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Attribution

Dynamical models: Global Climate Models (GCMs)
Natural inputs

Climate behaviour

Anthropogenic
inputs
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Attribution

Dynamical models: Global Climate Models (GCMs)

b} Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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We give the model all the
actually observed values of
external influences (forcings)

Blue line:

Anthropogenic forcings are held
fixed at constant 1850 values

IPCC, 2021
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From dynamical modelling...

However, the results of GCMs could crucially depend on the
uncertainties in our theoretical knowledge of processes and
feedbacks = doubtful results?

At present, there are systems which learn directly from data, without
any reference to previous knowledge. Can we apply them to our
attribution problem?

An independent (more “holystic”) analysis could be interesting.
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... to a different strategy

Institute of Atmospheric Pollution Research

A child who learns to walk.
Trials and errors.

Initially he hits against tables and
chairs.

He learns the rules for moving in
a room when he adjusts his own
synapses (the “links” between
neurons).

National Research Council of Italy
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A different strategy
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Can a little artificial brain, a
neural network, learn the rules of
evolution of global temperature
on the Earth, without any
previous knowledge?

Forcings as predictors (inputs)
and temperature as predictand
(target).
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A neural network model
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The neural network tool

Quite standard Multi-Layer Perceptrons

(MLPs):
connection - feed-forward networks with one hidden
L* layer;
Henl - quasi-Newtonian back-propagation
e 0" method: Broyden-Fletcher-Golfarb-

Wi
V3 Output layer

Shanno (BFGS) algorithm (new).

il
13 Wij

Input layer  Hidden layer A specific tool for short historical data sets:

- ensemble leave-one-out with early
stopping (see Pasini, 2015; Pasini &
Amendola, 2024).
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The neural network tool
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The neural network tool
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The neural network tool
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The neural network tool
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Training

—— trainingset —— - validation | | testset —
set

The weights are set by operating
iteratively on the traning set, but the
iterations only stop when...
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Training and stopping

> M

... the error begins to increase on
the validation set (early stopping).
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Training for small datasets

j-th estimation

About 170 inputs-target pairs.

i
i Generalized “leave-one-out”
procedure.

validation pairs test pair

total set

Iterations stop when the error on
the validation set begins to

(j+1)-th estimation increase.

We perform ensemble runs, one
for each choice of the initial
weights and the elements of the
validation set.

j j+1

test pair
validation pairs

total set
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Training for small datasets

| Random choice of
initial weights

@h‘\

20 independent
runs

Ensemble
leave-one-out
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| Random choice of
validation patterns
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Neural reconstructions
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OPEN Attribution of recent temperature
behaviour reassessed by a neural-
network method

Received: 21 August 2017 . Antonello Pasini?, Paolo Racca?, Stefano Amendola?, Giorgio Cartocci® & Claudio Cassardo (**
Accepted: 24 November 2017
Published online: 15 December 2017 Attribution studies on recent global warming by Global Climate Model (GCM) ensembles converge

. inshowing the fundamental role of anthropogenic forcings as primary drivers of temperaturein the

: last half century. However, despite their differences, all these models pertain to the same dynamical

i approach and come from acommon ancestor, so that their very similar results in attribution studies

¢ are not surprising and cannot be considered as a clear proof of robustness of the results themselves.

i Thus, here we adopt a completely different, non-dynamical, data-driven and fully nonlinear approach

. tothe attribution problem. By means of neural network (NN) modelling, and analysing the last 160

: years, we perform attribution experiments and find that the strong increase in global temperature of

: thelast half century may be attributed basically to anthropogenic forcings (with details on their specific
: contributions), while the Sun considerably influences the period 1910-1975. Furthermore, the role

: of sulphate aerosols and Atlantic Multide cadal Oscillation for better catching interannual to decadal

: temperature variability is clarified. Sensitivity analyses to forcing changes are also performed. The NN

: outcomes both corroborate our previous knowledge from GCMs and give new insightinto the relative

: contributions of external forcings and internal variability to climate.
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Neural reconstructions

With real natural
<—— and anthropogenic
forcings

Pasini et al., 2017

With anthropogenic
<—— forcings fixed at their
values of 1850
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Neural reconstructions (T)

Time [years]
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Real and
stationary solar
forcing

Pasini et al., 2017

With stationary
solar forcing




Neural reconstructions (AMO)

With the real
«— values of all the
forcings
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Neural predictions (AMO)
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A time series approach to attribution

The future global temperature T can be predicted from its
past values:

Tt — f1 (Tt—liTt—Z ’)

Then you can see if the forecast improves by adding past
values of another variable x, e.g. the greenhouse gas trend,
or the influence of the Sun:

T = (T Te e Xe s Xe20eee)

If this happens, it means that the past values of x have
some influence on the values of T, i.e. they “cause” it in
some way...
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Granger causality

In general, we say that a variable x causes (in Granger's
sense) another variable y if the future values of y can be
better predicted using the past values of x and y than using
only the past values of y.

