Metagenomic Amplicon analysis pipeline

Table of Content

Introduction

Workflow summary

Initial data set

Step 1: Concatenate reads
Step 2: Join read pairs to fragments
Step 3: Filter reads/fragments
Step 4: Dereplication

Step 5: OTU picking

Step 6: Chimera removal

Step 7: Create final OTU table
Step 8: Taxonomic classification

Introduction

This workflow describes the analysis of amplicon data, specifically of ribosomal markers such as 16S, 18S and ITS genes.
The goal of this workflow is to create a table of OTU abundances per sample from forward and reverse read fastq files.

Although this workflow can in general also be used to analyse amplicon sequences of functional genes | recommend to add some
additional steps such as, frame shift correction.

Workflow summary

Initial data set

This workflow assumes that your initial data set is:

* demultiplexed into two fastq files per sample: one for forward reads and one for reverse reads
® barcodes, adapters, linkers and primer sequences are already "clipped" (removed) from the reads
® File names of your forward and reverse read fastq files include R1 and R2, respectively.
Example:
Forward read fastq file name: S25_H15_R1_L001.fastq
Reverse read fastq file name: S25_H15 R2_L001.fastq

The ending of fastq files may differ, whereas the most common file extension is fastq some sequencing providers and tools may also
use the ending fq.

However, the file extension does no affect the file content!

Step 1: Concatenate reads

Many amplicon sequencing projects include many different samples for which the forward and reverse reads have to be joined into longer
fragments. By joining all forward fastq files into one file and all reverse reads into another we don't have to run the joining for each sample
separately but can do this in one step.

To concatenate the forward and reverse read files we use the linux command cat. It takes two or more files as input and prints their content to the
command line, which we then re-direct into another file using the re-direction operator ">".

To concatenate all files in a directory that include "R1" in the file name and write them into a new file called "forward.fastq" type

cat *R1* > forward. fastq

Some characters on Unix command line and in certain programming languages have special meanings. One of them is the asterisk
which means "any character".
Thus, the command above in English means:

Concatenate all files named as follows: any character(s) followed by R1 followed by any character(s) and redirect the resulting output
into file forward.fastq

Do the same with all files including "R2" in the file name and create a new file called "reverse.fastq"

cat *R2* > reverse.fastq

Make sure that only forward read files include "R1" in the name and only reverse read file names include "R2". Otherwise you will mix
forward and reverse reads and your analysis will produce wrong results!

How to:

To check what files in a directory include a certain pattern use the linux command "Is" (short for list).
For example, to check which files in the current directoryinclude "R1" you can use a similar syntax as for the cat command above:

$>ls *RL*

Step 2: Join read pairs to fragments

https://linux.die.net/man/1/cat
http://man7.org/linux/man-pages/man1/ls.1.html

Often paired-end reads of amplicon sequencing projects overlap for a certain number of bases, especially if the region of interest is longer than
the average length of a read. For example, if we want to sequence a DNA fragment of 595bp length we will not be able to do this with a single
lllumina read because the longest reads currently produced by lllumina MiSeq are 300bp. To be able to sequence the complete fragment we can

sequence the first 300bp of the fragment in 5' to 3" direction (forward) and other 300bp of the reverse direction 3' to 5'. This will lead to an overlap
of 5 nucleotides which enables us to join the reads to one 595bp long fragment.

To join all forward and reverse reads use the read joiner FLASH by calling

flash --cap-m smatch-quals forward.fastq reverse.fastq

This command will create several files:

out.extendedFrags.fastq
out.notCombined_1.fastq
out.notCombined_2.fastq
out.hist

out.histogram

a fastq file of the joined fragments

a fastq file of all forward reads that could not be joined with a corresponding reverse read

a fastq file of all reverse reads that could not be joined with a corresponding forward read
a numeric histogram of the length of the joined fragments
a visual histogram of the length of the joined fragments

The file we're going to use for the rest of the analysis is the out.extendedFrags.fastq file.

A word of advice: Check your files!

