
DNN-based visual perception for high-precision
motion control

Vibhor Jain∗, Sajid Mohamed†, Dip Goswami∗, Sander Stuijk∗
∗Eindhoven University of Technology, †ITEC B.V.

{v.jain, d.goswami, s.stuijk}@tue.nl, sajid.mohamed@itecequipment.com

Abstract—The high-speed, high-precision positioning of objects
is a critical component in various industrial manufacturing
processes. The semiconductor die packaging, for instance, requires
the precise pickup and placement of semiconductor dies on sub-
strates. This is done by coupling the silicon wafer which contains
thousands of semiconductor dies, with a motion control platform
equipped with linear motors and encoders. The motion controller
relies on linear motors and encoders to accurately position the
silicon wafer at reference positions, which are determined through
the relative positions of the dies on the wafer. However, the
challenge arises when neighboring dies get misaligned during
the pickup process, making it impossible to read the position
of the die through encoders. This paper addresses the challenge
of precise alignment in high-speed, micro-scale manufacturing
environments, where traditional methods struggle due to the
disconnect between the point-of-interest (dies) and point-of-control
(motor/silicon wafer). To overcome these challenges, we propose
a Deep Neural Network (DNN) based perception that allows
for robust sensing of die positions. We also propose a fusion
mechanism to incorporate this vision feedback with the encoder
to accurately detect the misalignment and compensate for it
before periodic pickups of the dies. We use a software-in-the-loop
validation framework to demonstrate that our proposed method
could successfully eliminate the misalignment before the pickup
in the range under consideration.

Index Terms—DNN based perception, vision-in-the-loop, high-
precision control, semiconductor manufacturing

I. INTRODUCTION

The high-speed, high-precision positioning system represents
a fundamental component within numerous industrial man-
ufacturing systems. Typically, these systems are responsible
for transporting objects to predefined pick-up or placement
locations with the help of motion control systems, where
specialized mechanisms retrieve or deposit the objects. For
example, in the die-bonding process of semiconductor man-
ufacturing a fundamental task is picking up the semiconductor
die from the silicon wafer and placing it onto the substrate.
This is done by mounting the wafer on top of a physical
platform (e.g. wafer stage) with linear motors and encoders
to apply force on the platform to move the wafer (which
is the point-of-control) at predefined reference positions and
accurately read the position of the platform at high rates. The
reference positions corresponds to the thousands of dies (point-
of-interest) on the wafer, and are defined through the initial
layout of all the dies with respect to the wafer ensuring that
a particular die gets aligned with the pickup position when
the wafer is moved there, as shown in Fig. 1. Once the dies

This work was supported by ECSEL Joint Undertaking in H2020 project
IMOCO4.E [1], grant agreement No.101007311

reach the reference position, they are periodically picked up for
further processes like quality inspection and ultimately placed
onto the substrates. While picking up the die, the neighboring
dies get misaligned from their initial positions.

The performance of these systems depends on the precise
alignment of the object with the pick-up or placement location.
This in-turn requires accurately sensing the position of the
object, which is a challenging task especially in domains like
semiconductor manufacturing, not only due to the micro-scale
precision (product size of 200 µm to 10 mm) and extremely high
throughput (production rate of up to 72,000 units/hour ≈ 50ms
per product [2]) required in such domains, but also a fundamen-
tal disconnect between the point-of-interest (dies) and point-
of-control (motor/wafer). This means that any noise added to
the point-of-interest is hard to detect, and therefore compen-
sated through the motion controller. Therefore, multi-sensor
approaches with vision-based perception to read the position
of the point-of-interest are being researched. The vision-based
sensing methods are capable of reading the true position (with
disturbances) of the point-of-interest which when incorporated
efficiently with the motion controller can precisely position the
point-of-interest to the reference. Although classical computer
vision algorithms have been around for a while, they are less
robust [3] and require a lot of manual configurations to locate a
particular object in an image. Therefore, Deep Neural Network
(DNN) based solutions are more favorable as they are robust
and can be used to detect the positions of the objects in an
image with high-precision. This comes at a cost of higher
computation and processing delays, making it challenging to
incorporate them with motion control systems.

Fig. 1. Set of semiconductor dies located on a silicon wafer. The encoder reads
the position of the wafer and the camera captures an image of the (partial) die(s)
in the ROI. The dies are positioned at the reference by moving the wafer.



