Exploring Resource Efficiency through Individual Supply Chains

Precision and Accuracy in Analysing the Impacts of Apparel

Konstantin Stadler, Richard Wood

Industrial Ecology Programme, NTNU, Norway

22. IIOA conference, 17th July 2014

Accounting for all impacts along the global supply chain becomes increasingly policy relevant:

- ► Roadmap to a Resource Efficient Europe vision: EU should become an sustainable society which "respects resource constraints and planetary boundaries"
- Government and the Riksdag of Sweden aims to solve environmental issues in Sweden "without increasing environmental and health problems beyond Swedens borders"

Aggregation Effects

K. Stadler

Introduction

Background

Hypothesis

Results Total footprints Apparel sector All sectors

- ► EE MRIOs allow to account for the impacts along the global supply chain
- ► EU fp7 project DESIRE aims to further advance the existing EXIOBASE MRIO
- ▶ Currently 48 countries/regions and 200 products
- ► Is is possible to simplify the system for the analysis by merging regions/countries?

K. Stadler

Introduction

Background

Hypothesis

Results Total footprints Apparel sector All sectors

Previous studies:

- ▶ Andrew et al. 2009. Approximation and Regional Aggregation in MRIO Analysis for National Carbon Footprint Accounting.
- ▶ Su et al. 2010. Input output analysis of CO 2 emissions embodied in trade: The effects of spatial aggregation.
- ▶ Bouwmeester et al. 2013. Specification and Aggregation Errors in EE MRIOs.

Aggregation Effects

K. Stadler

Introduction

Background

Hypothesis

Results Total footprints Apparel sector All sectors

Previous studies:

- ▶ Andrew et al. 2009. Approximation and Regional Aggregation in MRIO Analysis for National Carbon Footprint Accounting.
- ▶ Su et al. 2010. Input output analysis of CO 2 emissions embodied in trade: The effects of spatial aggregation.
- ▶ Bouwmeester et al. 2013. Specification and Aggregation Errors in EE MRIOs.

But mostly restricted to:

- ▶ Effects of spatial aggregation on the total country footprints
- ▶ GHG emissions (water in case of Bouwmeester et al 2013)

Aggregation Effects

K. Stadler

Introduction

Background

Hypothesis

Results Total footprints Apparel sector All sectors

Previous studies:

- ▶ Andrew et al. 2009. Approximation and Regional Aggregation in MRIO Analysis for National Carbon Footprint Accounting.
- ▶ Su et al. 2010. Input output analysis of CO 2 emissions embodied in trade: The effects of spatial aggregation.
- ▶ Bouwmeester et al. 2013. Specification and Aggregation Errors in EE MRIOs.

But mostly restricted to:

- ▶ Effects of spatial aggregation on the total country footprints
- ▶ GHG emissions (water in case of Bouwmeester et al 2013)
- ▶ Bouwmeester at al:
 - ▶ a "carefully designed spatial aggregation" can be utilised for a carbon footprint analysis
 - ▶ shifting the focus to the embodied water use, aggregation led to to a significant underestimation

Aggregation Effects

K. Stadler

Introduction

Background

Hypothesis

Results Total footprints Apparel sector All sectors

Hypothesis

A "true" aggregation (to 2 to 3 regions) which can be used for

- 1. various impact analysis (carbon, land, water, ...)
- 2. the analysis of country footprints
- 3. impact assessment of specific products

can not be found.

Aggregation Effects

K. Stadler

ntroduction Background

Hypothesis

Results Total footprints Apparel sector All sectors

A "true" aggregation (to 2 to 3 regions) which can be used for

- 1. various impact analysis (carbon, land, water, ...)
- 2. the analysis of country footprints
- 3. impact assessment of specific products

can not be found.

Structure: Investigating EU footprint variation due to spatial aggregation:

- 1. total footprints of the EU
- $2. \ {\rm apparel \ sector \ footprint \ of \ the \ EU }$
- $3.\,$ variation in all sectors of the EU

Aggregation Effects

K. Stadler

ntroduction Background

Hypothesis

Results Total footprints Apparel sector All sectors

Testing framework

Impacts / accounts (EXIOBASE 2.2 - base year 2007):

- 1. Global Warming (GWP100)
- 2. Domestic Extraction (Materials)
- 3. Water Consumption Blue Total
- 4. Land Use
- 5. Employment
- 6. Employment: Low-skilled

Aggregation Effects

K. Stadler

ntroduction Background

Hypothesis

Results Total footprints Apparel sector All sectors

Testing framework

Impacts / accounts (EXIOBASE 2.2 - base year 2007):

