Drone Shrub Volume Subset Test: Individual Shrub Detection and
Delineation via CHM and Direct Point Cloud Segmentation

Code: Abhinav Shrestha | Project PI: Georgia R. Harrison

2023-12-17

Contents

Load necessary libraries 3

Data preparation: clipping point cloud (subset) 3

Creating a Canopy Height Model (CHM) from point cloud 3
STEP 1: Load point cloud dataset file 3
STEP 2: Classify ground and non-ground points 3
STEP 3: Create digital terrain model (DTM) with ground classified points 4
STEP 4: Create height normalized point cloud with DTM 5
STEP 5: Create CHM using height nomalized point cloud and DTM 5

Summary of data products generated (from point cloud to CHM) 6
Intitial point cloud 6
Ground/non-ground classified point cloud Lo Lo o 6
Digital Terrain Model (DTM) e 7
Height normalized point cloud (point cloud with effect of terrain removed) 7
Canopy Height Model (CHM) e 7

Individual shrub detection and segmentation using Local Maxima Filter (1mf, 1idR) and

Variable Window Filter (vwf, ForestTools) 10
Smoothing CHM e e e 10
Plotting original CHM and Smoothed CHM 10
Individual shrub detection using 1mf with 1idR 10
Individual shrub detection using vwf with ForestTools 10
Individual shrub delineation using silva2016 algorithm with 1idR 14

Converting cell values of raster for export L. 14

Using CHM-based shrub-top detection to segment point cloud 16

Point Cloud segmentation of individual shrubs (without using CHM raster) 17

Exporting individual shrubs 18
Creating polygon of delineated shrubs (for accuracy assessment) 18
Interactive 3D model of point cloud segmented individual shrubs 20
References 21

Load necessary libraries

require(1idR)
require(terra)
require(raster)
require(viridisLite)
require(ForestTools)
require(sp)
require(sf)
require(rgdal)

Data preparation: clipping point cloud (subset)

pointCloud_toClip <- readLAScatalog("~/PATH/NAME.las")

check the CRS of the imported las is the same as clipping boundary polygon
pointCloud_toClip$CRS

import shapefile with which the point cloud data %is clipped to
clipBoundary_shp <- st_read(dsn = "~/PATH/FILE.shp", layer = "FILE.shp")

assuming that 'ID' is an attribute of the shapefile 'clipBounday_shp'
opt_output_files(pointCloud_toClip) <- "~/PATH/NAME_{ID}"

clipped_pointCloud <- clip_roi(las,sf)

Creating a Canopy Height Model (CHM) from point cloud

STEP 1: Load point cloud dataset file

load point cloud (.las/.laz) file

las <- readLAS("Outputs\\Clipped_SubsetPC\\sub_subset_PointCloud.las")

STEP 2: Classify ground and non-ground points

Sequence of windows sizes

ws <- seq(3,12,3)

Sequence of height thresholds

th <- seq(0.1,1.5,length.out = length(ws))

Set threads for classification:
set_lidr_threads(4)

Classify ground

ground_points <- classify_ground(las, pmf(ws,th))

writeLAS (ground_points, "Outputs\\Clipped_SubsetPC\\ground_Classif.las")

NOTES:

o The classify_ground' function takes a very long time to run/process.

— The issue might be with the algorithm not being parallel-computing friendly (mentioned in the
documentation: “In lidR some algorithms are fully computed in parallel, but some are not because
they are not parallelizable”).

— Even using the set_lidr_threads to ‘4’ (max available threads), the classify ground function
only uses 1 thread.

e Therefore, the above code chunk consists of a writeLAS function as the ground classified point cloud

was exported and saved on a local drive so that ground classification would not have to be performed
every time the script was run (after the initial run).

e The code chunk below consists of script to import the ground classified point cloud. The same pro-

cess/logic is applied to the height normalized point cloud and other products produced in this workflow.

ground_points <- readLAS("Outputs\\Clipped_SubsetPC\\ground_Classif.las")

plot(ground_points,

rgl:

size = 3,
bg = "white",
color = "Classification",

pal = forest.colors(2))

:rglwidget ()

STEP 3: Create digital terrain model (DTM) with ground classified points

Defining dtm function arguments
cs_dtm <- 1.0 # output cellsize of the dtm

Creating dtm using Invert distance weighting (IDW)
dtm <- grid_terrain(ground_points, cs_dtm, knnidw())

