
688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 1 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

Resource Trading, Security and Federation
Mechanisms

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy
Universität Zürich, UZH, Switzerland

© Copyright 2018, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 2 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Document Control

Title: D3.2 - Resource Trading, Security and Federation Mechanisms

Type: Public

Editor(s): Jose Antonio Sanchez / Joaquin Iranzo Yuste

E-mail: jose.sanchezm@atos.net / joaquin.iranzo@atos.net

Author(s): Joaquin Iranzo (Atos), Jose Antonio Sanchez (Atos), Joao Garcia (UW),
Pietro Tedeschi (CNIT), Giuseppe Piro (CNIT), Gennaro Boggia (CNIT), Giuseppe Bianchi
(CNIT) Michał Pilc (PSNC), Mikołaj Dobski (PSNC), Vasilis Glykantzis (ICOM), Christoph
Ruggenthaler (AIT), Pavle Skocir (UniZG-FER)

Doc ID: D3.2 - Resource Trading, Security and Federation Mechanisms.doc

Amendment History

Version Date Author Description/Comments

v0.1 23/10/2017 Jose Antonio Sanchez Initial ToC and assigned sections.

V0.2 13/11/2017 All First version of the content to be consolidated

V0.3 24/11/2017 All Consolidation of Federation, security and introduction

V0.4 04/12/2017 All Consolidation of Bartering section and alignment with the Federation

V0.5 11/11/2017 Joaquin Iranzo Yuste Consolidated version to be reviewed internally by the WP3 partners.

V0.6 13/12/2017 Jose Antonio Sanchez Contributions by partners completed

V0.7 14/12/2017 Mikołaj Dobski, Pietro Tedeschi Grammar corrections

V0.8 14/12/2017 Jose Antonio Sanchez Consolidated version ready for final review

V0.9 15/12/2017 Michał Pilc Proof reading

V1.0 22/12/2017 Jose Antonio Sanchez Final version

V1.1 05/01/2018 Sergios Soursos Final editing for submission-ready version

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 3 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Table of Contents

1 Executive Summary 8

2 Introduction 9

2.1 Purpose of the Document 9

2.2 Structure and Overview 9

3 Architecture for IoT platform federations 10

3.1 Overview 10

3.2 Compliance Level 2 12

3.3 Component description 14

3.4 Architecture adaptations 15

4 Platform Federation Mechanisms 17

4.1 Introduction 17

4.2 Federation Management 17

4.2.1 Federation Management workflow 17

4.3 Resource Management in Federations 22

4.3.1 Resource Sharing Workflow 23

4.3.2 Search and Access to Resources within a Federation 25

4.4 SLA and QoS Enforcement within Federations 28

4.4.1 SLA 28

4.4.2 QoS Enforcement: Monitoring 32

4.5 Trust and Reputation Approach 34

4.5.1 Resource Trust 37

4.5.2 Platform Reputation 38

4.5.3 Adaptive Resource Trust 39

4.6 Federated Resource Recommendations 40

4.7 Conclusions and Future Work 42

5 Bartering and Trading 43

5.1 Overview 43

5.2 Fundamentals 43

5.3 Survey about Practice and Concepts of Cooperation 44

5.4 Fundamental Bartering and Trading Scenarios 45

5.5 Bartering Sequence Diagram 47

5.6 Conclusion and Future Work for B&T 49

6 Federated Security 50

6.1 Baseline 50

6.2 Authentication 50

6.2.1 Credentials Validation 50

6.2.2 Revocation 51

6.2.3 Mutual authentication 51

6.3 Authorization 51

6.3.1 Authorization token 52

6.3.2 Tokens supporting federations 52

6.3.3 Access Policies 52

6.4 Adverse Events Detection 53

6.4.1 Zipkin 53

6.4.2 Anomaly Listener Extension 53

6.5 Security Levels 54

6.6 Security Interfaces and Services supporting federations 55

6.6.1 AAMs: Interfaces and Services 55

6.6.2 Security Handler (SH): Interfaces and Services 56

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 4 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

6.7 Plans for Security 56

7 Conclusion and Next Steps 57

References 58

8 Abbreviations 59

9 Annex A – Answers of questionnaires 61

10 Annex B – Updated implementation of L1 70

10.1 Certificates acquisition 70

10.1.1 Clients’ / Components’ Certificates acquisition 71

10.1.2 Platform AAM intermediate CA certificate acquisition from Core AAM 72

10.2 Token acquisition 73

10.2.1 Home token acquisition 73

10.2.2 Foreign token acquisition 73

10.2.3 Guest Token Acquisition 75

10.3 Access to resource 75

11 Annex C - Multi-Domain Access Rights Composition 79

11.1 eXtensible Access Control Markup Language (XACML) Engines 82

11.1.1 ABAC Framework Comparison 84

11.2 XACML in symbIoTe 85

11.3 Custom JSON Resolver for Access Policies 86

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 5 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Table of Figures

Figure 1. symbIoTe General Architecture ... 10

Figure 2 Levels of compliance in symbIoTesymbIoTe .. 11

Figure 3 symbIoTe federations ... 12

Figure 4. Creating a federation ... 13

Figure 5. Resource Management .. 13

Figure 6. L2 Components ... 14

Figure 7. Manage (Create, Join and Leave) federations – Core Domain interaction 19

Figure 8 Manage (Create, Join and Leave) federations – Cloud Domain interaction 20