Contributions: The paper proposes the use of Deep Neural
Network (DNN) based perception for vision-in-the-loop (VIL)
systems in high-precision motion control. In particular, we con-
sider the alignment problem in semiconductor die packaging.
To efficiently use the vision feedback with the encoder readings,
a fusion mechanism is introduced. For validation of the VIL
system with the proposed fusion mechanism, a software-in-the-
loop (SIL) framework is developed. With the help of this SIL
framework, we evaluate the performance of the closed-loop
system with different vision sampling rates. We further present
a worst-case analysis to eliminate the misalignment in a die
positioning system.

II. MOTIVATION AND PROBLEM STATEMENT

In this section, we introduce the application of a high-
precision motion control system for die positioning in semi-
conductor die packaging (Fig. 1). We introduce the overall
system architecture and relevant design elements as shown in
Fig. 2. Next, we formulate the system dynamics and introduce
the multi-sensor sensing setup and the relevant challenges in
designing a multi-sensor estimator and controller for these
kinds of systems.

Fig. 2. Block diagram of the system, with the linear encoder and camera as
sensors, multi-sensor estimator, and PID controller.

A. System description

For the scope of the paper, for simplicity, we consider a
one-dimensional system, though the same approach applies
to the actual system, which is two-dimensional, without any
significant modifications. The system is composed of a linear
motor which is used to control the position of the platform
which has the silicon wafer with thousands of dies systemati-
cally placed onto it. This pattern is defined by the coordinates
representing the ideal position of the dies di with respect to
the center of the wafer. For example, in Fig. 1 since the dies
1, 2, and 3 are on the right side of the center of the wafer
d1, d2 and d3 are negative constants. In practice, as the dies
are distributed uniformly on the wafer, these values can be
defined by just two parameters, the die size and the center-
to-center distance between the neighboring dies. The primary
goal of the motion control system is to accurately position these
semiconductor dies one after the other at the reference position
where they can be picked up. To achieve this task the output
of linear motors is sensed by encoders, which accurately read
the movements of the motor and therefore the wafer (point-
of-control). The positioning task is achieved by defining a set
of control references with the help of the ideal positions of

the semiconductor dies with respect to the wafer i.e. di.For
example, to maintain the throughput of more than 70,000 units
per hour a die is picked up every 50 ms. During pickup, the
neighboring dies get misaligned from their initial positions.
This misalignment is denoted by mi

k with respect to the ideal
position of the die. To sense this misalignment vision feedback
is used by capturing the images of the die in the camera’s
Region of Interest (ROI) and using an object detector to get
the true position of the die and thus the misalignment of the
die from its ideal position.

B. System dynamics

The discretized dynamics of the motion control platform are
represented by the following equations:

xk+1 = φxk + γuk (1)

zk =Cxk (2)

The system is an eighth-order single input single output system,
where xk is the state vector, uk is the input (force applied by the
motor) and zk is the output (position of the wafer) at an instance
k. The matrices φ and γ are the discrete-time state transition,
input matrices for the base sampling period of hencoder obtained
by:

φ = eAhencoder , (3)

γ =
∫ hencoder

0
eAtdtB, (4)

where A ∈ R8×8, B ∈ R8×1 and C ∈ R1×8 represent the sys-
tem matrices obtained by system identification using the data
collected from the machine.

C. Multi-sensor sensing setup

As mentioned earlier, the system has two sensors i.e. linear
encoders and the camera. Encoder has a sampling period
of hencoder and its readings are available almost instantly. It
measures the linear displacement of the wafer in one sample
as zw

k and the coordinate of the wafer at any instance k with
respect to the reference is obtained by:

zk =
k

∑
n=0

zw
k ,

where zw
0 is the initial coordinate of the center of the wafer,

which is a known constant. The encoder feedback for the die
with index i (as shown in Fig. 1 for die 1) which is about to
be picked up is determined using

zi
e,k = zk +di (5)

The camera has a sampling rate of hcamera and the center of
its region of interest (ROI) is aligned with the origin. The
images are captured after every hv =

⌈
hcamera
hencoder

⌉
number of

encoder samples, i.e. one image is captured after every hv
encoder samples. To obtain the vision feedback, the image
imgk, captured by the camera at an instance k is passed to
a DNN-based object detector (Section IV) which has a worst-
case execution time of τvision, so the vision feedback is obtained
τv =

⌈
τvision

hencoder

⌉
samples after the image is captured. The object



detector returns the true coordinate of the die with respect to
the origin. The vision feedback, denoted by zi

v,k+τv
is also able

to determine the misalignment mi
k of the die from its ideal

position.