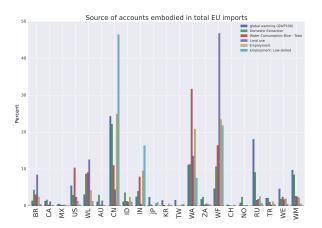
- 1. Global Warming (GWP100)
- 2. Domestic Extraction (Materials)
- 3. Water Consumption Blue Total
- 4. Land Use
- 5. Employment
- 6. Employment: Low-skilled

Tested aggregation levels:

- 1. Five RoW regions aggregated to one
- 2. EU, aggregated continents
- 3. EU, Rest of OECD, Rest of the World
- 4. EU and the Rest of the World

Aggregation Effects

K. Stadler


ntroduction Background

Hypothesis

Results Total footprints Apparel sector All sectors

EU original results

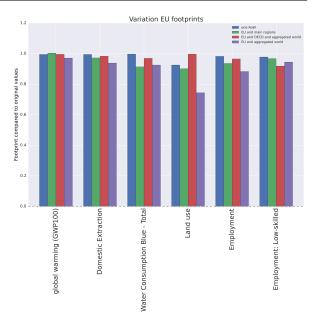
Account	Territorial	Footprint	Footprint per cap	Unit
Global Warming (GWP100) Domestic Extraction	5.1e+12 7.19e+06	7.22e+12 1.33e+07	1.45e+04 0.0268	kg CO2 eq kt
Water Consumption Blue - Total	9.47e+06	1.33e+07 2.38e+05	0.0268	Kt Mm3
Land use Employment	3.37e+06 2.26e+05	1.38e+07 4.17e+05	0.0278 0.000839	km2 1000 p
Employment: Low-skilled	2.39e+04	9.89e+04	0.000199	1000 p

Aggregation Effects

K. Stadler

ntroduction

Background


Iypothesis

Results

Total footprints

Apparel sector All sectors

Variation in total EU footprints

Aggregation Effects

K. Stadler

ntroduction

. . . .

Results

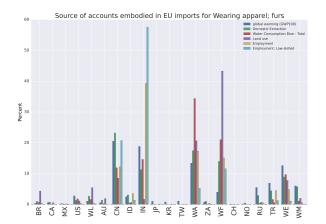
Total footprints Apparel sector All sectors

- \blacktriangleright significant increase in the last years
 - \blacktriangleright increased affluence
 - ► outsourcing
- \blacktriangleright particular complex supply chain
- ▶ often problematic working conditions

K. Stadler

ntroduction

Iypothesis


lesults

Apparel sector

~ . .

The apparel sector in the EU

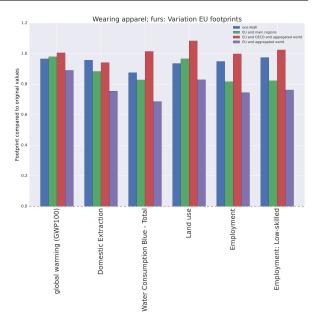
account	Territorial	Footprint	Unit
Global Warming (GWP100)	2.35e+09	$7.2e{+}10$	kg CO2 eq
Domestic Extraction	0	1.34e+05	kt
Water Consumption Blue - Total	119	3.83e+03	Mm3
Land use	0	1.68e + 05	km2
Employment	1.6e + 03	1.19e + 04	1000 p.
Employment: Low-skilled	141	4.3e+03	1000 p

Aggregation Effects

K. Stadler

ntroduction

. ., .


19 00010010

esuits Cotal footprint

Apparel sector

All sectors

Variation in apparel footprints

Aggregation Effects

K. Stadler

troduction

-Typothesis

Results Total footprints **Apparel sector** All sectors

- ► Stable GWP for the total EU for the various spatial aggregation levels
- ▶ Higher variations for all other impacts/accounts

K. Stadler

ntroduction

Iypothesis

Results Total footprints Apparel sector

- ► Stable GWP for the total EU for the various spatial aggregation levels
- ▶ Higher variations for all other impacts/accounts
- ▶ Huge variation for the analysis of the apparel sector