Figure 9. Manage resources within the federations .. 23

Figure 10 Search and access resources within the federation 26

Figure 11. Component diagram of SLA Manager (SLAM) 29

Figure 12 Sequence diagram of the SLA lifecycle .. 30

Figure 13. WS-Agreement data format ... 31

Figure 14. Monitoring framework .. 32

Figure 15. Multi-level trust management. .. 35

Figure 16. Sequence diagram of trust management ... 36

Figure 17. Platform reputation .. 38

Figure 18. Adaptive Resource Trust ... 39

Figure 19. Sequence diagram of Federated Resource Recommendations 41

Figure 20. Sequence diagram of Bartering ... 48

Figure 21. Interactions for anomaly detection ... 54

Figure 22. Offline Mode .. 55

Figure 23. Online Mode .. 55

Figure 24 Sequence Diagram of certificates acquisition 71

Figure 25 Sequence Diagram of intermediate CA certificate acquisition 72

Figure 26. Full online .. 73

Figure 27. Sequence Diagram of foreign token acquisition................................. 74

Figure 28. Sequence Diagram of guest token acquisition 75

Figure 29. Sequence Diagram of access to resource ... 76

Figure 30. Multi-Domain Access Rights Composition ... 79

Figure 31. Sequence Diagram of Multi-Domain Access Rights Composition 80

Figure 32. XACML Architecture .. 83

Figure 33. XACML Architecture proposal in symbIoTe 85

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 6 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Table of Tables

Table 1. Core Authentication and Authorization Manager................................... 33

Table 2. Classification of platform owners .. 46

Table 3 Answers to questioners .. 69

Table 4 Certificates acquisition ... 70

Table 5 ABAC Framework Comparison Table .. 84

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 7 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

(This page is left blank intentionally.)

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 8 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

1 Executive Summary

This deliverable describes the architecture and mechanisms that allow a set of IoT
platforms to form federations in which they may share resources directly with minimal
control from a central entity, i.e., the symbIoTe Core Services instance. Furthermore it
explains the different forms of resource sharing, be it freely or through bartering, as well as
the security features that we have implemented in order to achieve this result.

In symbIoTe, a federation is a set of IoT platforms that collaborate to share their IoT
resources with the rest of the group, providing added value to native and adapted
applications by broadening the number and diversity of resources that a single platform
cannot achieve on its own. By joining one or more of such federations, a symbIoTe-
enabled platform will offer the possibility to create new types of applications that expand
beyond its own initial capabilities and it will do so in a secure, controlled and reliable way.

Platforms may choose to share their resources freely with the rest of the federation, by
guaranteeing certain Quality of Service levels to be provided during access to these
resources, or by bartering them for future access to another platform’s resources. For
resources shared for free, Service Level Agreements will guarantee that the access to
these resources meets a minimum level of quality related to availability and performance,
so we can rule out the possibility of platforms sharing only the less valuable or even the
malfunctioning devices that they may have. For bartering, resource access is guaranteed
as long as the rest of the platforms in the federation allow access to some of their
resources in a fair way and failing to do so will affect their reputation.

All interactions between the federated platforms happen without a central registry and
access is granted directly from platforms to applications without any kind of intermediary or
centralized registry. This means that security needs to be enhanced in order to be sure
that resources are discoverable and accessible only by the authorized users who are
registered and recognized by, at least, one of the platforms inside a federation. By
extending the symbIoTe security framework to work in a purely distributed environment,
we are able to provide fine grain access control that is based on three pillars:

• Certificates for authentication of both applications and components,
• JSON Web Tokens (JWT) for authorization,
• A challenge-response protocol to verify the authenticity of both sides in every

interaction.
Finally, an anomaly detector monitors the interactions between the platforms in the
federation and, together with resource health metrics and access statistics, feeds the Trust
Manager component, which will assign trust values to resources and foreign platforms as a
whole. This will further enhance the reliability and security of the federations, and helps to
identify unreliable resources and platforms.

This document provides a detailed description of the interactions and mechanisms of
platform federations in symbIoTe and introduces the components that we have designed in
order to achieve them. It starts by providing a general overview of the federation concept
in symbIoTe, with details about the main processes like federation management, resource
sharing, trust calculation or Quality of Service assessment, to later give a detailed
explanation of the bartering and trading implementation. Finally, we provide a
comprehensive description of the security features that we have implemented in order to
execute all this interactions in secure and reliable way.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 9 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

2 Introduction

2.1 Purpose of the Document

The purpose of this deliverable is to provide a detailed description of the implementation of
federation mechanisms in symbIoTe, its advantages and features with special emphasis
on the resource sharing and bartering functionality and the security issues associated to it.
They will be discussed in detail, providing implementation solutions for each one of these
aspects. This deliverable also serves as the basis for the future work towards the final
implementation of symbIoTe federations.

2.2 Structure and Overview

Section 3 summarizes the concepts associated to symbIoTe architecture of levels and
domains, putting a special attention to the Level 2 of compliance as it describes the main
features, interactions, components and adaptations needed to achieve it, both in the
centralized symbIoTe Core as well as in each individual platform that wants to be
federated.

Section 4 introduces the concept of federations and the mechanisms that we will use to
implement them. These mechanisms will include the management of Quality of Service
parameters through Service Level Agreements and the reputation calculation for platforms
and resources.

Section 5 talks about bartering and trading mechanisms and provides a detailed
description of the implementation for bartering, including sequence diagrams and
architectural components and interactions.

Section 6 describes the security issues relevant to platform federations and the
mechanisms that we are implementing to overcome them.

Section 7 gives conclusions and highlights future work in all relevant tasks towards the
final implementation of platform federations within symbIoTe.

At the end of the document, three annexes provide highly detailed descriptions of concepts
presented at high level within the deliverable.

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

3 Architecture for

This section will describe the high
federations based on the principles and components provided by symbIoTe. T
architecture will allow these
controlled and secure way with minimal intervention of a centralized core. Furthermore,
with some work from platform owners, native applications already existing could benefit
from symbIoTe, broadening the number of resources they can access in a transparent
way. We will describe how this can be achieved first, by providing an overview of the
symbIoTe concepts of domains and levels of compliance, then focusing on Level 2, which
is the one allowing platform federations and finally, by describing the components that
make all this possible.