AR: yt:52+z7jyt—j+ut
For us, y=T and
x;=external

. k . . .
VAR: Y =8+ afy ;+ 2 "% ;+v"  forcing
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Granger causality

Black: temperature
Blue: AR forecast

Green: VAR forecast
with x = solar rad.

Red: VAR forecast with
X = radiative forcing of
greenhouse gases

Temperature anomaliesg [K]
[}
'_\

1975 1980 1985 1990 1995 2000 2005
Time [years]

Attanasio, Pasini, Triacca (2012)
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Climate-induced migrations

Here, we focus on a very critical and fragile zone: the
Sahelian band:

Sahel region, Africa
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Climate-induced migrations

Sahel is critical from many points of view:

Desertification vulnerability in Africa (onflicts and food riots in Afnica Terrorist Attacks 2012
(2008) 2007-2008

UNCCD, 2014:

Coy Yy Desertification:
v -
- The Invisible
Frontline
* .
(onfiict zones
+ Food nots

These three maps of Africa vividly show the concentrations of past terrorist attacks, food riots and other conflicts in areas that are vulnerable to desertification.
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Climate-induced migrations

Morocco

Mauritania

Senegal
The

Gambia
Guinea

Sierra Leone

Algeria

Cote Ghana
d'lvoire

Central
Mediterranean

Tunisia

Nigeria

Cameroon

The final result:

Detections of illegal border-crossing at the EU’s external borders

2014
Eastern Med. route 50 834
Westemn Balkan route 43 357
Central Med. route 170 664
Other routes 18 078
Total EU - Detections 282 933

* estimated figures as of 4 January 2017

Western
Balkan

==
Eastern Sk
Mediterranean .
Syria

2015

885 386
764038
153 946
18 807
1822177

Iran

- 9% change

over 2015
182 534 -79%
122779 -84%
181 126 18%
17 214* -8%
503 653* -72%

Afghanistan

Pakistan

Eritrea

Ethiopia

Somalia

Bangladesh




Climate-induced migrations

IL CLIMA IMPAZZITO,
LE ONDATE MIGRATORIE, | CONFLITTI

SERRA

IL RISCALDAMENTO GLOBALE, | RICCHI, | POVERI

EFFETTO

GUERRA
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A study

Recent crises may have obscured the role of climate change
as a driver of migrations (however, a specific causal role of
drought has been recognized also in the devastating Syrian
crisis).

Thus, here we limit our analysis to migrations from the
Sahelian belt to Italy in the 15 years before the Syrian crisis
and the so-called Arabian Spring.

In doing so, even if local crises were of course present in the
Sahelian countries also during these years (for instance, the
Darfur conflict) and can be causes of migrations, we are
confident that we mainly avoid big changes in causes which
could overwhelm the direct role of climate change.
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A study
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Results

Reconstruction of migrations flows (data: yields,
temperature, precipitation, # hours with T>30°C)

(Pasini & Amendola, 2(

Ln{migration flux)

 Mauritania Mali Burkina F. Niger Nigeria Chad Sudan Eritrea Senegal Gambia

Considered time period for each country [Years]
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Results (pruning)

Inputs = Target NN (R?) Multilinear (R?)

Prec - Temp - # hours T>30°C - Yield > MigFlow 0.775 0.626
Prec - Temp - # hours T>30°C > MigFlow 0.671 0.611
Prec - Temp - Yield > MigFlow 0.683 0.632
Prec - # hours T>30°C - Yield > MigFlow 0.361 0.085
Temp - # hours T>30°C - Yield > MigFlow 0.715 0.447

Yields and # hours with T>30°C have a clear (nonlinear) role in
inducing migrations; nevertheless, temperature appears to be more
influent. Achieving threshold of physiological tolerance?
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NN downscaling

* Up to now we have considered NNs as a strategy which is
alternative to dynamical modeling, but, probably, these
strategies can be seen more appropriately as complementary
than as alternative.

* A concrete example of “synergies” between them is
represented by the case of GCMs downscaling via NNs.

* In what follows we will briefly discuss this complementary
approach.
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The rationale
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Local projections
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Local projections

* Bias of the RegCM3 regional model.

* NNs not only correct the bias, but also give better results than
a linear model.

* Once we have found the transfer functions in the past location
by location, we can apply them to the future outputs of the
regional model and obtain local scenarios.