It is good practice to check your intermediate result files after each step to make sure that everything went ok. Otherwise you might end
up with cryptic or wrong results and don't know which step went wrong.

An easy way to check the number, length and quality of sequences will be described in the next step.

How many reads were actually joined?

In this step it would be wise to check how many of your sequences actually joined into fragments: Count the reads in your forward or
reverse file and compare it with the number of joined fragments.

The percentage of reads that didn't join can vary from a few percentage to >50% depending on read quality or how many reads actually
overlapped. A common mistake is over-trimming of reads BEFORE joining. In that case sometimes the overlapping ends of one of the
reads is removed due to low quality which makes subsequent joining impossible.

https://ccb.jhu.edu/software/FLASH/

Step 3: Filter reads/fragments

We'll use the widely known amplicon analysis framework mothur to filter fragments by length and different quality scores.

To do this we first have to convert our fastq file into a fasta file and a quality file using mothur's fastq.info command.

start nothur
not hur

convert fastq to fasta and qual file
not hur > fastq.info(fastqg=out.extendedFrags.fastq)

In many programming languages the hashtag (#) indicates a so called comment, i.e., the computer ignores everything following the
hashtag.

This creates multiple files, among others out.extendedFrags.fasta and out.extendedFrags.qual, which contains the quality lines of the fastq file.

Using mothur's summary.seqs we can get an overview over the number of our fragments, the length distribution, number of ambiguous bases and
other stats.

not hur > summary. seqs(fasta=out. ext endedFrags. f ast a, processor s=8)

Usi ng 8 processors.

Start End NBases Anbi gs Pol ymer NunBSeqs
M ni mum 1 37 37 0 2 1
2.5%tile: 1 148 148 0 4 428163
25%til e: 1 559 559 0 6 4281628
Medi an: 1 560 560 0 6 8563255
75%til e: 1 560 560 0 6 12844882
97.5%tile: 1 561 561 0 8 16698347
Maxi mum 1 592 592 128 149 17126509
Mean: 1 542.969 542.969 0.107544 6.2282
of Seqs: 17126509

In this example you can see that the majority of sequences are between 559bp and 561 in length, contain 0 ambiguous bases and contain 6
homopolymers.

Mothur's trim.seqgs can now be used to remove all sequences we don't want. For this particular example it might be a good idea to remove
sequences that are shorter or longer than 559-561bp, contain more than 6 homopolymers and contain any ambiguous bases.

https://www.mothur.org/
https://www.mothur.org/wiki/Fastq.info
https://mothur.org/wiki/Trim.seqs

nmot hur >
trimseqs(fasta=out.extendedFrags. fasta, m nl engt h=559, nax| engt h=561, naxh
onmop=6, maxanbi g=0, pr ocessor s=8)

This will produce two files:

1. out.extendedFrags.trim.fasta

This fasta file contains all sequences that fulfilled our trimming requirements, i.e., are "good" sequences
2. out.extendedFrags.scrap.fasta

This fasta file contains all sequences that did not make it through trimming, i.e., the "bad" sequences

Let's get some statistics on our good sequences using summary.seqs

not hur > summary. seqs(fast a=out. ext endedFrags.trimfasta)

Usi ng 8 processors.

Start End NBases Anbi gs Pol ymer Nunfeqs
M ni mum 1 559 559 0 3 1
2.5%tile: 1 559 559 0 5 314315
25%til e: 1 560 560 0 6 3143144
Medi an: 1 560 560 0 6 6286288
75%til e: 1 560 560 0 6 9429432
97.5%til e: 1 561 561 0 6 12258261
Maxi mum 1 561 561 0 6 12572575
Mean: 1 559. 866 559. 866 0 5.8928
of Seqs: 12572575

In this example we removed ~27% of all sequences or in other words kept almost 3/4 of our initial fragments for our downstream analysis.

For the next steps close mothur by simply typing quit()

The out.extendedFrags.qual file that mothur's fastq.info created can be used in the trim.seqs command to filter out sequences that fall
below a certain quality threshold. To include average quality filtering in the trimming step add the name of the quality file with parameter

"gfile" and the average quality minimum using parameter "qaverage".