3.1 Overview

The symbIoTe vision is based on two concepts: domains and levels of compliance. There
are four different domains and four levels of complianc
they are not equivalent one to one. While the notion of domains is closer to architectural
concepts and location of components, levels of compliance refer to
interoperability features achieved by the different platf
symbIoTe stack.

There are four domains in symbIoTe which are shown

Figure

• Application Domain:
advertise IoT resources in a central registry. Domain specific enablers provide extra
functionalities for concrete use cases.

• Cloud Domain: Provides standardized
Interworking API.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

for IoT platform federations

This section will describe the high-level architecture that we envision for IoT platform
federations based on the principles and components provided by symbIoTe. T

 platforms to share resources among them in a reliable,
controlled and secure way with minimal intervention of a centralized core. Furthermore,
with some work from platform owners, native applications already existing could benefit

ymbIoTe, broadening the number of resources they can access in a transparent
way. We will describe how this can be achieved first, by providing an overview of the
symbIoTe concepts of domains and levels of compliance, then focusing on Level 2, which

one allowing platform federations and finally, by describing the components that

The symbIoTe vision is based on two concepts: domains and levels of compliance. There
are four different domains and four levels of compliance. Although the numbers match,
they are not equivalent one to one. While the notion of domains is closer to architectural
concepts and location of components, levels of compliance refer to

achieved by the different platforms collaborating through the

There are four domains in symbIoTe which are shown in Figure 1.

Figure 1. symbIoTe General Architecture

 Refers mainly to the Core Services and allows platforms to
advertise IoT resources in a central registry. Domain specific enablers provide extra
functionalities for concrete use cases.

Provides standardized access to IoT platforms through the

Resource Trading, Security and Federation Mechanisms

Page 10 of 87

level architecture that we envision for IoT platform
federations based on the principles and components provided by symbIoTe. This

platforms to share resources among them in a reliable,
controlled and secure way with minimal intervention of a centralized core. Furthermore,
with some work from platform owners, native applications already existing could benefit

ymbIoTe, broadening the number of resources they can access in a transparent
way. We will describe how this can be achieved first, by providing an overview of the
symbIoTe concepts of domains and levels of compliance, then focusing on Level 2, which

one allowing platform federations and finally, by describing the components that

The symbIoTe vision is based on two concepts: domains and levels of compliance. There
e. Although the numbers match,

they are not equivalent one to one. While the notion of domains is closer to architectural
concepts and location of components, levels of compliance refer to different

orms collaborating through the

Refers mainly to the Core Services and allows platforms to
advertise IoT resources in a central registry. Domain specific enablers provide extra

access to IoT platforms through the

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

• Smart Space Domain:
in smart spaces.

• Smart Device Domain:
to successfully roam betwe

A more complete description of this domains and their architecture can be found in
Deliverable D1.4 [1].

This is one of the pillars of the symbIoTe architecture. Another one is the levels of
compliance, which are shown in

Figure

We distinguish four levels of compliance

• Level 1 (L1) - Syntactic and semantic interoperability:
interworking interface, which allows them to advertise their resources in the core,
providing access to third parties through the core services
and semantic interoperability

• Level 2 (L2) - Enterprise interoperability:
capable of forming federations among themselves, allowing them to share
resources without the aid of symbIoTe Core Services;

• Level 3 (L3) - Dynamic smart spaces:
which allow them to communicate between different smart spaces;

• Level 4 (L4) - Roaming devices:
devices to roam between smart spaces using th

As shown in Figure 2, domains and levels
might use components and services spread
complete description of the different levels of compliance please see
in this document we will focus on the question
compliance.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

omain: Provides discovery and registration services for IoT devices

omain: Provides services and capabilities needed by IoT devices
to successfully roam between smart spaces.

A more complete description of this domains and their architecture can be found in

This is one of the pillars of the symbIoTe architecture. Another one is the levels of
compliance, which are shown in Figure 2.

Figure 2 Levels of compliance in symbIoTe

We distinguish four levels of compliance [1]:

Syntactic and semantic interoperability: Platforms provide an
interworking interface, which allows them to advertise their resources in the core,
providing access to third parties through the core services and achieving syn
and semantic interoperability;

Enterprise interoperability: Platforms compliant
capable of forming federations among themselves, allowing them to share
resources without the aid of symbIoTe Core Services;

Dynamic smart spaces: Platforms integrate symbIoTe components
which allow them to communicate between different smart spaces;

Roaming devices: Platforms compliant with Level 4 allow their
devices to roam between smart spaces using the symbIoTe services.

, domains and levels are related such as one level of compliance
might use components and services spread across different dom
complete description of the different levels of compliance please see D

focus on the question how platforms can achieve

Resource Trading, Security and Federation Mechanisms

Page 11 of 87

Provides discovery and registration services for IoT devices

Provides services and capabilities needed by IoT devices

A more complete description of this domains and their architecture can be found in

This is one of the pillars of the symbIoTe architecture. Another one is the levels of

Platforms provide an
interworking interface, which allows them to advertise their resources in the core,

and achieving syntactic

Platforms compliant to Level 2 will be
capable of forming federations among themselves, allowing them to share

Platforms integrate symbIoTe components
which allow them to communicate between different smart spaces;

Platforms compliant with Level 4 allow their
e symbIoTe services.

ne level of compliance
different domains. For a more

Deliverable 1.4 [1] as
tforms can achieve Level 2

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

3.2 Compliance Level 2

As stated above, platforms compliant to Level 2 will be able to form federations.
free them from a central IoT resources repository and it will also provide means for
resource bartering and Quality
issues need to be addressed with utmost care
share resources directly among platforms in a reliable, controlled and secure way

Figure 3 shows a high-level overview of several platforms participating in federations. In
the Core Services, we store information
themselves such as membership
than one federation at the same time and may choose to share some resources with either
one or both.

Federations are created by an administrator
resources shared among the federation must comply with.

