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Abstract. The GTOC9 competition requires

the design of a sequence of missions to remove

debris from the LEO orbit. A mission is a se-

quence of transfer of the spacecraft from one de-

bris to another. Both missions and transfer must

fulfill a set of constraints. The work presents the

procedures to develop a solution for the GTOC9

problem (i.e the mission sequence) that does not

violates constraints.

The solution is obtained through an evolution-

ary algorithm that combines pre-computed basic

missions stored in a database. The main objective

of the algorithm is to minimize the overall cost of

the solution, in order to maximize the competition

score.

The database of pre-computed missions is de-

rived by connecting trasfers stored in a database

of transfers, through a combinatorial approach that

considers the problem constraints.

The database of transfer is formulated through

the solution of a constrained minimization prob-

lem upon the control action (the magnitude of the

overall impulsive velocity changes ∆V ). Only a

subset of all possible transfers (selected on the ba-

sis of acceptable ∆V ), enters in the database.

1 Introduction

The 9th Global Optimization Competition (GTOC9) re-

quires the design of a sequence of missions—i.e. the
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solution—in order to cumulative clean up the Sun-

synchronous Low-Earth-Orbit from 123 debris that may

trigger the Kessler effect, while minimizing an overall

cost.

A single mission is characterized by a sequence of

rendezvous spacecraft trajectories between debris. The

spacecraft is controlled with impulsive changes in ve-

locity. For each debris, the spacecraft activates a de-

orbit package that removes the debris from the LEO or-

bit.

Each mission starts from a debris—i.e. it is not nec-

essary to design the launch from the Earth—and contin-

ues for an arbitrary number of transfers, limited only by

the fuel consumption. Each mission has to comply with

some rules:

• the spacecraft has to wait 5 days to activate the de-

orbit package;

• the time between two rendezvous must not exceed

30 days;

• a maximum of 5 velocity impulses are allowed;

• the spacecraft may never reach an orbital periapsis

lower than 6600 km.

At least 30 days must be accounted between two subse-

quent missions. The performance index is:

J =
N∑

i=1

(
ci + α(m0,i −mdry)

2
)

(1)
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where ci is a submission cost that is proportional to sub-

mission time (favoring earlier submission), m0,i is the

initial mass of the spacecraft at mission i, and mdry is

its dry mass (favoring lighter mission). α is a constant

scaling factor.

The fuel consumption of a single change in velocity

is calculated by the Tsiolkovsky equation:

∆m =

(
1− exp

(
− ∆V

Ispg0

))
mi (2)

During the transfer between two successive debris,

the spacecraft trajectory is approximated with a Keple-

rian motion perturbed by the effect of an oblate Earth—

i.e. J2 factor—and it is modeled by the ODE:

ṙ = v

v̇ = − µ

r3
r+ J(r),

J(r) =
3

2
J2

r2eqµ

r5




x− 5x (z/r)
2

y − 5 y (z/r)
2

3z − 5 z (z/r)
2




(3)

where r =
(
x y z

)T
is the position vector, r = ||r||

and v is the velocity vector. For more details, con-

stants definitions and constraints, refer to problem de-

scription [1].

Sec. 2 explores the complex procedures to obtain a

solution that fulfill problem statement constraints. The

Section is divided in three major parts. Sec. 2.1 ex-

plores the formulation of the minimization problem to

formulate a transfer between debris, leveraging the dy-

namical system of the spacecraft. The final result of the

section is the database of transfers. Sec. 2.2 focuses

on the exploration of a database of transfers in order to

build chains of transfer that constitute a single mission,

through combinatorial based approach, that creates the

database of missions. Sec. 2.3 concatenates the mis-

sions in order to develop a final solution that becomes

the actual submission to the authorities.

2 Implemented solution

At the core of the problem there is the transfer of the

spacecraft from one debris to another. The transfer im-

plies a loss in mass, due to the control action of the

spacecraft ∆V , thus the evaluation of the control action

is fundamental for the solution of the problem. The key

of the proposed solution lays in the separation between

mass loss evaluation and visited debris sequence in a

single mission. The mass loss is treated as an indepen-

dent problem with respect to the sequence.

