 91-97 Parrish, N. et al.

of a single debris attached to a single mission, then how

the high-level algorithms handled these possible stitch-

ings into a sorting tree to output the best result that we

could find.

4.2 Optimizing the stitching of a single debris to a

single mission

At the lowest level, one of the stitcher routines consisted

in optimizing the stitching of single given debris to a

single given mission. The goal was to minimize the to-

tal ∆V for the mission.

Two options were possible. The first one, simple fit,

consisted in keeping the original sequence of debris as-

is, and simply finding where the debris would fit best.

The initial order of the mission was conserved, and the

additional debris simply inserted between any two other

debris. The complexity of this algorithm was linear of

the number of debris already attached to the chain, and

made for a very fast computation (usually on the order

of a few milliseconds).

The second option was much more powerful but re-

quired factorially more time. It would fit the debris any-

where in the chain, but also reorder the chain. Because

of the complexity of the constraints between debris, we

adopted a brute force method for testing the reordering

of the chain: in practice, all possible arrangements of

the debris were tested. The second option would thus

call the “simple fit” function K! times for a mission vis-

iting K debris. The algorithmic complexity was then

quite punitive for long missions. In effect, this option

was instantaneous for missions shorter than 6 debris,

and would have taken more than a year for missions

longer than 13 debris. For this reason, this option was

never used until the very end of the competition: if the

numerical integrator failed to realize a planned mission,

this problematic mission was given back to the stitcher.

We would remove a debris and try to stitch it back, with

instructions to reorder the mission. The result would

generally lower the required ∆V by a few hundreds of

meters per second and allow the numerical integrator to

make it into a real mission.

4.3 Finding the best stitching

The hard part of the stitching operation was to decide

what to stitch where. At this higher level, the algorithm

had a campaign of N missions, visiting K debris. Usu-

ally N was between 10 and 15 while the K would range

between 75 and 95. Among the remaining 30-50 debris,

which one would be best to stitch where and when?

Over the last two weeks of GTOC, several versions

of the algorithm were created, each attempting to re-

spond to the increasing leaderboard competition. The

final version used involved a tree search with partial

randomization. Instead of looking at a single cam-

paign, we would create alternate scenarios, depending

on which debris was stitched to which mission. The

algorithm would be manipulating a number of scenar-

ios (10-20) at any given step. From each of these, it

would create many more (20-50) for the next genera-

tion by trying out tens of different stitchings to each

of the manipulated scenarios. Finally, it would select

which scenarios to keep among the best ones with an

element of randomness. The best scenarios were deter-

mined as the ones with the lowest added ∆V (some-

times this ∆V would even be negative), as it usually

output the longest chains and lowest numbers of debris

left after the algorithm had run. Finally, at each step,

the algorithm would check that all considered scenarios

were indeed different from each other, as it was com-

mon for multiple scenarios to arrive at the same “best”

solutions.

Since there were many scenarios coexisting at a

given step in the search, we needed to quicken our com-

putation of the stitching of each debris to each mission.

To do so, we would create a stitching matrix that would

follow a scenario and its children if they got selected,

meaning that many scenarios could be explored at the

same time for very little added computation time. This

matrix had 123 rows and N columns, where N was the

number of missions (from 12 to 15 usually). Each cell

(k,n) of this matrix contained the information on the

stitching of debris k to mission n. A stitching (cell) was

recomputed if and only if a modification to the other

missions, through a previous stitching, affected its fea-

sibility.

Although the algorithm certainly dismissed many

good solutions too early, it still allowed reaching unex-

pected solutions that would prove beneficial in the long

term. It was however our impression that this explo-

ration was only as good as the criterion used to rank the

scenarios: “lowest added ∆V ” was a good enough mea-

sure of optimality initially but it appeared quite clearly

that it was too greedy an approach to capture the best so-

lutions available. We were however unable to find a bet-

ter measure of optimality. It is likely that, given a subset

of each mission of the winning solution and only 40 de-

bris left to place, this algorithm would still have missed

94 DOI: 10.5281/zenodo.1139268



GTOC 9: Results from the University of Colorado at Boulder (team CU Boulder)

the full winning solution unless massive amounts of

computation time, unrealistic for GTOC, had been ded-

icated to it.

In the end, this tree search with randomization

would output nearly-complete campaigns. Usually

there would still be 2-8 debris remaining. Although it

may have been possible to stitch them through reorder-

ing, we did not have the computational capabilities to

perform this operation for most missions. There was

therefore the need to “finish” the campaign with addi-

tional missions.