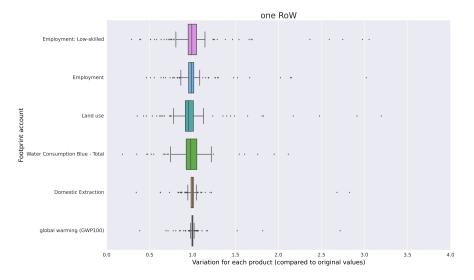
K. Stadler

ntroduction Background

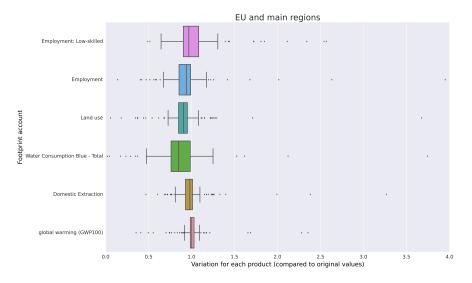
Iypothesis

Results Total footprints **Apparel sector** All sectors

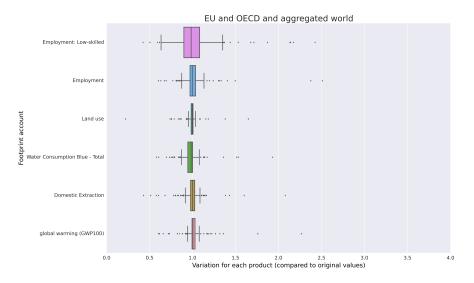
- ► Stable GWP for the total EU for the various spatial aggregation levels
- ▶ Higher variations for all other impacts/accounts
- ▶ Huge variation for the analysis of the apparel sector
- ▶ Is that specific to that sector?

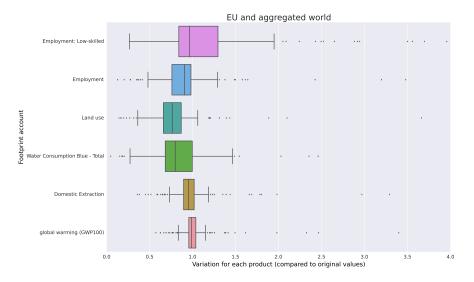

K. Stadler

ntroduction Background


Iypothesis

Results Total footprints **Apparel sector** All sectors


Overall product variations - own RoW


Overall product variations - main regions

Overall product variations - EU, OECD, RoW

Overall product variations - EU and one region

▶ spatial aggregation is valid for GWP analysis on the country level

Aggregation Effects

K. Stadler

ntroduction

Iypothesis

Results Total footprints Apparel sector All sectors

- ► spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts

Aggregation Effects

K. Stadler

ntroduction

Iypothesis

Results Total footprints Apparel sector All sectors

- ► spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts
- ▶ for a analysis of the impacts of certain sectors/products, the full MRIO system should be used

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

Results Total footprints Apparel sector All sectors

- ► spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts
- ▶ for a analysis of the impacts of certain sectors/products, the full MRIO system should be used
- \blacktriangleright buy 8GB RAM instead of trying to simplify the system

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

Results Total footprints Apparel sector All sectors

- ► spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts
- ▶ for a analysis of the impacts of certain sectors/products, the full MRIO system should be used
- \blacktriangleright buy 8GB RAM instead of trying to simplify the system
- ▶ more countries (EXIOBASE 4?)

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

Results Total footprints Apparel sector All sectors

- ► spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts
- ▶ for a analysis of the impacts of certain sectors/products, the full MRIO system should be used
- \blacktriangleright buy 8GB RAM instead of trying to simplify the system
- ▶ more countries (EXIOBASE 4?)

Next steps

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

Results Total footprints Apparel sector All sectors

- ▶ spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts
- ▶ for a analysis of the impacts of certain sectors/products, the full MRIO system should be used
- \blacktriangleright buy 8GB RAM instead of trying to simplify the system
- ▶ more countries (EXIOBASE 4?)

Next steps

▶ more 3 level aggregations

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

lesults Total footprints Apparel sector All sectors

- ▶ spatial aggregation is valid for GWP analysis on the country level
- ▶ partly huge variation for the other impacts
- ▶ for a analysis of the impacts of certain sectors/products, the full MRIO system should be used
- \blacktriangleright buy 8GB RAM instead of trying to simplify the system
- ▶ more countries (EXIOBASE 4?)

Next steps

- ▶ more 3 level aggregations
- ▶ perhaps more impacts

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

lesults Total footprints Apparel sector All sectors

Effects of aggregation

Exploring Resource Efficiency through Individual Supply Chains

Konstantin Stadler, Richard Wood

Industrial Ecology Programme, NTNU, Norway

konstant in.stadler @ntnu.no

22. IIOA conference, 17^{th} July 2014

Aggregation Effects

K. Stadler

ntroduction Background

Iypothesis

Results Total footprints Apparel sector All sectors