D. Problem statement

In the context of the multi-sensor multi-die positioning
system, the control problem is to design a controller with output
uk that can accurately position the die at the references. To
sense the misalignment with the help of above mentioned two
sensors with different sampling rates and delays, an estimator
is required that can accurately estimate the actual position of
the die, i.e. ideal position and the misalignment from the ideal
position.

III. RELATED WORK

Visual perception is emerging as a crucial approach for
sensing in high-precision motion control systems, especially
in applications like industrial manufacturing such as semicon-
ductor die packaging as these systems are becoming more
sophisticated and performance-demanding. Although sensors
such as encoders, potentiometric, and hall effect sensors have
been a go-to choice for these systems, they are not enough
to deal with the dynamically changing environments of these
systems.

In recent years, there have been significant advancements in
the field of computer vision, particularly in the development
of deep learning algorithms such as Deep Neural Networks
(DNNs). These networks have shown promising results in
several computer vision tasks, like [4] and [5] for image
classification, [3], [6] and [7] for object detection, and [8] for
segmentation. They provide a significant performance improve-
ment over their classical computer vision counterparts like [9]
and [10] to identify and locate an object in an image.

Visual perception has been studied extensively, especially in
semiconductor manufacturing for tasks such as defect detection
in [11], [12] and [13]. Where [11] uses classical computer
vision, [12] and [13] use DNN-based approaches to detect
semiconductor dies with faults. Even though these methods
have proven to be effective in detecting and locating the dies
with defects on the wafer, they are only used without any real-
time constraints as seen in the die positioning applications.
Therefore, using visual perception for object detection in high-
precision die positioning systems presents challenges, such as
the need for computational resources and significant delays in
processing times. Strategies to use vision feedback in closed-
loop system have been proposed in [14] and [15] which uses
classical computer vision algorithm, which although requires
less processing, but requires a significant manual configuration
for each product and are generally less robust to the dynamic
nature of these systems. Therefore incorporating DNNs as a
means of visual perception in performance-demanding motion
control systems remains a challenging task.

IV. DNN-BASED OBJECT DETECTION PIPELINE

To develop a robust object detection model specifically
designed for locating semiconductor dies within a region of

interest (ROI), we leverage the Faster R-CNN [6] architecture
with a ResNet-50 [5] feature pyramid network (FPN) [16],
known for its precision and speed in computer vision tasks. The
Faster R-CNN model detects the object by drawing a bounding
box around the object, represented by coordinates of the top-
left and bottom-right corners of the box. Our approach begins
with transfer learning, fine-tuning a model pre-trained on the
COCO [17] dataset with our dataset generated with the help
of the SIL framework described in Section VI. The dataset is
composed of around 2,000 top-down images of semiconductor
dies, which are used for fine-tuning and testing the model
performance. This fine-tuning process allows the network to
adapt its feature representations to the unique characteristics
of our data, a crucial step for achieving high accuracy in
object detection. The object detection pipeline shown in Fig. 3
comprises several key components each performing a crucial
task to obtain the accurate position of the die. The components
with their functions are discussed below.

A. Feature extractor

The ResNet-50 FPN model takes the input image and generates
feature maps from the image. These feature maps are spatially
scaled down (1/4, 1/8, 1/16, and 1/32) dimensions of the
input image with 256 channels, generated from the output of
different layers of ResNet-50 model and they contain high-level
information about the composition of the input image and allow
the model to identify the objects at various scales. These scaled-
down feature maps are then passed to the subsequent layers to
locate and classify the object that might be present.

B. Region Proposal Network

Faster R-CNN incorporates a region proposal network (RPN)
to generate potential bounding box proposals around the semi-
conductor die. The RPN scans the feature maps produced by
the backbone and provides the regions that might contain the
semiconductor die. RPN does this by utilizing anchor boxes,
which are pre-defined bounding boxes of different scales and
aspect ratios that serve as references. At different spatial posi-
tions in the feature map, the RPN generates multiple proposals
using these anchor boxes. The output of the RPN is the set of
regions in the image that might contain the die (Fig. 3, RPN
block) with a rough estimation of the die’s size. This along with
their corresponding feature maps is passed to the ROI pooling
layer.