* This is not only for average temperature or precipitation, but
also for extreme events over a given scenario.
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Local projections
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Results of the NN model for annual mean temperatures at Matera site:
reconstructed till 2010 and predicted from 2011 to 2100. The black line
shows the trend on the predicted values.
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Local projections
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Results of the NN model for density functions of annual mean temperatures
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Local projections
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Results of the NN model for the number of hot days in Maratea:
reconstructed till 2010 and predicted from 2011 to 2100. The black line
shows the trend on the predicted values.
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Local projections
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Results of the NN model for the number of tropical nights in Melfi:
reconstructed till 2010 and predicted from 2011 to 2100. The black line
shows the trend on the predicted values.
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Local projections
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Results of the NN model for the number of frost days in Potenza:
reconstructed till 2010 and predicted from 2011 to 2100.
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The most known observed changes
in the Arctic
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However...

... there are other changes which are less visible, but important

6. Fast transport
8. Pyro-Ch: ¢ L —— e ———
L in free troposphere .~
Injection into

with multiple aerosol  4- Slow descent into polar dome
stratosphere
_removal events

5. Slow mixing into polar dor;mé““\;‘_!

9. Top of Greenland > 1. Lifting at Arctic front,™_
does not receive \._ BC deposition on snow

low-level transport

Arctic sources

pollute directly
A
! B 2. Lifting at low
latitudes
removes most
aerosols out-

side the Arctic

7. Agricultural fires

can emit aerosols into .

North America free troposphere with  EUrasia -
little removal

Greenland
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PM10 and our study

- Particulate Matter is cause of concern mainly due to the
consequences of its black carbon fraction on the darkening of the
ice - and thus its increased melting - along with the impact on local
populations’ health.

- Although local sources of PM10 in the Arctic are limited nowadays,
they are likely to increase in the near future, especially due to
intensified ship traffic, which is favored by Arctic ice melting.

- Furthermore, a great deal of the pollution in these regions is due to
transboundary transport, which can be particularly strong in cases of
significantly high emissions sources, such as wildfires.

- In this framework, the possibility of having reliable short-term
forecasts of PM10 concentrations becomes crucial for actions to
inform local populations on intense pollution events. This is our goal
in the framework of the EU project Arctic PASSION.
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At present...

... forecasts of PM10 in the Arctic region are produced by means of
dynamical (meteo-chemical) models with outputs that are available
via the Copernicus Services (CAMS).

- Despite the quite high resolution of CAMS models, local forecasts of
PM10 concentration show lower performance than in the middle
latitudes.

- These difficulties may be due to various factors: inaccurate
assimilation aside a poor resolution or the presence of hidden
elements of nonlinearity that cannot be grasped from such models
are hindrances for a reliable local prediction.

- Thus, a technique such as Neural Networks (NNs) can benefit

predictive models of PM10 concentration, as they allow efficient

downscaling or model-output post-processing as well as overcoming
the issue of hidden nonlinearities.
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What we are doing

- As a matter of fact, Machine Learning methods have already been
applied to these types of problems.

- In the framework of the European project Arctic PASSION, our group
adopted a NN modelling strategy in a study involving univariate time
series approach to post-process PM10 data produced by an
ensemble of ground measurements and nine CAMS models, in order
to achieve a 24h forecasts (Fazzini et al., 2023).

- Here, | describe our approach and results, also discussing
perspectives of future developments.
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What we are doing

We use local air pollution

In-situ
measurements and measur
meteorological variables to ements
provide information on errors COPERNICUS
of air pollution forecasts by model

global and regional models
from Copernicus (CAMS).

forecast

This information will improve
the accuracy of local air
pollution forecasts in real time
(by NN application).

Artificial Neural
Network

It will provide the feedback to
Copernicus on forecast errors.
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Input data

- PM10 time-series (Jun2020 - Jun2023) from 100 selected
monitoring stations in Northern Europe (Norway, Sweden,
Finland, Iceland)

- Area covered by Copernicus models (10 regional forecast models)

- Daily PM10 CAMS forecasts from 9 models at single grid points

- Daily weather analysis and forecast for meteorological variables
(wind speed, temperature and planetary boundary layer)

« I % Institute of Atmospheric Pollution Research
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Input data
70N§’ ............................ ........................... .................... __

60°N [ . ........................... , ....................... ,, ............ .

20°W  10°W _ 0° 10°E = 20°E  30°F

Station type
@ Traffic

® Industrial

® Background

Fig.1: Monitoring stations selected for the upcoming study.
The stations types depends on the EEA classification of

PM,, main sources.
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Input data

Table 1. Air quality monitoring stations selected for this forecasting study with their geographical

positions and PMp measurements techniques.