The mission sequences result from a searching

problem in a very large graph. The graph is explored by

means of queries to a database of trajectories and mean

mass losses for transfer from one debris to another.

The solving algorithm is divided in three logical

steps:

• the first part identifies all maneuvers between two

orbiting debris at a defined departure epoch, with

an acceptable loss due to ∆V : only a subset of

transfer is considered since the whole set of tra-

jectory would be too large to handle, as detailed

in Section 2.1. The trajectories are saved in a

database for the following solution step.

• the second step connects maneuvers saved in the

previous database to obtain a subset of all mis-

sions: also in this case there is a pruning policy to

reduce the total size of the database that will con-

tain all acceptable missions. This step is described

in Section 2.2.

• as a third step, the missions are combined together,

in such a way the total cost is minimized, as de-

scribed in Section 2.3

2.1 Database of Transfers (DBT)

A database is filled with the transfer maneuvers that ap-

proximate the minimum fuel consumption. Virtually,

the database contains an infinite number of transfers,

thus, some heuristic criteria are used to group maneu-

vers into equivalence classes and store only one ren-

dezvous maneuver for each class.

Let’s consider di as the current debris, while dj ,

with i 6= j, is the arrival debris. The starting and arrival

epochs of each transfer belong to a prescribed domain.

The maneuvers may differ in terms of total transfer

time and starting epoch. Heuristically, the longer the

traveling time, the lower the fuel required to perform

the transfer. To generate trajectories with both short

and long traveling time, an optimization problem is per-

formed on several time windows—e.g. time intervals of

[0, 1] days, [0, 5] days and [0, 15] days are used.

The resolution for starting epoch is one day. For ma-

neuvers with starting and ending time that differs less

than 1 day, only the most proficient ones are stored in

the database.
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The evaluation of the transfer that minimizes the

mass loss is a result of a complex optimization problem

that is formulated in order to reduce the computational

resources required. The large number of trajectories to

be generated, for the whole set of debris combination

and starting epoch, makes the approach costly so that a

number of speed-up strategy are used.

For a limited amount of time, the debris orbit can

be well approximated as a Keplerian orbit. The theo-

retical minimum ∆V to transfer from one orbit to an-

other can be computed semi-analytically (see [2]) with

a very fast procedure based on the computation of the

roots of an 8th order real polynomial. Only the maneu-

vers with a theoretical ∆V below a reasonable thresh-

old are considered for further computations. The details

of the approach and its implementations are described

in Section 2.1. The minimum ∆V is attained consid-

ering only a departing and an arriving point on the Ke-

plerian orbits, disregarding the actual positions of the

debris. The spacecraft transfer is approximated with a

Keplerian trajectory obtained by a Lambert maneuver.

It is easy to find the starting epoch when the debris

di is in the right departing position for the Lambert ma-

neuver. The real challenge is the synchronization with

the arrival debris dj . An integer optimization problem

is solved in order to minimize the distance between the

arrival debris dj and the spacecraft, which is approach-

ing the target orbit—cfr. Section 2.1. The result of the

integer optimization is the number of complete revolu-

tion that must be performed by the rocket on the Kep-

lerian transfer orbit, the initial, and final time necessary

to reach the debris dj .

This transfer still approaches only approximatively

the target debris dj , thus, a new Lambert maneuver us-

ing initial and final time with initial and final position

is computed. This second maneuver, in general, applies

∆V that is not too far from the theoretical minimum

∆V .

The rocket dynamics is not Keplerian, consequently

the Lambert transfer is only an approximation of the

required trajectory, that is the solution of a two-burns

optimal variational problem (2B-OVP). The 2B-OVP is

described in detail in Section 2.1 where the Lambert

transfer is adopted as initial guess.

An high quality solution is evaluated only when

a submission to the authorities is required—cfr. Sec-

tion 2.3.