NOTES:

e Min cellsize possible is 0.01, when 0.001 is set, then the grid_ terrain function will output "Error:

memory exhausted (limit reached?)" and "Error: no more error handlers available
(recursive errors?); invoking 'abort' restart"

o as resolution of processed DEM was around 0.70 m, cell size set to 1.0 (equivalent to 1 m as native

coordinate system is UTM in m)

Plotting created DTM

plot_dtm3d(dtm)
rgl::rglwidget ()

STEP 4: Create height normalized point cloud with DTM

hnorm <- normalize_height (ground_points, dtm)

plot (hnorm,
size = 3,
bg = "white"
)

Export Normalized point cloud .las file
writeLAS (hnorm, "Outputs\\Clipped_SubsetPC\\height_Normalized.las")

Reading in and displaying the height normalized point cloud created in the previous code
chunk.

hnorm <- readLAS("Outputs\\Clipped_SubsetPC\\height_Normalized.las")

plot (hnorm,

size = 3,

bg = "white")
rgl: :rglwidget ()

STEP 5: Create CHM using height nomalized point cloud and DTM

Defining chm function arguments
cs_chm <- 0.2 # output cellsize of the chm

Creating chm
chm <- grid_canopy(hnorm, cs_chm, p2r(na.fill = knnidw(k=3,p=2)))

plot(chm,
col = col,
main = "grid_canopy method with IDW f£ill")

Exzporting CHM
writeRaster(chm,
'Outputs\\DSM_DTM_CHM_files\\sub_subsetCHM_point02.tif')

Load CHM
chm <- raster("Outputs\\DSM_DTM_CHM_files\\sub_subsetCHM_point02.tif")

NOTES:

e Min cell size seems to be 0.01 since if 0.001 is set “Error: cannot allocate vector of size 1.7 Gb” is
returned.

e But having too fine of a cellsize for chm might cause issues in processing time for automatic shrub
detection as it uses a moving local maxima filter, i.e., it takes much longer for the kernel to move from
pixel to pixel.

Summary of data products generated (from point cloud to CHM)

Intitial point cloud

plot(las,
size = 3,
bg = "white",
color = "Z",

pal = height.colors(25))
rgl::rglwidget ()

Figure 1: Point cloud of subset site. Colored by height scale: red = higher elevation, blue = lower elevation

Ground /non-ground classified point cloud

plot(ground_points,

size = 3,
bg = "white",
color = "Classification",

pal = forest.colors(2))
rgl: :rglwidget ()

Figure 2: Ground classified subset point cloud

Digital Terrain Model (DTM)

plot_dtm3d(dtm)
rgl: :rglwidget ()

Height normalized point cloud (point cloud with effect of terrain removed)

plot (hnorm,

size = 3,

bg = "white")
rgl::rglwidget ()

Canopy Height Model (CHM)

plot_dtm3d(chm)
rgl: :rglwidget ()

Figure 3: 3D visualization of DTM raster

Figure 4: Height normalized point cloud, Colored by height scale: red = higher relative height, blue = lower
relative height

Figure 5: 3D visualization of CHM raster

Individual shrub detection and segmentation using Local Maxima
Filter (1mf, 1idR) and Variable Window Filter (vwf, ForestTools)

Smoothing CHM

CHM Smoothing (3z3 kernel, uses mean value)
library (rLiDAR)

schm <- rLiDAR::CHMsmoothing(chm, "mean", 3)
detach("package:rLiDAR", unload = TRUE)

Plotting original CHM and Smoothed CHM

par(mfrow = c(1,2), mar=c(5, 2.5, 2, 2))
plot(chm,
col = height.colors(25),
main = "CHM")
plot(schm,
col = height.colors(25),
main = "Smoothed CHM")
par(mfrow = c(1,1), mar=c(5, 4, 4, 2))

Individual shrub detection using 1mf with 1idR

shrubtops_lmf <- locate_trees(schm,lmf(2, hmin = 0, shape = "circular"))
plot(schm, col = height.colors(25), main = "ITD with LMF (1idR)")
plot(shrubtops_lmf$geometry, add = TRUE, col='black', pch = 1)