Station Country Latitude Longitude Measure Source Code
Muonio Sammaltunturi ~ Finland 67.97 24.12 TEOM ! FMI 101983
Kopavogur Dalsmari Iceland 64.10 —21.89 BAN 2 EEA 52109
Grundartangi Grof Iceland 64.33 —21.83 BAN 2 EEA 52149
Pyykosjarvi (Oulu) Finland 65.04 25.50 TEOM 3 EEA 15557
Tromso Rambergan Norway 69.65 18.96 TEOM ! EEA 62993
Oulun keskusta 2 (Oulu)  Finland 65.01 25.47 TEOM 1 EEA 15609

1 Tapered Element Oscillating Microbalance. 2 Beta Attenuation and Nephelometry. 3 Beta Attenuation by a

two-beam compensation method.
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Input data

Table 2. Main characteristics of the air quality regional models used by CAMS [34,35].

Model Institution Horizontal Resolution Vertical Resolution Assimilated Measurements
CHIMERE INERIS ! 0.1° x 0.1° 8 levels, top at 500 hPa 0O, and PM;; from surface stations
EMEP MET Norway 2 0.25° x 0.125° 20 levels, top at 100 hPa NO, columns from OMI/ Aura remote
sensing and NO; from surface stations
15 km. Lambert O3, NO, NO», SO,, CO, PMyj, PM; 5 from
EURAD-IM RIU UK - K .. 23 levels, top at 100 hPa surface stations, NO, from remote sensing
conformal projection , .
column retrievals, CO profiles
LOTOS-EUROS KNMI # 0.25" x 0.125° 34 levels, top at 3.5 km O3 from surface stations
MATCH SMHI 5 0.2° x 0.2° 52 levels top at 300 hPa O3, NOz, €O, PMio, PM; 5 from
surface stations
MOCHAGE Météo France 0.2° x 0.2° 47 levels, top at 5 hPa O3 from surface stations
SILAM FMI @ 0.15° x 0.15° 8 levels, top at 6.7 km 03, NO; and SO, from surface stations
GEMA-Q IEP-NRI7 0.1° x 0.1° 28 levels, top at 10 hPa O3, NO,, €O, 502, PMio, PMy 5 from
surface stations
AARHUS UNIVERSITY 18 km, polar 05 and NO, from surface stations, PM;
DEHM Denmark streographic projection 29 layers, top at 100 hPa and PM; 5 from global CAMS forecast

! Institut National de I'Environnement Industriel et des Risques. > Meteorologisk institutt, Norway. * Rheinisches
Institut Fiir Umweltforschung an der Universitit zu Kéln E. V., Germany. * Koninklijk Nederlands Meteorologisch
Instituut, the Netherlands. > Sveriges Meteorologiska och Hydrologiska Institut, Sweden. & Ilmatieteen Laitos,

Finland. 7 Institute of Environmental Protection, Poland.
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The neural network approach

Memory @~ Dense
Layer Layer

Obs,t=0

Figure 2. General architecture. "CAMS #n’ indicates the ng, CAM model.
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The neural network models

Forget Gate Cell State

(a) = Echo State

o= N [N R e Network
o= A 6’ 7) @@ : :
RO E ‘ - . - : (b) = Gated
esevoir h(t-1) .
X 2 ’ Recurrent Unit
(a) x(t) Input Gate Output Gate k
Reset Gate (¢) n etWO r
o(t)
] (c) = Long Short-
= :h = " heo Term Memory
q i network
L : (d) = Recurrent
pdate Gate x(t)
(b) ) Neural Network

Figure 3. Various alternatives for the memory layer: (a) ESN. (b) GRU. (¢) LSTM. (d) RNN.
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Results

Inputs pruning
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Results

Prediction performance
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Results

Prediction performance
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Perspectives

After this univariate analysis, our aim is to perform a multivariate one, by including
CAMS model outputs about wind (speed and direction), temperature and height of
the boundary layer.

The presence of these endogenous variables will certainly lead to better
performance due to the insertion into the NN models of an explicit forecast of the
status of the low atmosphere and of the transport into the Arctic of air masses
coming from lower latitudes.

Finally, a consistent improvement is expected by an assimilation of PM data from
wildfires. We are studying the best way to introduce this in our framework.
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Conclusions for Arctic PM10

The application of NN models to the problem of PM forecast in the Arctic
have shown that they are able to post-process the outputs of CAMS
models and achieve better forecasting results than those obtained by
the former models.

This kind of study can be key in the realm of the Arctic PASSION project,
when dealing with local communities and local policy makers. In fact,
even if usually PM10 concentration is quite low in the aforementioned
areas, people are unprepared to peak events, when forecast is instead
decisive in order to take efficient adaptative measures.
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