Example:
Trim as above but also remove all sequences below an average quality score of 25

mothur > trim.segs(fasta=out.extendedFrags.fasta,minlength=559,maxlength=561,maxhomop=6,maxambig=0,qfile=out.extendedFrag

s.qual,gaverage=25,processors=8)

Step 4: Dereplication

Dereplication is the identification of identical sequences which are counted and then removed from the fasta file so that each unique sequence is

http://fastq.info

present only once in our dataset.
There are three reasons to de-replicate your data set:

1. reduce the size of the data set to reduce computation time and storage space
2. Determine the abundance of each unique sequence. This will be used in the next steps to identify chimeric sequences.
3. Remove singletons, i.e., sequences that are only found once in your data set.

For the next steps of the analysis we will use the software vsearch, which is an open-source implementation of the commonly used usearch progr
am.

$> vsearch --derep_full out.extendedFrags.trimfasta --output
out . ext endedFrags. trimderep.fasta --m nuni quesi ze 2 --si zeout

Reading file ./out.extendedFrags.trimfasta 100%

7038961814 nt in 12572575 seqs, mn 559, max 561, avg 560
Dereplicating 100%

Sorting 100%

10049314 uni que sequences, avg cluster 1.3, nedian 1, nmax 8654
Witing output file 100%

703332 uniques witten, 9345982 clusters discarded (93.0%

The command line output of vsearch tells us that it found 10049314 unigue sequences with an average abundance of 1.3 and a maximum of
8645. 703332 sequences were kept as unique to determine operational taxonomic units in the downstream analysis which are written to a new file
out.extendedFrags.trim.derep.fasta. Additionally, vsearch added the qualifier "size" to each sequence in the output file that states how many times
the sequence was found in the input file.

Step 5: OTU picking

OTU picking is the process of clustering the trimmed dereplicated sequences into groups of sequences that share a defined sequence similarity
and to determine one representative sequence of each group (often referred to as the centroid of the cluster). The idea behind this process is that
e.g. clustering 16s rRNA sequences at 97% identity should result in representative sequences that represent the different species present in the
given data set.

We will use vsearch for OTU clustering, too.

vsearch --cluster _fast out.extendedFrags.trimderep.fasta -id 0.97
--sizeorder --sizein --sizeout --relabel OTU_--centroids otus.fas

The different parameters of this step mean:

id 0.97 - this is the identity threshold, i.e. 97% sequence similarity

sizeorder - orders the different OTUs by abundance determined in the last step

sizein - simply states that the input file has the size qualifier added (done in the previous step with parameter --sizeout)
sizeout - as before, add the size qualifier to the OTU for subsequent chimera removal

relabel - renames the representative/centroid sequences in the output file to "OTU_1, OTU_2 ... OTU_N"

centroids - the output fasta file name with the representative sequences for each cluster

https://github.com/torognes/vsearch

Step 6: Chimera removal

Chimeras are sequences that are a result of the combination of two different sequences into one read. Chimeras originate from
amplification/library creation errors where two (similar) sequences are accidentally joined and subsequently amplified.

There are two ways of chimera identification:

1. reference based
2. de-novo

Reference based chimera detection uses known curated sequences, e.g. from the GreenGenes or Silva databases for 16s rRNA genes, to
identify OTUs that match partially to one sequence in the database and partially to another one. These sequences are then removed from the
OTU file.

De-novo chimera detection uses the OTU set itself as references hereby using more abundant OTUs as references for less abundant ones,
assuming that the original/parent sequences are more abundant than the chimeric sequences that originated from them.

For reference based chimera check of your otus.fas use

vsearch --uchinme_ref otus.fas --chinmeras otus.chineras.fas --nonchineras
otus.clean.fas --db reference.fas --xsize

Here reference.fas is the fasta file that includes your reference sequences, e.g. silva or green genes 16S rRNA sequences.