The trajectories are inserted in a database, where

each record contains:

• starting and final epoch

• starting and arrival debris

• intermediate burn event time (if present)

• ∆V initial, final, intermediate (if present)

Those information are enough to reconstruct the trans-

fer trajectory.

Minimum ∆V Transfer

The work of Zhang, Zou and Mortari [2] is the corner-

stone for the minimum ∆V estimation. In this work,

the authors derive a semi-analytical procedure that com-

putes the travel time tw which minimize the ∆V (tw)
required to transfer from one Keplerian orbit to another

with initial and final position fixed.

The minimum is computed searching the points

where derivatives of ∆V (tw) is zeroed. This ∆V (tw)
is the sum of two norms ||δv0(tw)|| and ||δv1(tw)|| that

are not differentiable near zero so that the derivative is

computed formally as

0 =
d

dtw
(∆V (tw)) =

d

dtw

∑

i=0,1

||δvi(tw)||

=
∑

i=0,1

d
(
||δvi(tw)||2

)
/dtw

||δvi(tw)||
(4)

so that the relation

d
(
||δv0(tw)||2

)
/dtw

||δv0(tw)||
= −d

(
||δv1(tw)||2

)
/dtw

||δv1(tw)||
(5)

is squared on both sides and an 8th degree polynomial

in tw is obtained. The positive real roots are the can-

didates for tw and the minima are discriminated by a

simple procedure (see [2]). The roots are calculated

through the fast Jenkins–Traub algorithm [3].

This procedure is extremely fast and is the core

of the computation of the optimal debris transfer, and

works as follows:

• The two orbits are sampled with e.g. nearly

equally spaced points and all the combinations of

pairs of starting and arrival points are evaluated for

searching minimum ∆V . The minima are refined

applying a re-sampling with points near the best

candidates. This procedure is repeated a couple of

time. At the end of this procedure the initial and

final point r0 and r1 with the transfer time tw are

set.
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• Let t0 the time at which the initial debris

reaches point r0—i.e. the initial point of Lambert

trajectory—and t1 the time at which the arrival de-

bris intercepts point r1. Let T the period of the

Lambert trajectory and T1 the period of the target

debris Keplerian orbit. A rendezvous satisfies the

following equation

t0 + tw + nT︸ ︷︷ ︸
travel time

= t1 +mT1︸ ︷︷ ︸
intercept time

(6)

where n is the number of revolutions the Lambert

trajectory should complete, such that the target de-

bris reaches the arrival point, at the same time, af-

ter m revolutions. Since there is no perfect match

in practice, the previous equation is transformed

in:

arg min
m,n

|(t0 + tw + nT )− (t1 +mT1)| (7)

where m and n belongs to a limited range, such

that

0 ≤
{

tw + nT
t1 − t0 +mT1

}
≤ ∆tmax (8)

where ∆tmax is the maximum travel time consid-

ered.

• Once n is evaluated, the arrival time tf = t0 +
tw + nT is used to compute the true position of

the arrival debris. With this data—i.e. initial time

and position, final time and position, and number

of revolutions—a new Lambert problem is solved

and used as initial guess for the 2B-OVP of Sec-

tion 2.1.

The Lambert solver is a C++ routine based upon a MAT-

LAB script written by Dario Izzo which implements an

efficient and fast algorithm [4, 5, 6]

Equinoctial Coordinates and Integration

The rocket model proposed in (3) is an approximation

of a LEO orbit, which contains a perturbation term due

to oblate Earth, which makes numerical integration us-

ing Cartesian coordinates impractical. In fact, an high

order numerical integration scheme is required to keep

the prescribed tolerance with a reasonable time step.

To avoid the usage of an highly accurate numeri-

cal scheme, the ODE (3) is reformulated in terms of

equinoctial coordinates, where the oblate perturbation

is modeled as a low thrust action. This permits to in-

tegrate through low order numerical methods [7] that

maintains the required accuracy. Equinoctial coordi-

nates and the disturbances vector, due to oblate Earth,

are:

y =
(
p f g h k L

)T

Γ =
(
Γr Γt Γn

)T

and equations of motion for the spacecraft can be stated

as:

ẏ = A(y)Γ(y) + b(y).