When a platform joins the federation at a later time, it will receive the information that will
trigger some interactions among components of the Cloud Domain to enforce the
compliance with the required Service Level Agreement (SLA).

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Compliance Level 2

As stated above, platforms compliant to Level 2 will be able to form federations.
free them from a central IoT resources repository and it will also provide means for

uality of Service control. As in any decentralized system, security
addressed with utmost care and symbIoTe will provide mechanisms to

share resources directly among platforms in a reliable, controlled and secure way

Figure 3 symbIoTe federations

level overview of several platforms participating in federations. In
information about QoS constraints and federation

themselves such as membership. As shown in the figure, a platform may belong to more
than one federation at the same time and may choose to share some resources with either

ons are created by an administrator, defining Quality of Services rules
resources shared among the federation must comply with.

When a platform joins the federation at a later time, it will receive the information that will
ons among components of the Cloud Domain to enforce the

compliance with the required Service Level Agreement (SLA).

Resource Trading, Security and Federation Mechanisms

Page 12 of 87

As stated above, platforms compliant to Level 2 will be able to form federations. This will
free them from a central IoT resources repository and it will also provide means for

any decentralized system, security
ymbIoTe will provide mechanisms to

share resources directly among platforms in a reliable, controlled and secure way.

level overview of several platforms participating in federations. In
about QoS constraints and federation parameters

As shown in the figure, a platform may belong to more
than one federation at the same time and may choose to share some resources with either

defining Quality of Services rules that the

When a platform joins the federation at a later time, it will receive the information that will
ons among components of the Cloud Domain to enforce the

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

Once a platform becomes a member
Contrary to the Level 1 compliance
Resource metadata is kept on the local platform side and distributed with the rest of the
platforms through notifications

Figure

As shown in Figure 5, an application looks for resource
will receive notifications about available

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Figure 4. Creating a federation

a member of a federation, it may share some of its resources.
y to the Level 1 compliance [1][3], there isn’t any centralised

is kept on the local platform side and distributed with the rest of the
platforms through notifications.

Figure 5. Resource Management

, an application looks for resource metadata in its local platform but it
notifications about available resources from any other plat

Resource Trading, Security and Federation Mechanisms

Page 13 of 87

of a federation, it may share some of its resources.
centralised resource registry.

is kept on the local platform side and distributed with the rest of the

in its local platform but it
resources from any other platform in the

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

federation as well. As in Level 1, the access to resources is
platform that owns/manages the resource.

At a high level, federation management
three basic interactions within
are a series of components in both the Application domain and the Cloud domain that
need to be either created or modified

3.3 Component description

To achieve Level 2 compliance,
architecture that is defined and described in deliverables

Figure 6 shows components
components are highlighted in yellow, while updated ones are highlighted in green.

• Administration: GUI based administration tool. Updated to allow the management
of federations;

• Core Bartering and Trading:
interactions in a centralized way;

• Core Anomaly Detector:
solutions that are unknown by the deployment time)
violations by using a signatureless approach;

• Registry: Stores information about federations such as membership and Quality of
Service constraints;

• SLA engine: Hosts and monitors Service Level Agreements signed by the
platforms when they join a feder

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

federation as well. As in Level 1, the access to resources is performed
the resource.

federation management, resource sharing and resource access
n Level 2 compliant platforms. In order to support

are a series of components in both the Application domain and the Cloud domain that
need to be either created or modified compared to the Level 1 solution.

Component description

compliance, we reuse and extend several components of
and described in deliverables D1.4 [1] and D2.5

Figure 6. L2 Components

shows components placed in the Application and Cloud domain
components are highlighted in yellow, while updated ones are highlighted in green.

GUI based administration tool. Updated to allow the management

Bartering and Trading: Performs the validation of
in a centralized way;

Core Anomaly Detector: Detects 0-day attacks (targeting vulnerabilities in our
solutions that are unknown by the deployment time) and other types of sec

signatureless approach;
Stores information about federations such as membership and Quality of

Hosts and monitors Service Level Agreements signed by the
platforms when they join a federation;

Resource Trading, Security and Federation Mechanisms

Page 14 of 87

performed directly on the

resource access are the
Level 2 compliant platforms. In order to support them, there

are a series of components in both the Application domain and the Cloud domain that
.

and extend several components of Level 1
and D2.5 [3].

in the Application and Cloud domains. New
components are highlighted in yellow, while updated ones are highlighted in green.

GUI based administration tool. Updated to allow the management

 resource bartering

(targeting vulnerabilities in our
and other types of security

Stores information about federations such as membership and Quality of

Hosts and monitors Service Level Agreements signed by the

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 15 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Monitoring: Gathers metrics from resources managed by the platform. Updated to
monitor and aggregate metrics relevant to SLAs that will guarantee a certain level of
QoS;

• Resource Access Proxy: Enables symbIoTe compliant access to resources within
an IoT platform or enabler acting as a platform, updated to enable access with
coupons for bartering;

• Subscription Manager: This is a new component that acts as a notification
producer and receiver for events regarding resource sharing and updating across
platforms in a federation.

• Authentication and Authorization Manager (AAM): Provides tokens and
certificates that allow applications to search and access resources and components
to communicate between them in a secure way. It has been updated to work locally
on platforms and independently from the symbIoTe Core.

• Optimization Manager: Supports the suggestion of equivalent resources (from
other platforms) if these resources are collocated in the same federation to optimize
power/energy consumption, apply load balancing of equivalent resources, and/or
enable global cost reduction within the federation. This is done by finding about
similar resources within the federation that can be used indistinctly in case of need.

• Trust Manager: Supports a platform owner or application in taking informed
decisions about foreign resource selection or platform interactions by calculating
resources and platforms trust levels based their properties and interactions.

• Platform Registry: Enables the registration of IoT Devices and (Composite) IoT
Services, which are offered by IoT platforms to be discoverable by other federated
IoT platforms (L2 compliance).