For de-novo chimera check of your otus.fas use

vsearch --uchi ne_denovo otus.fas --chineras otus.chineras.fas
--nonchi meras otus.clean.fas --xsize

Both commands will create two output files:

1. otus.chimeras.fas which contains the chimeric sequences that were filtered from your data set
2. otus.clean.fas which is your final otu fast file.

Step 7: Create final OTU table

In this step we will use our initial non-dereplicated but quality trimmed fragment file from Step 3 and map all sequences to our OTU representative
sequences. This will give us a final OTU table including fragment counts per OTU per sample.

To do this we first have to add a sample qualifier to each of our fragments using the custom script addSampleQualByFastq.pl.

$>addSanpl eQual ByFastq. pl -gq FASTQ DI RECTORY -f FASTA FILE -o
OUTPUT_FI LE_NAME - m MAPPI NG FI LE

where:

http://greengenes.lbl.gov/cgi-bin/nph-index.cgi
https://www.arb-silva.de/
http://addSampleQualByFastq.pl

FASTQ_DIRECTORY is the directory of the fastq files of your initial dataset.

The script will look for forward read files, i.e., files with R1 in the name to identify fragments from this sample

FASTA_FILE is the fasta file you want to add the sample qualifier to, in the case of this tutorial the out.extendedFrags.trim.fasta
OUTPUT_FILE_NAME is the name you want to give the output file, e.g. out.extendedFrags.trim.added_sample.fasta

MAPPING_FILE is, surprise surprise, a simple mapping file that assigns a samplelD to each of the fastq files (Note: these are the
demultiplexed fastq files from Stepl, i.e., each fastq file contains only reads from one sample!). One line should include a fastq file name
and a samplelD separated by a space or tab.

S20_13.Rl.fastq FTP109_18
S21_14.Rl.fastq FTP109 37

Note that you don't have to give the full path to the fastq files just the name.

What did the script do?

Before adding the sample qualifier/attribute to your out.extendedFrags.trim.fasta file it looked like this:

$>head out.extendedFrags.trimfasta

>MD2181 102_000000000- D26GT_1 1101 _10000_10330

ACTAAAGT TTATTAACACTAAAGGACAATAAAACT TGGGTAACATTCTCAATACAAATATTCTTATT
GCATGCCAGCTAAAGTAGTAAATTATTGGTTTTCTCCTAAGACC

>MD2181_102_000000000- D26GT_1_1101_10000_14016
CCGAAGATCAAGCACACTAAAGGACAAAAAGACCCT CTGAAGCTTTATAGGGATAAAACTTTGGCAC
CAAACCTTTATAAAATTGCTATCACCT GCACAAATACCTCTTAAAGAGCCTTGCTTGAGCCTAGGT G
TCAGTTGGGATTTAAGATCAAGACC

>MD2181 102_000000000- D26GT_1 1101 _10000_15212
ACTAAAGTTTATTAACACTAAAGGACAAAAAGACCCTCTGAAGCTTTATAGGGATAAAACT TGGGTA
ACATTCTCAATACAAATATTCTTATTGCATGCCAGCTAAAGTAGTAAATTATTGGTTTTCTCCTAAG
ACC

After running the script addSampleQualByFastq.pl your out.extendedFrags.trim.added_sample.fasta file looks like this:

http://addSampleQualByFastq.pl

$>head out. extendedFrags.tri madded_sanpl e. fasta

>MD2181 102_000000000- D26GT_1 1101 10000_10330; sanpl e=FTP109_18;
ACTAAAGT TTATTAACACTAAAGGACAATAAAACT TGGGTAACATTCTCAATACAAATATTCTTATT
GCATGCCAGCTAAAGTAGTAAATTATTGGTI TTTCTCCTAAGACC

>MD2181 102 _000000000- D26GT_1 1101 10000 _14016; sanpl e=FTP109_37;
CCGAAGATCAAGCACACTAAAGGACAAAAAGACCCTCTGAAGCTTTATAGGGATAAAACTTTGGCAC
CAAACCTTTATAAAATTGCTATCACCTGCACAAATACCTCTTAAAGAGGCTTGCTTGAGCCTAGGT G
TCAGTTGGGATTTAAGATCAAGACC