The equinoctial dynamic is well known, but for com-

pleteness is hereby reported:

A(y) =
1

q

√
p

µ




0 2p 0

q sL a2,2 −g a6,3

−q cL a3,2 f a6,3

0 0 1
2s

2cL

0 0 1
2s

2sL

0 0 a6,3




b(y) = q2p−3/2√µ
(
0 0 0 0 0 1

)T

with:

cL = cos(L) a2,2 = (q + 1)cL + f

sL = sin(L) a3,2 = (q + 1)sL + g

Cf = cL + f a6,3 = hsL − kcL

Sg = sL + g q = 1 + f cL + g sL

α2 = h2 − k2 s2 = 1 + h2 + k2

The equinoctial coordinates y are related to the state

(r,v) expressed in Cartesian coordinates according to

the following identities:

r(y) =
p

qs2



cL

(
1 + α2

)
+ 2hk sL

sL
(
1− α2

)
+ 2hk cL

2 a6,3




v(y) =
1

s2




2hk Cf −
(
1 + α2

)
Sg(

1− α2
)
Cf − 2hk Sg

2(µ/p)1/2 (hCf + k Sg)




(9)

The vector Γ(y), in equinoctial reference frame, is the

matrix vector product Q(y)TJ(r), where Q(y) is the

orthogonal matrix:

Q(y) =
(

r

‖r‖
(r×v)×r

‖r×v‖‖r‖
r×v

‖r×v‖

)
(10)
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FIGURE 1. Equinoctial coordinates for Sun-synchronous LEO orbits

with r and v as defined in (9). The use of equinoctial

coordinates permits to integrate a trajectory through a

second order numerical method with a fixed time step of

6 s, maintaining the required accuracy for a integration

domain of 30 day.

The forward integration is the classical second order

Runge-Kutta (Heun scheme), while the discretization

for the OVP is based upon Crank-Nicolson scheme [8,

9].

Optimal Two-Burn Variational Problem

Lets formulate the problem with cartesian coordinates

for the sake of clarity.

Minimize:

∆V = ||v(y(t0))− v0||+ ||v(y(tf ))− v1|| (11)

subject to

ẏ = A(y)Γ+ b(y), (12)

r(y(t0)) = r0, r(y(tf )) = r1, (13)

||r(y(t))|| ≥ rpm
, t ∈ [t0, tf ] (14)

notice that in cartesian coordinates ∆V = ||δv0|| +
||δv1|| and r0 and r1 are the initial and final point of

the trajectory transfer defined in Section 2.1. Moreover,

r(y) and v(y) are given in (9) and the value of rpm
is

given in [1].

The problem is solved by the custom made PINS

solver used in other contexts [10, 11, 12, 13], an indirect

problem solver for optimal control problem. PINS is

able to solve OCP in the form:

Minimize:

Φ(x(a),x(b)) +

∫ b

a

J(x(t),u(t),p, t)dt (15)

subject to

M(x(t),p, t)ẋ(t) = f(x(t),u(t),p, t), (16)

b(x(a),x(b),p) = 0, (17)

where u is the control action, p is a parameter vector,

and M(x,p, t) is a nonsingular mass matrix. Prob-

lem (11)–(14) fits PINS formulation with M(x,p, t) =
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I and empty u and p. Bound (14) is well approximated

in J(x,u,p, t) ≡ J(x, t) using a barrier function.

PINS transforms the variational problem (15)–(17)

in a two point boundary value problem that is solved

as a non-linear system with a Newton-like iterative

method. For the solution of the OVP problem (11)–(14)

the initial guess required for the Newton-like method

is based upon the Lambert trajectory, built in Sec-

tion 2.1. The problem has a quite coarse time discretiza-

tion (600 s), that brings to a very low precision solu-

tions for the trajectory. With this mesh the computa-

tional time is very short, and the trajectory is roughly

approximated, but still the estimate of the ∆V is good.