• Federation Manager: Manages all required federation information needed at the
platform level by passing the information to the rest of the components as required.

• Bartering and Trading Manager: Manages the bartering and trading between IoT
platforms as far as this can happen in a decentralized way.

A more complete description of these components can be found in D1.4 [1] and they will
be further explored and described as well in the rest of the sections of this deliverable.

3.4 Architecture adaptations

We have made some adjustments to the architecture compared to the initial one described
in D1.4 [1]. The goal was to design federations in a decentralized way and to decrease the
dependency on the central Core for basic functions such as SLA enforcement and
bartering interactions. The outcomes of this effort are the following:

• The SLA Manager now resides in the Cloud Domain, at the platform side, while
before it was hosted in the symbIoTe Core. This decreases the traffic going from
platforms to the core, as we now do not need a centralized monitoring component
for SLA enforcement. Also, the number of SLAs to be monitored gets lower, as
each platform has to monitor one SLA per federation it belongs to, while before the
core had to validate one SLA per platform and federation in each cycle, which put a
greater burden on Core Services.

• The Core Bartering and Trading component now acts as a centralized validator of
coupons, but not an issuer. This removes the need for global bartering and trading

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 16 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

rules and provides autonomy for each platform to decide which resources are
shared for bartering under its own terms.

The obvious disadvantage of this improved solution is that platform owners need to
configure an extra microservice for their platforms, but we believe that the advantages
outweigh the disadvantages in this case, given the improvement on autonomy and
performance gained by a pure distributed approach.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 17 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

4 Platform Federation Mechanisms

4.1 Introduction

The symbIoTe platform federation management ensures efficient and secure inter-platform
communication and collaboration between multiple L2 compliant IoT platforms and
connected native applications. In contrast to L1, the sharing of resources within the setup
federation is handled directly between the involved platforms and does not require
interactions with the symbIoTe Core Services.

However, the administration (creation, update, deletion) of each federation object is still
done centrally by the Administration component in the Core domain. This approach allows
a central coordination of the administered federation object and provides a user interface
to platform owners when setting up general rules for L2 functionalities.

In the following subsections, we describe the overall federation administration and
management workflow by outlining the available features and interactions. The setup and
distribution of federations as well the registration and sharing of resources within the
federation are discussed. Next, SLA handling, trust calculation and resource
recommendation as additional features available within the symbIoTe L2 solution are
introduced and key functionalities and concepts are highlighted.

4.2 Federation Management

This section describes the federation management approach and workflow in the
symbIoTe ecosystem enabling organisational interoperability between symbIoTe-compliant
IoT platforms with minimal dependency on a central system.

4.2.1 Federation Management workflow

The entire workflow for managing (creating, updating, deleting) federations is split in two
major steps involving components in the Core and Cloud Domain:

1. Administration of federation object properties and platform members
The first step deals with the manual setup and configuration of required properties
per federation executed by an authenticated platform owner. After successful login,
the federation administration view is opened and the following information has to be
inserted according to the defined Meta Information Model object described in D2.4
[2]:

• Informative federation name to allow easy lookup and classification of the
intended purpose of the new federation,

• Public flag indicating if the federation is visible in all search requests or is
visible only to platforms which are federation members,

• SLA template which describes the agreed conditions and requirements for
all current and future platforms planning to join the federation (see section
4.4) and

• Members list that include all IoT platforms participating in this federation.

The membership in the federation is considered as by invitation only. Thus, only
platforms which are already members in the federation may add or remove other
IoT platforms. If the member list is modified, each affected platform owner will

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 18 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

receive a notification in the administration component to approve a new federation
join or leave request.

Currently, we assume that the consent for these changes have already been
agreed upon and signed offline between all involved parties. Thus, we do not
support any automatic voting or veto mechanisms without any manual interaction of
the platform owners.

2. Distribution of updates to and within federated IoT platforms
After successful validation and verification of the federation object, all affected
platforms are notified. Next, the changed information from the Administration
component, which is published in the Core, is pushed to all platform Federation
Managers located in the Cloud Domain.

Each Federation Manager is held responsible for keeping the current federation
state per platform and for ensuring that all concerned components within its
platform space are notified of the relevant changes as well. For tracing purposes
and analysis of actions requested by other components, the Federation Manager
also maintains a history log.

Figure 7 and Figure 8 depict a detailed workflow of federations management with each
component interaction and message is depicted and show all involved components in the
Core (blue) and Cloud (orange) Domain.

First, Figure 7 outlines the components and message flow in the Core Domain for the
federation management workflow and highlights its interactions for federation creation,
update and platform joining or leaving the federation. As depicted in the figure below,
message 12 propagates all changes made to the respective platforms.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 19 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 7. Manage (Create, Join and Leave) federations – Core Domain interaction

In Figure 8, a detailed process focusing on interactions between Federation Manager with
other components within the Cloud Domain is depicted. The interaction is triggered by
message 12 received from the Core Domain, as previously shown in Figure 7.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 20 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 8 Manage (Create, Join and Leave) federations – Cloud Domain interaction

Additionally, each sequence, message and procedure of the sequence diagram depicted
in both figures above will be explained in detail in the following paragraph below.

Platform owner login sequence:

• Message 1: Generated by the platform owner and sent to the Administration. It is
used to request access to the Administration (GUI).

• Message 2: Generated by the Administration and sent to the platform owner.

Create a federation sequence:

• Message 3a: Generated by the platform owner and sent to the Administration (GUI).
The Administrator can now create a new federation.

• Procedure 4a: The platform owner creates a new federation by inserting the
information (name, QoS constraints) regarding the federation via the Administration
GUI.

• Message 5a: Generated by the Administration GUI and sent to the Administration to
save the federation object.

• Message 6a: Generated by the Administration and sent to the Administration GUI to
inform of successful creation.