Ezporting individual detected shrubs as a point shapefile (LMF)

remove Z values (cannot export as point shapefile with Z values)
shrubtops_lmf_shp <- st_zm(shrubtops_lmf)

#exporting as shapefile
st_write(shrubtops_lmf_shp,

dsn = 'Outputs\\IndividualDetectedShrubs\\shrubtops_lmf.shp',
driver = "ESRI Shapefile")

Individual shrub detection using vwf with ForestTools

Set function for determining variable window radius
winFunction <- function(x){x * 0.04}

10

4801950 4801960

4801940

CHM Smoothed CHM

(]
[(o]
(o))
2 -
[o0]
<r
1.0
0.8 o
[g]
06 ez
0.4 o
<r
02
0.0
(@]
<r
()]
2 -
o0
<r
I I I I
712030 712040 712030 712040

Figure 6: CHM vs smoothed CHM plots

11

1.(
0.¢
0.
0.
0.2
0.C

4801944 4801948 4801952 4801956

ITD with LMF (lidR)

712030 712035 712040 712045

Figure 7: Individual shrubs detected from LMF method

12

1.0
0.8
0.6
0.4
0.2
0.0

Set minimum shrub height (shrub tops below this height will not be detected)
minHgt <- 0.001

Detect shrub tops in canopy height model
shrubtops_vwf <- vwf(schm, winFunction, minHgt)

plot(schm, col = height.colors(25), main = "ITD with VWF (ForestTools)")
plot (shrubtops_vwf, add = TRUE, col='black', pch = 1)

Exporting individual detected shrubs as a point shapefile (VWF)

Converting spatialpointsdataframe to simple feature to export as shapefile
shrubtops_vwf_shp <- st_as_sf (shrubtops_vwf)

st_write(shrubtops_vwf_shp,

dsn = 'Outputs\\IndividualDetectedShrubs\\shrubtops_vwf.shp',
driver = "ESRI Shapefile")

ITD with VWF (ForestTools)

4801944 4801948 4801952 4801956

712030 712035 712040 712045

Figure 8: Individual shrubs detected from VWF method

13

1.0
0.8
0.6
0.4
0.2
0.0

Individual shrub delineation using silva2016 algorithm with 1idR

crowns_silva_lmf <- silva2016(schm,
shrubtops_Imf,
max_cr_factor = 1.56,
exclusion = 0.001) ()
crowns_silva_vwf <- silva2016(schm,
shrubtops_vwf,
max_cr_factor = 1.56,
exclusion = 0.001) ()

plot(schm, col = height.colors(25), main = "Shrub delineation silva2016 for LMF")
plot(crowns_silva_lmf, add = TRUE, legend = FALSE, col = 'black')

plot(schm, col = height.colors(25), main = "Shrub delineation silva2016 for VWF")
plot(crowns_silva_vwf, add = TRUE, legend = FALSE, col = 'black')

NOTE:

e Usually, trees are taller than they are wide. Hence default max crown diameter is set to 0.6
(max_cr_factor).

— 1i.e., no larger than 60% of the total height of the tree.

o« HOWEVER, shrubs are wider than they are tall (field data showed avg height = 56.8 cm vs avg width
= 88.4 cm)

— Therefore, in this case, max_cr_factor set by average height to d1 ratio from field data = 1.56

Converting cell values of raster for export

o cell values with 1 = delineated shrub
o cell values with 0 = non-shrub

crowns_silva_Imf[!is.na(crowns_silva_lmf[])] <- 1
crowns_silva_lmf[is.na(crowns_silva_lmf[])] <- O

crowns_silva_vwf['!is.na(crowns_silva_vwf[])] <- 1
crowns_silva_vwf [is.na(crowns_silva_vwf[])] <- 0O

writeRaster (crowns_silva_lmf,
'Outputs\\IndividualDetectedShrubs\\IndvShrubs_Silva_LMF.tif')

writeRaster(crowns_silva_vwf,
'Outputs\\IndividualDetectedShrubs\\IndvShrubs_Silva_VWF.tif')