The computational mean time for problem (11)–(14) on

a MacBookPro with 2.9GHz Intel Core i7 is less than

one second.

If a specific trajectory is selected as candidate for

the final submission, is then re-calculated upon a mesh

with a finer time discretization (6 s) that fulfils the tol-

erance requirements. This new problem uses as initial

guess the solution found using the coarser mesh and the

mean time on the same hardware is less than ten sec-

onds.

Considering the solution of the integer problem,

if the number of estimated revolution is too high—

i.e. more than 100 revolutions—computing the solution

of 2B-OVP is too costly. To reduce the computational

effort, a first part of the trajectory, after the first burn—

i.e. the one estimated through the Lambert problem—is

integrated forward (see Section 2.1), and only the very

few last revolutions of the trajectory—i.e. almost 10—

are evaluated through the 2B-OVP, making the whole

maneuver a three burns transfer (3B-OVP).

2.2 Database of Missions (DBM)

The second database contains sequences of maneu-

vres that form a mission. The exploration of database

of transfers (DBT), to build the database of missions

(DBM), considers the limitations proposed in the prob-

lem statement. The sequences are also limited implic-

itly by the available fuel mass, that is used to generate

the pulses. Each time a mission is completed, the se-

quence is inserted into the mission database.

Even in this case, the number of mission that may

be generated is huge, thus some pruning policy must be

adopted.

The average cost

In the selection of the better candidate missions the av-

erage removal cost is taken into account. This cost is

defined as the cost of the mission divided by the num-

ber of debris removed:

cave =
cb + α∆m2

nd
(18)

where cb is the time dependent base cost of the mission

and ∆m is the fuel consumed in the mission. For sim-

plicity cb is set to the maximum [1].

The average cost is a projection of the overall cost

of the debris removal, and allows to forecast the perfor-

mances of the solution proposed.

The mean cost has a trend similar to the one de-

picted in Fig. 2. When the number of debris removed is

increasing, the mean cost tends to decrease. This trend

is inverted after a certain number of debris removed,

when the additional mass ∆m required for the mission

inverts the cost trend.

S
elected

sequence

Number of removed debris

M
ea

n
co

st

FIGURE 2. Given a sequence of debris removal the average

cost (18) decreases initially, reach a minimum, and then in-

creases. The minimum is an indicator of the optimal number

of debris to be removed and of the final cost of the solution

The mean cost also permits to compare the solution with the

performance of the other competitors.

The mean cost depends on the length of the mission

and it is re-evaluated every time a new transfer is added

to the sequence.

Database creation policy

To generate the DBM, the total possible time for per-

forming the debris removal is take into account and
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FIGURE 3. A representation of the graph for the transfer combination

sliced in time windows [tb, te] where:

tb ∈ {0, 100, . . . , 2900}

te − tb ∈ {100, 150, . . . , 400}
(19)

Time windows may overlap. For each time window the

N best missions, in term of average cost, are evaluated

and stored in DBM.

The construction of missions to be inserted in

database is performed in two steps:

• seeds initialization: a seed is the first transfer be-

tween two debris in a mission, that determines the

starting debris;

• sequences exploration: starting from the seeds,

continues the sequences of removal until the max-

imum fuel consumption limit is satisfied.

The seeds are initialized as follow:

1. from the manouver database (DBM), all the trans-

fers with starting time in a limited initial time

frame of the window are selected;

2. for each transfer from debris i to debris j of the

previous selection, only the one with minimal av-

erage cost is kept;

3. the remaining selection is sorted with respect to

the average cost, and only the first N are used as

starting seed for the sequence search.

Starting at level 0—i.e. the seed—the exploration

continues and at each new level the average cost of the

mission is computed. Then, for each level pruning is

applied:

• topologically equivalent missions—i.e. with the

same set of debris removed and the same arrival

debris—are pruned, and only the one with lowest

average cost is kept;

• the remaining missions are furthemore pruned and

only the N best mission are kept.

Then the exploration continues with the next level.

At each level the best N missions are stored in the

database.
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Each record of the DBM is stored as a sequence of

pointers, where each pointer points at a manouveur that

is stored in the DBT.