>MD2181 102_000000000- D26GT_1 1101 10000_15212; sanpl e=FTP109_33;
ACTAAAGT TTATTAACACTAAAGGACAAAAAGACCCTCTGAAGCTTTATAGGGATAAAACTTGGGTA
ACATTCTCAATACAAATATTCTTATTGCATGCCAGCTAAAGTAGTAAATTATTGGT TTTCTCCTAAG
ACC

>MD2181 102 _000000000- D26GT_1 1101 10000 _16315; sanpl e=FTP109_18;
ACTAAAGT TTATTAACACTAAAGGACAATAAAACT TGGGTAACATTCTCAATACAAATATTCTTATT
GCATGCCAGCTAAAGTAGTAAATTATTGGTTTTCTCCTAAGACC

As you can see each sequence now has a sample= added behind its ID which enables vsearch to identify which fragment belongs to
which sample.

Note: If the script can't find assign a sample_id for a sequence it will be removes from the output file! For example, in case the fastq
files used for joining (Step 2) included reads from other experiments, i.e., the fastq files have not been demultiplexed before joining, the
script will remove those reads/fragments from the output file.

Check your file
In this step use the head command to see if everything went ok and your resulting fasta file is

1. not empty
2. the fragments have an added sample qualifier.

If this step went wrong you might end up with an OTU table with only one sample

Now we can use the new fasta file to create our final OTU table with vsearch. We will again use 97% identity as the similarity cut-off.

vsearch --usearch_gl obal out.extendedFrags. added_sanple.fas --db
otus.clean.fas --bionout otu table.biom--otutabout otu table.tab --id
0.97

This will create the final otu_table in two different formats: a biom file that we will use for further analysis and a tab-separated file that can be
opened with excel to get a first idea of our data and to check that everything went ok.

http://biom-format.org/

Step 8: Taxonomic classification

To assign taxonomies to our OTUs we will use the widely used amplicon data analysis framework giime. The reason is that giime offers multiple
methods to assign taxonomies to OTU sequences including blast, rdp, uclust and others.

To assign taxonomies to your OTUs you'll need

1. a set of reference sequences in fasta format
2. a mapping file that assigns a taxonomy to each of the reference sequences. An example file might look like this:

339039

Bact eri a; Pr ot eobact eri a; Al phapr ot eobact eri a; Rhodospirillal es;unclassifie
d_Rhodospirillal es

199390

Bact eri a; Chl or of | exi ; Anaerol i neae; Cal di | i neae; Cal di | i neal es; Cal di | i neace
a;uncl assified _Caldilineacea

370251

Bact eri a; Prot eobact eri a; Ganmapr ot eobact eri a; uncl assi fi ed_Ganmmapr ot eobact
eria

11544

Bact eri a; Acti nobacteri a; Acti nobacteri a; Acti nobact eri dae; Acti nonycet al es;
uncl assi fied_Actinonmycet al es

460067 Uncl assi fi ed
256904 Bacteri a
286896

Bact eri a; Acti nobacteri a; Acti nobacteri a; Acti nobacteri dae; Acti nonycet al es;
M crococci neae; M crococcaceae; Kocuri a

127471

Bact eri a; Bact er oi det es; Sphi ngobact eri a; Sphi ngobact eri al es; Crenotri chacea
e; Terri nonas

155634

Ar chaea; Eur yar chaeot a; Met hanobact eri a; Met hanobact eri al es; Met hanobacteri a
ceae; Met hanosphaer a

where each line contain a sequence identifier (in this case numbers) and a string of taxonomic levels separated by ';'.