C. ROI Pooling

Since the feature maps have different scales the output of
previous layers needs to be made consistent to be fed to the
subsequent fully connected layers. Thus, ROI pooling needs
to be applied to these regions to ensure that they all have a
consistent size, the same as the dimension of the next fully
connected layer.

D. Classification and Regression

The fixed-size feature maps from the ROI pooling are passed
through fully connected layers. These layers branch out into
two output layers - one for object classification and the other



Fig. 3. DNN-based object detection pipeline for misalignment detection. Comprising of Faster R-CNN architecture with ResNet-50 FPN with NMS
post-processing to obtain the vision feedback zv,k+τv for imgk .

for bounding box regression. Object classification determines
the chance of the object belonging to a certain pre-defined
class which in our case is the semiconductor die. Bounding
box regression refines the anchor boxes around the die and
gives a precise estimation of the die position and its shape.

E. Post-processing

The output of fully connected layers results in one or more
bounding boxes drawn around the semiconductor die. To refine
these predictions and eliminate redundancy, Non-Maximum
Suppression (NMS) is used. NMS is a crucial post-processing
step that ensures only the most relevant bounding boxes are
retained. NMS works by iteratively selecting the bounding box
with the highest confidence score and suppressing (removing)
any other boxes that have a significant overlap with it. This pro-
cess continues until all boxes have been evaluated. The result is
a set of non-overlapping bounding boxes, each corresponding
to a distinct die in the image if multiple dies are present. The
bounding box output is generated as the top-left and bottom-
right corner of the die, the center of the die is the mid-point
of these two. In cases where a partially occluded die is present
in the image, no vision feedback is generated. The position of
the relevant die is then converted to the world coordinates by
using the camera calibration parameters. As these are obtained
through visual feedback, they accurately tell the position of the
die with respect to the reference and are thus used to compute
the misalignment of the die from its ideal position.

V. DNN-BASED ESTIMATION AND CONTROL

The position estimates from the two sensors have different
sampling rates and delays. Furthermore, in the case of DNN-
based feedback, there can be situations when the die is not
entirely present in the ROI and misalignment can not be
estimated. To run the control loop at the rate of 1/hencoder an
estimator is required which can incorporate the feedback from
the two sensors.

A. DNN-based estimation

The goal of the DNN-based estimation block is to give an
accurate estimate of the position of the die to the motion con-
troller. It updates the misalignment value after every successful
detection of the die in the image as follows:

mi
k = zi

v,k−τv
− zi

e,k−τv
(6)

where mi
0 is the actual misalignment of the die, zi

v,k−τv
is the

delayed vision feedback, i.e. the position dies at an instance
k− τv obtained at an instance k and zi

e,k−τv
is the position of

the die sensed by the encoder when the image was captured to
obtain the vision feedback. With this, the true position of the
die is estimated by:

ẑk = zi
e,k +mi

k (7)

This position estimation is used by the controller to move the
wafer ensuring precise positioning of the die at the reference.

B. Motion controller

The motion controller uses a PID controller with a set of
references ri. These set of references are target coordinates of
the wafer that ensures ith die to be at origin and are therefore
defined as ri =−di.

The error for the PID controller at any given instance is thus
computed as:

ei
k = ri− ẑk (8)

and the controller output uk is given by:

uk = Kpei
k +Ki

k

∑
i=0

ei
k +Kd(ei

k− ei
k−1)

where Kp, Ki, and Kd are proportional, integral, and derivative
constants respectively.

C. Control with DNN-based estimation

The logic of the die positioning system for the multi-die
scenario with DNN-based estimation is shown in Algorithm 1.
The images are captured after every hv sample (line 7) and
sent to the DNN-based object detection pipeline to detect the
die’s true position. Depending on the position of the die in the
captured image, there can be two possible outputs of the vision
feedback :
1) Die is not detected: When the die is partially present in
the camera ROI estimating the center of the die is not possible
since extrapolation is not possible due to the irregular shape of
the dies, therefore a complete die needs to be in the ROI to
be able to detect misalignment. In that case, mi

k remains 0 and
the controller relies on the encoder feedback to move the die
toward the reference and inside the ROI. While that happens
the vision pipeline keeps running.
2) Die is detected: When the first vision feedback is obtained,



Fig. 4. Timing diagram of the encoder, camera, object detection and estimator blocks

Algorithm 1 control with DNN-based estimation
1: k← 0, i← 1
2: for i← 1 to N do ▷ N = number of dies
3: ri←−di