Update a federation sequence:

• Message 3b: Generated by the platform owner and sent to the Administration (GUI).
The Administrator can now update already joined federations.

• Procedure 4b: The platform owner updates the federation name via the
Administration GUI.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 21 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Procedure 5b: The platform owner updates the members of federation (adds and/or
removes platforms).

• Message 6b: Generated by the Administration GUI and sent to the Administration to
save the federation object.

• Message 7b: Generated by the Administration and sent to the Administration GUI. It
is used to request/inform the other platform owners about the changes regarding
the federation.

• Procedure 8b: The Administration GUI creates a notification to inform the platform
owners about a pending request.

Respond to join or leave a federation request (for each added or removed platform)
sequence:

• Message 9: Platform owner accepts or declines the federation join or leave request
in the Administration GUI which sends this message to the Administration.

• Message 10: The administration GUI sends this information to the Administration to
update the federation membership information. The Administration will then inform
about these changes to each affected platform (see message 15 on).

• Message 11: Generated by the Administration and sent to the Administration GUI. It
is used to acknowledge the previously received feedback.

Publish federation changes within federation sequence:

• Message 12: Generated by the Administration and sent to the Federation Manager.
It is used to update the federation affiliation of the platforms at the platform level.

• Procedure 13: The Federation Manager updates the federation information with
respect to the received data.

• Message 14: Generated by the Federation Manager and sent to the Authentication
& Authorization Manager. It is used to request the federation policy modification.

• Procedure 15: The Authentication & Authorization Manager performs the policy
update.

• Message 16: The Federation Manager informs the SLA Manager about changes in
its status of membership with a federation, passing the QoS constraints in case the
platform is joining the aforementioned federation.

• Message 17: the SLA Manager will act upon this notification. In case of joining, it
will sign a new SLA and send it to the Federation Manager. In case of leaving, it will
remove the previously enforced SLA.

• Message 18: generated by the SLA Manager to the Federation manager, it will
return the signed or unsigned SLA depending if the interaction is for joining or
leaving a federation.

• Message 19: Generated by the Federation Manager and sent to the Monitoring to
update the monitoring rules.

• Procedure 20: The Monitoring component updates the respective resource
monitoring rules.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 22 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 21: Generated by the Federation Manager and sent to Bartering &
Trading to update the trading rules.

• Procedure 22: The Bartering & Trading component updates the respective trading
rules based on the federation information.

• Message 23: Generated by the Federation Manager and sent to the Subscription
Manager to notify that a new platform is available in the federation.

• Procedure 24: The Subscription Manager updates the list of potential platforms it
has to notify to of resource availability within the federation.

• Message 25: Generated by the Administration and sent to the Registry. It is used to
inform the Registry about the update/creation of a federation within the symbIoTe
ecosystem.

4.3 Resource Management in Federations

In comparison to the L1 resource registration and sharing implementation [3], L2 facilitates
a peer-to-peer approach for resource metadata distribution among interested participating
federation members. Thus, L2 introduces a distributed resource management concept,
where updates are transmitted using the Publish/Subscribe Pattern.

The resource registration, update and delete operations within a federation are triggered
by the platform owner in a way similar to the workflow implemented for L1. However, the
specification of a particular set of federations where the resource is going to be offered,
triggers an alternative workflow where the local Platform Registry will receive and manage
all resource metadata registration and updates instead of the Core Registry. Thus, the
Core Domain does not hold any information with respect to offered or consumed resources
in the federation, which creates an additional layer of security and privacy as well as
eliminates a single point of failure. Next, the Platform Registry notifies the Subscription
Manager of changes in the availability of resources within the federation, which initiates
the distribution of this updates to the federated IoT platforms.

In detail, each Subscription Manager component maintains an up-to-date list of all
platforms within a federation (i.e. their Subscription Manager components) and their
subscriptions specifying interest of other platforms specific resources. This approach
enables an efficient and consistent way of notification distribution between federated
platforms as only interested parties receive resource updates and unnecessary message
broadcasts to all platforms are obviated.

Another point worth mentioning is that we do not enforce the overhead of using semantic
mapping inside federations. To this end, at creation time of a federation an optional Best-
Practice Information Model (BIM) can be selected which has to be used within this
federation. Additionally, any other common information model can be agreed that is going
to facilitate any data and metadata transactions within the federation. The used federation
information model should be a valid extension of the Core Information Model, as defined in
Deliverable D2.4 [2]. However, neither the validation against a particular instance of the
federation model nor mapping will be supported by the generic federation components. If
such functionalities are deemed as mandatory, the participating platforms should use
adequate Core Services and develop their own plugins to support semantic mapping.

The process of search and access to resources within the federation is similar to the L1
approach where an application searches the symbIoTe Core to find the desired resources,

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 23 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

and accesses the resources by using the RAP of the corresponding platform. Since in L2
approach symbIoTe Core is not used, an application searches for adequate resources
shared within a federation using its own Platform Registry. Access to the resources from
other platforms is, as in the L1 approach, enabled through the RAP of the corresponding,
in this case, federated platform.

Subsection 4.3.1 shows the workflow for sharing resource metadata within a federation,
i.e., how the metadata of the shared resources of a home platform is distributed to
interested federated platforms. Subsection 4.3.2 shows how an application registered with
a home platform can access resources from a foreign, federated platform.

4.3.1 Resource Sharing Workflow

The detailed workflow for resource sharing with interactions between components of home
(Platform A) and foreign platforms (Platform B) is shown in Figure 9.

We describe two workflows. In the first one, one platform owner shows interest in receiving
updates about some kind of resources which might be shared within the federation. Then,
another platform owner of a home platform adds descriptions of new resources, or updates
or deletes the existing ones within a federation. This information is stored in the Platform
Registry of the home platform that shares its resources and is distributed to other
interested platforms by the home and foreign Subscription Managers who forward received
updates to be stored by the foreign Platform Registries.