2.3 Missions combination

A series of mathematical objects are defined to formal-

ize the GTOC problem as a minimization problem.

Definition 1 The set T is the collection of all possible

time intervals for the GTOC problem:

T := {[t0, t1] ⊂ R : 0 ≤ t0 < t1 ≤ tmax}∪{∅} (20)

Definition 2 Define with M the following set:

M :=
{
[w, τ, c] ∈ {0, 1}123 × T × R

}
(21)

it represents a minimal encoding of all possible mis-

sions. The vector w marks all visited debris during the

mission, the interval τ represents the initial and final

time of the mission, which also considers the dead time

for the deorbit package release, and c represents the

overall cost of the mission.

The null mission, i.e. the mission that does not remove

any debris is encoded with m∅ = [{0}123, ∅, 0], while

M̃ denotes a subset of M that contains all the possible

queries of the computed DBM. The set M denotes a

subset of M of all the missions that fulfill the GTOC

problem requirements.

Definition 3 The operators W , T and C

W : M ! {0, 1}123

T : M ! T

C : M ! R

(22)

are defined for m = [ω, η, ξ] ∈ M and returns

W (m) = ω, T (m) = η, C(m) = ξ. (23)

The set M123 contains all the possible sequence of mis-

sions for the GTOC problem. For example a sequence

of only 5 removal missions can be fit in M123 by ap-

pending 118 null mission m∅.

Definition 4 Let s = [m1, . . . ,m123] a sequence of

mission in M123 the operator

Z : M123 ! N (24)

is the number of debris not removed, i.e.

Z(s) = 123− u · u, u =
123
∨
i=1

W (mi)

where the ∨ operator is the element-wise or.

Definition 5 The overall cost of a (possibly unfeasible)

set of missions is:

C : M123 ! R (25)

which is the sum of the cost of each mission plus the

cost of the nr debris not removed:

C(s) =

123∑

i=1

C(mi) + Z(s)cb, (26)

for s = [m1, . . . ,m123] and cb the maximum submis-

sion cost (cfr. equation (18)).

The set M123 permits to define the set of admissible

solutions:

Definition 6 The set S(N ) is:

S(N ) :=





[m1, . . . ,m123] ∈ N 123 :

for i 6= j

W (mi) ∧W (mj) = {0}123

T (mi) ∩ T (mj) = ∅





(27)

where the ∧ operator is the element-wise and, and the

set N ⊂ M.

Remark 1 Notice that the set S(N ) can be extracted

from N easily so that the set is never explicitly con-

structed.

With the previously defined mathematical objects, it

is easy to state the minimization problem at the core of

GTOC.

Find s ∈ S(M) which minimize C(s). (28)

Remark 2 The problem (28) is a mixed integer mini-

mization problem. Thus, gradient based minimization

cannot be used. Moreover, the set S(M) is uncount-

able. Thus, combinatorial based minimization cannot

be used. In this form, the problem (28) is not numeri-

cally computable.
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The problem (28) becomes numerically tractable

when the set S(M) is reduced to the subset S(M̃)
which has finite cardinality:

Find s ∈ S(M̃) which minimize C(s). (29)

Remark 3 The problem (29) is a integer minimiza-

tion problem defined on a finite cardinality discrete set

S(M̃) that rules out the use of algorithms based upon

gradient or other analytical tools. However, a combi-

natorial approach is impractical due to the large cardi-

nality, thus evolutionary approach must be preferred.

The bigger the set M̃, the higher the chances that

S(M̃) contains a good minimum. Nevertheless, since

evolutionary methods have extremely slow convergence

rates, a bigger cardinality of such set reduce the chances

to find a good approximation of this minimum in the

time frame of the GTOC competition.

The pruning policy of section 2.2 is essential to

reduce the density of set M̃ eliminating solutions in

S(M̃) that expose nearly the same structure, retaining

only the best one.