4: mi
k← 0

5: while k ̸= i(PickupPeriod/hencoder) do
6: if k mod hv is 0 then
7: imCapture← k ▷ imgk→ Object Detector
8: else if k is (imCapture+ τv) then
9: if zi

v,k−τv
̸= null then

10: mi
k← zi

v,k−τv
− zi

e,k−τv
11: end if
12: end if
13: ẑk← zi

e,k +mi
k

14: ei
k← ri− ẑk ▷ ei

k→ PID controller
15: k← k+1
16: end while
17: end for

and the misalignment is known, the controller gets the updated
ẑk from the estimator. After every successful detection of the
die ẑk is updated and the detected misalignment is used by
the estimator till the next update. Thus the misalignment used
in equation 7 is same for k ∈ [nhv + τv,(n+ 1)hv + τv), where
n∈W. The inner loop (line 5) ensures that the die is picked up
at a time corresponding to its pickup period, and the outer loop
(line 2) updates the die index and the reference associated with
it. Fig. 4 shows how these two conditions affect the estimator
output for handling vision feedback for three images imgk,
imgk+n and imgk+(n+1)hv . Since imgk doesn’t have the die inside
the ROI, the estimator output ẑk+τv is the same as encoder
feedback at that instance i.e. zi

e,k+τv
. Whereas for imgk+nhv ,

since the die is present in ROI, the misalignment mi
k+nhv+τv

is computed as per equation 6, which is used till next vision
feedback is available at instance k+(n+1)hv + τv.

VI. SIL VERIFICATION FRAMEWORK

To validate the proposed method for correcting misalignment
in the semiconductor die packaging, we create a model of
discrete-time dynamics of the wafer for multi-die positioning

scenarios within the Unity engine [18]. The object detector,
controller, and estimator are developed in Python. The Python
script acts as a server and the Unity model as a client, both
operating in synchronous simulation for software-in-the-loop
(SIL) verification as shown in Fig. 5. The base sampling period
hencoder is 0.125ms, which is also used to obtain φ and γ in
equations 3 and 4. The framework allows image captures at a
rate of 1/hencoder, which is not possible to achieve in the real
system but allows us to gain important insights on controller
performance by varying vision feedback rates.

Fig. 5. Synchronous simulation framework for vision-in-the-loop system
A. Simulation flow
The simulation begins by initializing the Python server and
Unity client. During the initialization process, references are
generated for the controller based on the number of dies and
their ideal positions. After the initialization, the main control
loop starts where the Unity client sends the sensor data to the
Python server which is then used by the object detector and
fusion module to compute the control action as per the logic
discussed in the previous section. The Unity model waits till
the control action is received and processes the control action in
the context of the current state. Based on the control action the
force is applied to the wafer and the updated sensor readings are
taken and sent to the Python server. To maintain the production
throughput of more than 72,000 units per hour, a die has to be
picked up every 50ms which is implemented in the periodic
pickup block.



B. Multi-die scenario
The multi-die scenario involves 3 dies of size 200µm×200µm
with 300µm center-to-center distance between neighbouring
dies. With the initial wafer position, zw

0 = 1200µm, the ideal
positions di of dies with respect to the wafer are d1 =−900µm,
d2 =−600µm and d3 =−300µm respectively. From equation 5
the ideal coordinates of the dies with respect to origin are
300 µm, 600 µm and 900 µm respectively. For the dies to be
picked up every 50 ms they have to reach the reference with
an error of less than ±20µm (±10% of the die size) which
corresponds to the physical limitation of the pickup mechanism.
Although we consider three die scenarios, the framework can be
used to generate different scenarios with different die features
(like their sizes, and center-to-center distances) for many dies.

VII. RESULTS

To analyze the behavior of the multi-die positioning system
we use the above-mentioned SIL framework and the die config-
uration with the two misalignment profiles m1 and m2 described
in Table I. Along with the two misalignment profiles, an ideal
scenario is considered with no misalignment in die positions.

A. Performance metrics
To study the performance of the motion control system with

vision feedback we consider two key metrics Steady State Value
(SSV) i.e. the position of the dies at every 50 ms mark when
they have to be picked up and Mean Absolute Error of the
estimator during every 50 ms run.