14

4801950 4801956

4801944

4801950 4801956

4801944

Shrub delineation silva2016 for LMF

| | | | | |
712025 712030 712035 712040 712045 712050

Figure 9: Individual shrubs delineated from VWEF method

Shrub delineation silva2016 for VWF

| |
712025 712030 712035 712040 712045 712050

Figure 10: Individual shrubs detected from VWF method

15

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
04
0.2
0.0

Using CHM-based shrub-top detection to segment point cloud

This can be used as an alternative to the methods presented in the Point Cloud segmentation of individual
shrubs (without using CHM raster) section. This method segments the point cloud based on the shrub-tops
detected with the CHM-based algorithm. The following code uses the shrubs-tops detected by the Silva2016
algorithm, the same code can be used for other CHM-based methods (e.g., VWF method).

set CHM-based algorithm in an R-object
algo_1lmf <- 1lidR::silva2016(schm, shrubtops_lmf)

Segement point cloud
shrubSegmentedPC_silva2016_lmf <- 1idR::segment_trees(hnorm, algo_lmf)

The output of this algorithm looks similar to the one presented in the next section — Figure 11.

16

Point Cloud segmentation of individual shrubs (without using
CHM raster)

remove ground; 2 = ground, 0 = non—ground
shrubOnly_filterLAS <- filter_poi(hnorm_PC, Classification == 0)

start_time <- Sys.time()
shrub_las_fullPC <- segment_trees(hnorm_PC,
algorithm = 1i2012(R = 0,

dti1 1.0,

dt2 = 1.0,
speed_up = 3.5,
hmin = 0.15),

attribute = "treelD")
end_time <- Sys.time()
time_taken <- end_time - start_time
print(time_taken)

start_time <- Sys.time()
shrub_las_NonGroundOnlyPC <- segment_trees(shrubOnly_filterLAS,
algorithm = 1i2012(R = 0,

dtl1 = 1.0,

dt2 = 1.0,
speed_up = 3.5,
hmin = 0.15),

attribute = "treeID")
end_time <- Sys.time()
time_taken <- end_time - start_time
print (time_taken)

length(unique (shrub_las_fullPC@data$treeID)) # 49 segmented shrubs
total run time = 6.49288 mins

length(unique (shrub_las_NonGroundOnlyPC@data$treeID)) # 48 segmented shrubs
total run time = 1.47063

Exporting
writeLAS (shrub_las_fullPC,
"Direct_PCSegmentation_IndvShrub\\pointcloud\\ShrubSeg_FullPC.las")

writeLAS (shrub_las_NonGroundOnlyPC,
"Direct_PCSegmentation_IndvShrub\\pointcloud\\ShrubSeg_ GroundRemoved.las")

Import PC segmented individual shrub point cloud
(if already run previous code in this code cell)
shrub_las_NonGroundOnlyPC <- readLAS("Outputs\\ShrubDelineation\\ShrubSeg_GroundRemoved.las")

plot(shrub_las_NonGroundOnlyPC,
size = 3,
color = 'treelD',
pal = pastel.colors(50),

17

bg = "white")
rgl::rglwidget ()

Figure 11: Individual shrubs detected from direct point cloud segmentation

Exporting individual shrubs

export point cloud by individual shrub:

set output directory
out_dir <- "Direct_PCSegmentation_IndvShrub\\pointcloud\\IndvShrubs_NonGroundPCSeg\\"

removes any NAs
shrub_ID_list <- c(unique(na.omit(shrub_las_NonGroundOnlyPC@data$treeID)))

for (shrub in shrub_ID_list) {

temp_las <- filter_poi(shrub_las_fullPC, treeID == shrub)
file <- paste(as.character(shrub), "shrub.las", sep="")
writeLAS(temp_las,paste(out_dir,file,sep = ""))

}

Creating polygon of delineated shrubs (for accuracy assessment)

18

use '"concave" to delineate detailed crowns from PC segments
shrubs_outline <- delineate_crowns(shrub_las_NonGroundOnlyPC,
attribute = "treeID",
type = "concave",
concavity = 2)

spplot (shrubs_outline, "treelD",
col.regions = random.colors(length(unique(shrub_las_NonGroundOnlyPC@data$treeID))))
Export as shapefile for accuracy assesment in ArcGIS
writeOGR(obj = shrubs_outline,
dsn="Direct_PCSegmentation_IndvShrub\\IndvDelineatedShrub_shp\\IndvDelineatedShrub_PC.shp",
layer="IndvDelineatedShrub_PC",
driver="ESRI Shapefile",
overwrite_layer = TRUE)
OPTIONAL: convert outline wector to raster

require(fasterize)

shrubs_outline_sf <- st_as_sf(shrubs_outline)
shrubs_outline_raster <- raster(shrubs_outline_sf, res = 0.1)

shrubs_raster <- fasterize(shrubs_outline_sf, shrubs_outline_raster, field = NULL)
plot(shrubs_raster)
writeRaster (shrubs_raster,