Figure 9. Manage resources within the federations

Subscription Workflow

• Message 1: Platform owner B sends a request to Subscription Manager to
subscribe for updates about some kind or resources.

• Message 2: If Subscription Manager doesn’t have a Home Token yet, it asks for
one to its home AAM.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 24 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 3: Home AAM sends the Home Token to Subscription Manager.

• Message 4: Subscription Manager in Platform B sends the subscription request to
Subscription Managers in the rest of the platforms of the federation. In this case, we
show the interaction with Platform A.

• Message 5: Subscription Manager in Platform A validates the Home Token sent
with Message 4 to its home AAM

• Message 6: AAM in Platform A communicates with AAM in Platform B to validate
the Home Token

• Message 7: AAM in Platform B validates the Home Token and sends the validity
status to AAM in Platform A

• Message 8: AAM in Platform A sends the validity status of the Home Token to
Subscription Manager in Platform A.

• Message 9: Subscription Manager in Platform A registers the interest of Platform B
in some kind of resources and returns the subscription status to Subscription
Manager in Platform B

Resource Sharing Workflow

• Message 1: Platform owner A sends a request to Registration Handler in its own
platform to add new resources to a federation or to update or delete the existing
ones.

• Message 2: Registration Handler sends login request to home AAM and receives
home token. If Registration Handler already has Home Tokens, this interaction does
not occur.

• Message 3: Generated by Platform A’s Registration Handler and sent to the its own
Platform Registry. Its main purpose is to provide the metadata describing a
resource or a set of resources, which the platform exposes to the Federation.

• Message 4: Generated by Platform A’s Platform Registry and sent to its own
Subscription Manager, which will notify other platforms within the federation of new,
updated or removed resources.

• Procedure 5: Find platforms interested in the updated resources. This is done
during a matching process which compares subscriptions from federated platforms
with metadata specifying new or cancelling existing resources.

• Message 6: Generated by the Platform A’s Subscription Manager and sent to the
federated platform Subscription Manager in Platform B. The message contains
information about the new, updated or removed resources. This information is
forwarded only to platforms with a matching subscription specifying interest in new
resources (platforms are identified in Procedure 5).

• Message 7: generated by Platform B’s Subscription Manager and sent to its own
AAM to request the Token validation performed between foreign and home AAM.

• Message 8: generated Platform B’s Subscription Manager and sent to its Platform
Registry.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 25 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Procedure 9: Platform Registry in Platform B stores the metadata of new or updated
resources, or removes the metadata of deleted resources.

4.3.2 Search and Access to Resources within a Federation

This sequence diagram in Figure 10 shows the interactions to access a shared resource
within a federation. Here, two scenarios may be distinguished:

1. Native App adapted to cope with symbIoTe security principle and mechanisms or
symbIoTe-enabled app developed from scratch.

In this scenario, the app logs directly in with the AAM and receives valid tokens.
This allows direct access to the offered resource from the federated platforms. Here
we have to keep in mind that the application itself has to convert/translate the
foreign data format into its native data structure.

2. Native App only supports the native AuthZ of the platform

Here, the native application does not need to be touched nor made symbIoTe
aware. To enable the same security level as with all other symbIoTe applications
the Application and App Security Handler (shown below) act as a symbIoTe client
wrapper for native applications. This wrapper, which can be deployed in the
platform Cloud Domain, ensures the consistent security approach and may be used
for data transformation.

The diagram depicts scenario two, which includes symbIoTe client wrapper, which can
also have the functionality of the aforementioned plugin performing mappings between
different information models of federated platforms.

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

Figure 10 Search and access resources

• Message 1 (optional):
symbIoTe Client Wrapper. It is used to trigger the recovery of the HOME token from
the Platform A. If the Application is already logged in Platform A, it is not

• Message 2 (optional): G
Application Security Handler. It is used to trigger the recovery of the HOME token
from the Platform A. If the Application is already logged in Platform A, it is not
necessary.

• Message 3 (optional):
AAM. It is used to trigger the recovery of the HOME token from the Platform A. If
the Application is already logged in Platform A, it is not necessary.

• Message 4 (optional):
the Application Security Handler. It is used to provide the HOME token with
attributes included. If the Application is already logged in Platform A, it is not
necessary.

• Message 5 (optional): G
A and sent to the symbIoTe Client Wrapper. It is used to provide the HOME token

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Search and access resources within the federation

Message 1 (optional): Generated by the Native Application and sent to the
symbIoTe Client Wrapper. It is used to trigger the recovery of the HOME token from
the Platform A. If the Application is already logged in Platform A, it is not

Generated by the symbIoTe Client Wrapper and sent to the
Application Security Handler. It is used to trigger the recovery of the HOME token
from the Platform A. If the Application is already logged in Platform A, it is not

Message 3 (optional): Generated by the Security Handler and sent to the home
AAM. It is used to trigger the recovery of the HOME token from the Platform A. If
the Application is already logged in Platform A, it is not necessary.

onal): Generated by the home AAM in the platform A and sent to
the Application Security Handler. It is used to provide the HOME token with
attributes included. If the Application is already logged in Platform A, it is not

Generated by the Application Security Handler in the platform
A and sent to the symbIoTe Client Wrapper. It is used to provide the HOME token

Resource Trading, Security and Federation Mechanisms

Page 26 of 87

within the federation

enerated by the Native Application and sent to the
symbIoTe Client Wrapper. It is used to trigger the recovery of the HOME token from
the Platform A. If the Application is already logged in Platform A, it is not necessary.

enerated by the symbIoTe Client Wrapper and sent to the
Application Security Handler. It is used to trigger the recovery of the HOME token
from the Platform A. If the Application is already logged in Platform A, it is not

enerated by the Security Handler and sent to the home
AAM. It is used to trigger the recovery of the HOME token from the Platform A. If
the Application is already logged in Platform A, it is not necessary.

enerated by the home AAM in the platform A and sent to
the Application Security Handler. It is used to provide the HOME token with
attributes included. If the Application is already logged in Platform A, it is not

Application Security Handler in the platform
A and sent to the symbIoTe Client Wrapper. It is used to provide the HOME token

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 27 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

with attributes included. If the Application is already logged in Platform A, it is not
necessary.