TABLE I
CONFIGURATION OF MULTI-DIE SCENARIO

Die
(i)

Initial die Position
(zi

e,0)
Control Reference

(ri) m1 m2

1 300 900 -20 20
2 600 600 -25 25
3 900 300 -30 30

B. Closed-Loop Performance without vision feedback
The solid lines in Fig. 6 show the position of the individual

dies during the motion control cycle for their pickup, without
vision feedback. For the ideal scenario (shown in red) since
there is no misalignment the dies reach the reference with close
to zero steady-state value with the controller settling time of
49.75 ms. Whereas in cases with misalignment m1 (blue) and
m2 (green), the pickup is not guaranteed as they reach the
reference with the same misalignment since it is not detected
by the encoder feedback.

C. Closed-loop performance with vision feedback
The dotted lines in Fig. 6 show the performance of the die

positioning system with the vision feedback of hv = 128 with
τv = hv−1 so that the vision feedback is made available to the
controller as fast as possible. hv = 128 means that an image is
captured every hv×hencoder = 128×0.125ms = 16ms and if the
die is present in the camera’s ROI, the vision feedback is used
to estimate the true position of the die. So in both cases m1
and m2 the misalignment is detected for all the dies in time
and they converge towards the reference.

..

320
300
280

0

0.150.100.050

-20

 20

-25

 25

-30

 30

Die 1 Die 2 Die 3

reference

hv=128 ,m 2.. 
hv=128 ,m 1

Ideal scenario
No vision, m1
No vision, m2

0.13
Time [s]

D
is

ta
nc

e 
[µ

m
]

Fig. 6. Coordinates of dies for motion control with and without vision feedback
for misalignment profiles m1 and m2 compared with the ideal scenario.

D. Design space exploration

The closed-loop performance depends heavily on how fre-
quently the vision feedback can be provided to the controller i.e.
vision sampling rate (hv). To study the effect of hv on the con-
troller performance we consider three cases with hv = 8,64,128.
Fig. 7 and Fig. 8 show how the controller error (equation 8)
is computed for different vision sampling rates. The spikes in
the plots show when the first vision feedback is made available
to the controller as per equation 7. The plots also show the
point when the images corresponding to these corrections are
captured, i.e. the first image with the die in ROI. Although
the object detection pipeline keeps running, it is clear from the
plots that the controller only needs the vision feedback at least
once to correct the misalignment.

1st image with 
die in ROI

Die 1 Die 2 Die 3

0.150.100.050

300 hv=8
hv=64
hv=128

E
rr

or
 [

µ
m

]

Time [s]
Fig. 7. Controller error with vision feedback rate hv = 8, 64,128 for misalign-
ment profile m1

Table II shows the performance (SSV and MAE) of the
closed-loop system with different vision sampling rates. In
the cases with an SSV in the range of [−20 µm,20 µm] the
dies are within the acceptable misalignment range, and can be
picked up. So in case of m2, for die 1 with a misalignment of
20 µm and the controller with no vision feedback, it reaches
the reference with an SSV of 20.30 µm, which is out of the
acceptable range of SSV.

E. Worst case analysis

From Fig. 7 and Fig. 8 it is clear that the controller needs at
least one vision feedback to compensate for the misalignment.
After receiving the vision feedback, the controller requires a



0.150.100.05

300 Die 1 Die 2 Die 3

1st image with 
die in ROI

hv=8
hv=64
hv=128

0

E
rr

or
 [

µ
m

]

Time [s]
Fig. 8. Controller error with vision feedback rate hv = 8, 64,128 for misalign-
ment profile m2