The final solution submitted is shown in Figure 3.

We see that, as expected, each mission is largely chosen

based on the RAAN of each debris.

5 The Finisher

The algorithm known as the “finisher” aims to obtain

a 123 debris campaign given the previously stitched

chains and the remaining 2-8 pieces of debris. In a cer-

tain way, it repeats the first steps of computation using

computational brute force; i.e., considering a big por-

tion of the possible combinations between spares.

First, we find the remaining time gaps in which

there are no missions scheduled. Then, applying the

time margins to be held due to operational constraints,

we now have the time windows to compute transfer ma-

neuvers between spare debris.

We compute links between each pair of sp are de-

bris. This ∆V is computed for varying transfer times,

initial times, debris objects and time gaps. The ∆V is

then stored and sorted to find the maximum number of

possible pairs of single launches that can be combined

to launch together.

We sort the sets of debris pairs by total ∆V of the

respective maneuvers between the pairs found. The

next step is to use the “stitcher” [4] again to reduce the

number of missions of every set of pairs of debris by

stitching the remaining spare debris to these pairs. The

combination of missions that minimizes the total cost

of the campaign is chosen.

As an example, a campaign of missions may have

7 spare debris after running the “stitcher” algorithm.

Without further work, each of those 7 debris will re-

quire separate launches, which is very expensive. The

cost of the spare debris can be reduced significantly by

combining the debris into fewer launches. The first pass

through the “finisher” may find 3 pairs of debris that can

be launched together, bringing the number of launches

down from 7 to 4 (3 launches which each visit two de-

bris, and 1 single launch). The second pass through the

“finisher” will reduce these 4 launches into perhaps 2 or

3 launches. While the cost of removing these debris is

still high, it is greatly reduced from the cost of 7 single

launches.

6 The Wiggler

After creating full campaigns of missions, the “wiggler”

tool was used to slightly adjust the date at which each

debris was visited. A nonlinear programming (NLP)

problem was defined with the times between each de-

bris rendezvous as the optimization variables. The ana-

lytical approximate ∆V of the whole mission was mini-

mized, subject to operational constraints from the prob-

lem statement. This NLP was solved with MATLAB’s

fmincon solver, using the Interior Point method. The

debris at the beginning of the mission and at the end of

a mission were held constant to avoid inadvertently in-

validating other missions, while the times between de-

bris within the mission were allowed to vary between 7

and 29 days. Typically, the “wiggler” tool would adjust

each date by a fraction of a day, and it would reduce the

∆V of each mission by 2-10%.

7 Final Optimization & Integration

A two-step algorithm was developed to transition from

the approximate, analytical model described above to

the fully-integrated solution for submission. During the

final optimization and integration, the arrival times at

each debris were held fixed, and the transfer between

each pair of debris was considered separately. The al-

gorithm, variables, and series of maneuvers are shown

graphically in Figure 2.

The first step of the algorithm is to choose maneu-

ver ∆~V1 at time t1 so that the RAAN Ω and argument

of latitude u of the spacecraft match the corresponding

elements of debris i + 1 at time t2 (approximately 20

days later). Time t1 is chosen to be the time when the

spacecraft’s argument of latitude is equal to zero. We

never use the propulsion system to directly change Ω —

rather, we change semimajor axis a, eccentricity e, and

inclination i to indirectly change Ω by leveraging the

natural dynamics. Maneuver ∆~V1 is defined in a VNC

(velocity, normal, co-normal) frame, with components

in the V and N directions. The component in the V

direction immediately changes the semimajor axis and

DOI: 10.5281/zenodo.1139268 95



Acta Futura 11 (2018) / 91-97 Parrish, N. et al.

FIGURE 2. Schematic showing the four maneuvers used in the final integration step to transfer from one debris to another. The

dates of arrival at debris i and i+1 are held fixed. Black, straight lines indicate motion according to the debris’ approximate

equations of motion, while blue, curved lines indicate motion according to numerically propagating the Earth J2 equations of

motion. The times t0 through t5 are indicated, with typical values given of each relative to the previous time. The horizontal

arrows indicate whether a segment was propagated forward or backward.

eccentricity of the spacecraft’s orbit, while the compo-

nent in the N direction immediately changes the incli-

nation. Only the V component affects the argument of

latitude target, while both components have an indirect

effect over time on the RAAN target because of the J2
dynamics. For a given number of orbital revolutions,

there is an exact solution for the V and N components

of the maneuver that satisfy the constraints on Ω and u.