2.4 Evolutionary minimization

The mimization of (29) is done through an evolution-

ary algorithm [14, 15, 16] that is a search technique

based on the principles of evolution and natural selec-

tion. Schematically, an evolutionary algorithm requires

a population of agents—i.e. a solution candidate—with

a genomics that encodes a possible solution. An agent

is an element of the set P

P :=

{
[m1, . . . ,m123] ∈ M̃123 :

T (mi) ∩ T (mj) = ∅ for i 6= j

}
(30)

The set P is larger of the set S(M̃) and an element

s ∈ P is also an element of S(M̃) it is a solution of the

GTOC problem. A population of agents:

P = (s1, . . . , sq), si ∈ P (31)

is evolved to become elements of S(M̃). The fitness

function of one agent is the the overall cost (26). It is

also useful to introduce a function G : P ! N that mea-

sures the gap of an element in P from the set S(M̃).
The gap is the number of multiple removed debris:

G(s) = #{k : vk > 1} (32)

where vk is the number of times the kth debris is re-

moved and is computed as v =
∑

m∈s W (m). The

evolutionary algorithm guides the genomic mutation of

the population to minimize the fitness and to nullify

the gap by cyclic on:

1. augment the population by adding random agents;

2. augment the population by cloning with mutation;

3. remove the worst agents with respect to gap;

4. select the next generation with respect to fitness.

In step 1 the population is increased by 10% by select-

ing randomly from S(M̃). In step 2 the population is

increased by 50% through cloning of randomly chosen

agents. The cloned agents are then muted accordingly

to the rules described in section 2.4. In step 3 the pop-

ulation has more than q agents and it is clustered and

sorted in classes with increasing gap. The next popula-

tion is obtained by the union of the first k classes such

that the number of agents in the union is greater or equal

to q and minimized—cfr. Figure 4. In this way the evo-

lution rewards a population with smaller gap.

In step 4 the population is sorted by fitness and the

first q agents are selected for the next generation.

Mutation rules

Given the agent s the mutation rules change an element

mk of s where k is chosen randomly. The mutated agent

is denoted with s′ and the mutated mission with m′
k. Let

be g the minimum value of G(s′) for all the possible

mutations m′
k ∈ M̃, then, the set G contains all m′

k ∈

M̃ such that the gap G(s′) = g. If the set G is too small

it is enlarged considering elements with such that the

gap G(s′) = g + 1 or more.

M1 Within the set G select the element that minimizes

the cost C(s′). It is extremely unlikely to find

more than one minima, but in case of duplicates

the first found is chosen.

M2 Within the set G select m′
k randomly with uniform

probability.

M3 Within the set G select m′
k randomly from a condi-

tional probability with respect to the binary vector

of the mission. In particular, an higher probability

is associated with missions that cross debris that

are rarely removed. The rarity of a debris is easily

deduced from the database M̃.
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FIGURE 4. Algorithm main loop
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Only one of the mutations M1–M2–M3 is applied, and

it is randomly selected.

3 Conclusions

The work presented a strategy to solve the GTOC9

problem, that guarantees a complete compliance with

all the constrained provided in the problem statement,

and it is a cleaner formulation of the actual strategy

used during the competition by the authors. In particu-

lar, evolutionary minimization was introduced when it

became clear that a simple combinatorial approach was

unpractical.

The first step was the construction of a database of

transfers, from one debris to another, without consider-

ing the removal, upon the whole window allowed for

missions in the problem statement. This database is

based upon a ∆V minimization. The trajectories in

the database where used to build a second database,

the database of missions, through combinatorial algo-

rithms. The final step was to chain the different mis-

sions in a single solution to be submitted for evaluation.

This final solution was identified by a evolutionary ap-

proach.

Due to the limited time span for the competition,

the very last component of the puzzle, the evolution-

ary minimization, was not completely developed. Thus

an incomplete version of the algorithm was used to ex-

plore the solution of (28). Moreover, very few transfers

between debris were added to the solution provided by

the genetic minimization, using other forms of heuristic

approach.

Whit this strategies the ELFMAN team ranked

13th removing 119 debris with a final score of

1107.69367526485.
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