TABLE II
PERFORMANCE OF THE CLOSED-LOOP SYSTEM

m1 m2

hv Die SSV
µm

MAE
µm Pick-up SSV

µm
MAE
µm Pick-up

Without
vision

feedback

1 -19.61 20.0 Yes 20.30 20.0 No

2 -24.70 25.0 No 25.47 25.0 No

3 -29.34 30.0 No 30.32 30.0 No

8
1 0.31 2.61 Yes 0.36 3.03 Yes

2 0.25 2.51 Yes 0.13 3.00 Yes

3 0.23 2.89 Yes 0.18 4.14 Yes

64
1 0.53 6.68 Yes 1.02 6.90 Yes

2 -0.29 8.2 Yes 1.02 8.47 Yes

3 -0.20 9.91 Yes 0.99 9.93 Yes

128
1 -1.29 13.16 Yes 3.59 12.89 Yes

2 -1.87 16.27 Yes 3.80 16.09 Yes

3 -2.97 19.36 Yes 4.08 19.29 Yes

certain time to compensate for the misalignment using only the
encoder feedback with period hencoder. For example in Fig. 6,
the vision feedback is available at 130 ms and the controller
has around 20 ms to move the die 3 to the reference. We refer
to this time as the time to reject disturbance, which depends
on the magnitude of the disturbance and when the first vision
feedback is made available to the controller, and for the range of
misalignment considered in this work, it is around 20 ms. The
delay in receiving the vision feedback after the image capture
is τv (≈ hv in our case). In addition, a delay is imposed due
to the time when the die enters the ROI to the time when the
processing of the corresponding image starts. In the worst case,
this delay can be as long as hv i.e. in the scenario when the die
enters the ROI just after an image is captured. In total the worst
case time to correct the misalignment using vision feedback is
≈ 2×hv+ time to reject disturbance. In our work, for hv = 128
the worst case correction time would be 2× 16+ 20 = 52ms.
This further imposes the maximum effective vision sampling
period for a given application scenario.

VIII. CONCLUSION AND FUTURE WORK

In the domain of vision-in-the-loop control systems, many
works have been reported in the literature that use classical
vision processing algorithms, which are manually configured to
detect high-level features (like edges), of the objects in the im-
ages to generate the feedback for the system. To the best of our
knowledge, this is the first work that exploits the robustness of
DNN-based perception in closed-loop motion control systems.
We demonstrated the effectiveness of the proposed method
using an industrial case study. This opens up many future
directions such as model optimization to reduce the compute
time, model deployment on edge compute platforms, and fusion
of the vision feedback with other sensing technologies and
many more.

REFERENCES

[1] S. Mohamed et al., “The IMOCO4.E reference framework for intelligent
motion control systems,” in ETFA, 2023.

[2] G. van der Veen, J. Stokkermans, N. Mooren, and T. Oomen, “How
learning control supports industry 4.0 in semiconductor manufacturing,”
in Proceedings of the 2020 ASPE Spring Topical Meeting on Design and
Control of Precision Mechatronic Systems, 2020.

[3] V. Jain, S. Mohamed, D. Goswami, and S. Stuijk, “Vision-based multi-
size object positioning,” in DSD, 2023.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” NIPS’12, p. 1097–1105, 2012.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” 2016.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” 2016.

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2018.
[9] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect

lines and curves in pictures,” Communications of the ACM, 1972.
[10] D. G. Lowe, “Object recognition from local scale-invariant features,” in

Proceedings of the seventh IEEE international conference on computer
vision, 1999.

[11] M. P.-L. Ooi, H. K. Sok, Y. C. Kuang, S. Demidenko, and C. Chan,
“Defect cluster recognition system for fabricated semiconductor wafers,”
Engineering Applications of Artificial Intelligence, pp. 1029–1043, 2013.

[12] G. Wen, Z. Gao, Q. Cai, Y. Wang, and S. Mei, “A novel method
based on deep convolutional neural networks for wafer semiconductor
surface defect inspection,” IEEE Transactions on Instrumentation and
Measurement, pp. 9668–9680, 2020.

[13] D. Zhan, R. Huang, K. Yi, X. Yang, Z. Shi, R. Lin, J. Lin, and
H. Wang, “Convolutional neural network defect detection algorithm for
wire bonding x-ray images,” Micromachines, 2023.

[14] C. Jugade, D. Hartgers, et al., “Improved positioning precision using a
multi-rate multi-sensor in industrial motion control systems,” in ECC,
2023.

[15] S. Mohamed, A. U. Awan, D. Goswami, and T. Basten, “Designing
image-based control systems considering workload variations,” in 58th
IEEE Conference on Decision and Control, CDC 2019.

[16] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” 2017.

[17] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” 2015.

[18] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A general platform
for intelligent agents,” 2020.


	Introduction
	Motivation and Problem Statement
	System description
	System dynamics
	Multi-sensor sensing setup
	Problem statement

	Related Work
	DNN-Based Object Detection pipeline
	Feature extractor
	Region Proposal Network
	ROI Pooling
	Classification and Regression
	Post-processing

	DNN-based estimation and control
	DNN-based estimation
	Motion controller
	Control with DNN-based estimation

	SIL Verification Framework
	Simulation flow
	Multi-die scenario

	Results
	Performance metrics
	Closed-Loop Performance without vision feedback
	Closed-loop performance with vision feedback
	 Design space exploration
	Worst case analysis

	Conclusion and future work
	References