'Direct_PCSegmentation_IndvShrub\\raster\\DelineatedShrubs_PC.tif',
overwrite = TRUE)

19

Figure 12: Individual shrubs delineated from point cloud segmentation method

Interactive 3D model of point cloud segmented individual shrubs

Ezxecute code below to create a 3D window and scroll around with mouse, required to export as .html

shrub_las_NonGroundOnlyPC <- readLAS("Outputs\\ShrubDelineation\\ShrubSeg_GroundRemoved.las")

1lidR: :plot (shrub_las_NonGroundOnlyPC,
size = 3,
color = 'treelD',
pal = colorRampPalette(pastel.colors(50)),
bg = "white")
shrub_las_Widget <- rgl::rglwidget()

saveWidget (shrub_las_Widget, "Outputs\\ShrubDelineation\\shrub_las_Widget.html")

Define a function to gemerate HTML code for an rgl widget

renderRglWidget <- function(file) {
htmltools::includeHTML(file)

}

Render the rgl widgets using HTML and CSS
htmltools: :tags$div(
style = "display: flex; flex-wrap: wrap;",
htmltools::tags$div(renderRglWidget ("Outputs\\ShrubDelineation\\shrub_las_Widget.html"),
style="width: 100%;")

20

References

o Creating a CHM from point cloud (TUTORIAL): https://r-lidar.github.io/lidRbook/chm.html
e Publication on tutorial for individual tree detection using point cloud data:

— Main paper: https://www.degruyter.com/document/doi/10.1515/geo-2020-0290/html?lang=en
— Tutorial in supplementary material: https://www.degruyter.com/document/doi/10.1515/geo-
2020-0290/download Asset /suppl/geo-2020-0290__sm.pdf

Roussel, J.-R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.-F., de
Boissieu, F.,; Achim, A., 2020. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data.
Remote Sensing of Environment 251, 112061. https://doi.org/10.1016/j.rse.2020.112061

Plowright, A., Roussel, J.-R., 2021. ForestTools: Analyzing Remotely Sensed Forest Data.

Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal
10, 439-446.

21

https://r-lidar.github.io/lidRbook/chm.html
https://www.degruyter.com/document/doi/10.1515/geo-2020-0290/html?lang=en
https://www.degruyter.com/document/doi/10.1515/geo-2020-0290/downloadAsset/suppl/geo-2020-0290_sm.pdf
https://www.degruyter.com/document/doi/10.1515/geo-2020-0290/downloadAsset/suppl/geo-2020-0290_sm.pdf
https://doi.org/10.1016/j.rse.2020.112061

	Load necessary libraries
	Data preparation: clipping point cloud (subset)
	Creating a Canopy Height Model (CHM) from point cloud
	STEP 1: Load point cloud dataset file
	STEP 2: Classify ground and non-ground points
	STEP 3: Create digital terrain model (DTM) with ground classified points
	STEP 4: Create height normalized point cloud with DTM
	STEP 5: Create CHM using height nomalized point cloud and DTM

	Summary of data products generated (from point cloud to CHM)
	Intitial point cloud
	Ground/non-ground classified point cloud
	Digital Terrain Model (DTM)
	Height normalized point cloud (point cloud with effect of terrain removed)
	Canopy Height Model (CHM)

	Individual shrub detection and segmentation using Local Maxima Filter (lmf, lidR) and Variable Window Filter (vwf, ForestTools)
	Smoothing CHM
	Plotting original CHM and Smoothed CHM
	Individual shrub detection using lmf with lidR
	Individual shrub detection using vwf with ForestTools
	Individual shrub delineation using silva2016 algorithm with lidR
	Converting cell values of raster for export
	Using CHM-based shrub-top detection to segment point cloud

	Point Cloud segmentation of individual shrubs (without using CHM raster)
	Exporting individual shrubs
	Creating polygon of delineated shrubs (for accuracy assessment)

	Interactive 3D model of point cloud segmented individual shrubs
	References