Let's assign taxonomies to our OTUs. As an example we will not use the default method uclust but specify blast as the method of choice in giimes
assign_taxonomy.py script:

use giinme scripts
assign_taxonony.py -i otus.clean.fas -r reference.fas -t
ref erence_t axonony.tab -m bl ast

Silva

Reference and taxonomy files for Silva 16S and 18S sequences can be found on here

http://qiime.org/
http://qiime.org/scripts/assign_taxonomy.html
https://www.arb-silva.de/download/archive/qiime/

This will create a folder called blast_assigned_taxonomy in your current working directory which include two files:

1. otus.clean_tax_assignment.log
This contains useful information, e.g. how many of your OTUs could not be identified using your reference

2. otus.clean_tax_assignment.txt
This is the actual taxonomy file that shows the taxonomy of every OTU, the e-value of the reference blast hit and the reference sequence
id

oru_321

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
_C; Subcl ade_C; C;, 2e-63 50300444

Oru_320

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F; F; 2e-45 572065117

Oru_323

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F; F; 6e-36 572065117

Oru_484

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F3; F3.2 4e-30 408777588
OTu_485

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_B; Subcl ade_B; B; 2e-23 18026233

oru_487

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F3; F3.2 4e-30 408777588

OrTu 480

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
_C; Subcl ade_C; C;, 2e-32 296245017

Oru_4s81

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F; F; 7e-29 83626842

Oru_482

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_C; Subcl ade_C; C;, 2e-32 296245017

Oru 483

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F4; F4.1 2e-32 408777589
Oru_248

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
_F; Subcl ade_F3;F3.2 7e-54 408777588
oru_247v

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
_A; Subcl ade_A2; A2 2e-72 344227659

unm Cl ade

aceae; Synbi odi n

aceae; Synbi odi ni um Cl ade

aceae; Synbi odi ni um C ade

aceae; Synbi odi ni um C ade

aceae; Synbi odi ni um Cl ade

aceae; Synbi odi ni um C ade

aceae; Synbi odi ni um C ade

aceae; Synbi odi ni um C ade

unm Cl ade

aceae; Synbi odi n

aceae; Synbi odi ni um C ade

aceae; Synbi odi ni um C ade

aceae; Synbi odi ni um C ade

Before we can now use this taxonomy we will have to add a header to it so that the next program knows which column contains the taxonomy.

To do this open the file in your preferred text editor and add the following header line as a comment:

#OTUl D t axononmy eval ue taxonid

oru_321

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
bcl ade_C; C, 2e-63 50300444

OruU_320

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
bcl ade_F; F; 2e-45 572065117

Ooru_323

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
bcl ade_F; F;, 6e-36 572065117

OTuU_484

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
bcl ade F3; F3.2 4e-30 408777588

OrTuy_485

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
bcl ade_B; B; 2e-23 18026233

oru_487

Eukar yot a; D nophyceae; Suessi al es; Synbi odi n
bcl ade F3;F3.2 4e-30 408777588

OTuU_480

Eukar yot a; Di nophyceae; Suessi al es; Synbi odi n
bcl ade _C, C, 2e-32 296245017

aceae; Synbi odi ni um C ade_C; Su

aceae; Synbi odi ni um C ade_F; Su

aceae; Synbi odi ni um C ade_F; Su

aceae; Synbi odi ni um C ade_F; Su

aceae; Synbi odi ni um Cl ade_B; Su

aceae; Synbi odi ni um C ade_F; Su

aceae; Synbi odi ni um C ade_C; Su

In case you don't know how to use a text editor on Unix systems (“the command line") | recommend that you do a short tutorial on
either vi, nano or emacs which are the most widely used editors on unix systems.

This will not only be useful for this tutorial but for almost everything you do on the command line. Without an editor you will not be able
to open or edit any files!

The last thing left now is to add the taxonomies of each OTU to our OTU table using our edited taxonomy file and the biom package:

bi om add- netadata -i final _otu_ table.biom-o
final _otu_table.added taxonony. bi om --observati on-net adata-fp
otus. cl ean_tax_assi gnnments.txt --sc-separated taxonony

Congratulations, your final OTU table is ready for analysis!

http://biom-format.org/
https://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/

	Metagenomic Amplicon analysis pipeline