After performing ∆~V1, the spacecraft coasts for up to

approximately 25 days to state ~X2 at time t2 (exactly

three hours before the nominal rendezvous with debris

i + 1), which can be up to approximately 400 orbital

revolutions. The number of orbital revolutions was cho-

sen to minimize the magnitude of ∆~V1. Later insights

revealed that it would be more optimal to choose the

number of orbital revolutions to minimize the total ∆V ,

but it was not possible to implement this given the time

constraints of the competition.

The second step of the algorithm is to choose ma-

neuvers ∆~V2, ∆~V3, and ∆~V4 to adjust the spacecraft or-

bit’s inclination, semimajor axis, argument of perigee,

and true anomaly to rendezvous with debris i+1. To do

this, we defined an optimization problem with 8 vari-

ables: t23 (the forward propagation time after t2 un-

til performing maneuver ∆~V2), t45 (the backward ex-

tra time from the nominal arrival time at debris i + 1),

the vector elements of ∆~V2, and the vector elements

of ∆~V4. We propagate forward (with numerical inte-

gration) from time t2 to time t3 and perform maneuver

∆~V2 at time t3. We also propagate backward (accord-

ing to the debris dynamics) from t5 to time t4 and per-

form maneuver ∆~V4 at time t4. We then shoot forward

from time t3 and backward from time t4, constraining

the position discontinuity δ ~R34 to be ~0 and defining the

velocity discontinuity to be ∆~V3. MATLAB’s fmincon

optimizer is used with the Interior Point algorithm to

minimize the total ∆V for maneuvers 2, 3, and 4 and

remove the discontinuity at the midpoint of times 3 and

4.

It was found that the ∆V for the integrated solution

and for the analytical estimate agreed well for transfers

under 1 km/s. However, the algorithm had difficulty

converging to an optimal solution when the total ∆V
exceeded 1 km/s. We expect that further refinements to

the final optimization algorithm could have improved

the cost of these high-∆V transfers, but we also ac-

knowledge that these high-cost transfers could be re-

moved entirely by better pruning techniques in the ana-

lytical search.

8 Discussion & Conclusions

Although the problem was definitely very hard to solve,

we think that many constraints actually narrowed the

strategy possibilities. For instance, by limiting the num-

ber of days between debris to 30, it was not possible

to have a single mission waiting for an extended pe-

riod of time. The total duration and the number of de-

bris already imposed a fast rhythm of encounters (24

days on average), hence allowing to wait between de-

bris would have added an interesting element or risk-

reward: maybe a mission can get one more debris if it

waits for 60 days, but is the time wasted really worth it?

96 DOI: 10.5281/zenodo.1139268



GTOC 9: Results from the University of Colorado at Boulder (team CU Boulder)

FIGURE 3. The final solution of team CU Boulder. Each line

series is a separate launch, with 17 total. The clear trend

apparent in the RAAN of debris visited captures the driving

dynamic of the problem.

The real-time variation of the costs of each mission

was an interesting element of the competition, but we

feel it was ultimately a distraction that, if anything, only

benefited those teams whose time availability happened

to coincide with the competition. In the end, almost

every team’s best solution was submitted in the final

hours, so there was no tangible advantage to submit-

ting earlier. In a complete solution, all the missions are

tightly related to each other, so it is not practical to sub-

mit one single mission early. Future competitions could

9 Acknowledgements

We would like to thank the following individuals for

their advice and help: Prof. Natasha Bosanac (CU

make better use of this time-varying mechanic by mak-

ing component parts of the full solution more separable

from the whole. For example, if there were thousands

of debris, and each team were to remove only some sub-

set, then it would be feasible to design a single mission

early in the competition that did not interfere with other

missions designed later.

The leaderboard mechanic was very exciting for the

competition, and also helped our team know what the

ideal solution should look like. Towards the end of the

competition, we were able to constrain our search space

to be similar to the best solutions on the leaderboard.

Team CU Boulder is grateful to Dr. Dario Izzo for

his work organizing a challenging, well-organized com-

petition. Thank you.

Boulder), Dr. Jeffrey Parker (Advanced Space, LLC),

and Prof. Christoffer Heckman (CU Boulder). This

work was supported by a NASA Space Technology Re-

search Fellowship.

References

[1] D. Izzo and M. Märtens. The Kessler Run: On

the Design of the GTOC9 Challenge. Acta Futura,

11:11–24, 2018.

DOI: 10.5281/zenodo.1139268 97



98