• Message 6 (optional): Generated by the symbIoTe Client Wrapper in the platform A
and sent to the Native Application. It is used to provide the HOME token with
attributes included. If the Application is already logged in Platform A, it is not
necessary.

• Message 7: Generated by the Native Application and sent to the symbIoTe Client
Wrapper to find the available resources.

• Procedure 8: Transforms the request to the format understandable to Platform
Registry

• Message 9: Generated by the symbIoTe Client Wrapper and sent to the Platform
Registry to find the available resources.

• Message 10: Generated by the Platform registry and sent to the symbIoTe Client
Wrapper. It contains the list of available resources.

• Procedure 11: Transforms the response to the format understandable to the Native
Application

• Message 12: Forwards the list of available resources from symbIoTe Client
Wrapper to the Native Application

• Message 13: Request for resource data generated by the Native Application, sent
to symbIoTe Client Wrapper

• Message 14 (optional): Request for FOREIGN tokens, which enable access to
resources in Platform B. It is generated by symbIoTe Client Wrapper and sent to the
Security Handler. If the Client Wrapper already has foreign tokens, the request is
not necessary.

• Message 15 (optional): Request for FOREIGN tokens, which enable access to
resources in Platform B. It is forwarded by the Security Handler and sent to the
AAM of the Platform B.

• Message 16 (optional): Check revocation procedure between foreign and home
AAMs.

• Message 17 (optional): Foreign AAM generates foreign tokens and sends them to
Security Handler.

• Message 18 (optional): Security Handler forwards foreign tokens to symbIoTe Client
Wrapper.

• Procedure 19 (optional): Transforms the response, generates new request for the
foreign RAP to access resources.

• Message 20: Request to access the resources with foreign token. Generated by the
symbIoTe Client Wrapper and sent to the foreign RAP.

• Message 21: Checking tokens and access policies, forwarded by RAP to RAP
Security Handler.

• Procedure 22: Access policy checking (at SH-RAP).

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 28 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Procedure 23: Token validation (at SH-RAP).

• Message 24: SH-RAP initiates check revocation procedure, sends request to
foreign RAP.

• Message 25: Check revocation procedure between foreign and home AAMs.

• Message 26: SH-RAP forwards check policy outcome to RAP.

• Message 27: Requested data is found by foreign RAP and forwarded to symbIoTe
Client Wrapper.

• Procedure 28: symbIoTe Client Wrapper transforms data to the model
understandable by the Native Application.

• Message 29: symbIoTe Client Wrapper forwards data to the Native Application.-

4.4 SLA and QoS Enforcement within Federations

Resources shared within a federation must comply with a series of Quality of Service
parameters, mainly availability and load, to guarantee a certain quality level for
applications accessing them and also to assist in the calculation of resource and platform
trust score. To do so, each federation defines a threshold for these parameters that each
resource must comply with. When a platform joins a federation, it signs a Service Level
Agreement (SLA) based on these parameters and associated constraints. The monitoring
frameworks will then gather periodic reports and measurements relevant to defined
parameters and metrics to check and assess that the agreements are respected. If at least
one of those parameters is not respected, the platforms in the federation will be notified.
This might affect the trust calculation for the misbehaving platform.

Two main components are in charge of these interactions: The SLA Manager and the
monitoring framework.

4.4.1 SLA

The Service Level Agreement Manager (SLAM) runs in the Cloud Domain of every
platform in a federation and it is in charge of storing templates and agreements as well as
of assessing periodically that these agreements are upheld. If they are not, then it will raise
violation notifications.

This component is composed of several sub-components (Figure 11). Each one takes care
of concrete functionalities.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 29 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 11. Component diagram of SLA Manager (SLAM)

• SLA Factory: This is the main entry point of the engine. It provides the API to
external entities and it takes care of the steps of the negotiation, interacting with
SLA Repository in order to generate and retrieve SLAs templates and agreements.
It also activates the SLA enforcement once an agreement is “signed”.

• SLA Repository: This sub-component facilitates data storage, update and retrieval
from the database. It manages the storage of SLA templates, SLA agreements and
events related to SLA violation actions.

• SLA Assessment: This sub-component manages some SLA rules to determine the
way to proceed when SLA is activated. It detects SLA violations and performs some
notification actions according to the defined rules. It interacts with the SLA
personalization.

• SLA Evaluation: It provides access to the monitoring information related to the
agreed QoS aspects. It is possible to determine whether SLAs are being fulfilled or
not.

These sub-components interact with some external entities such as the Administration
component, Federation Manager, Trust Manager and Monitoring, as it is detailed below.

• Message 1: Join message generated by the Administration component, it is sent to
the Federation Manager passing the QoS constraints defined for the federation.

• Message 2: Generated by the Federation Manager, an SLA is created with these
constraints.

• Message 3: Facade added to the SLA Factory that transforms these constraints to
an SLA Template.

• Message 4: Template saved in the SLA Repository. With this template, the facade
signs an agreement that will be stored in the repository.

• Message 5: Agreement returns to the Federation Manager.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 30 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 6: The Federation Manager sends this SLA to the Monitoring component
to notify it about the metrics that it needs to monitor.

• Message 7: Monitoring component adds necessary metrics suggested by the
Federation Manager.

• Messages 8-10: Periodically, the SLA Assessment checks the active SLAs and
asks the SLA Evaluation to evaluate them. This sub component talks to the
Monitoring component, asking for relevant metrics to check that the QoS is
maintained in all shared resources.

• Message 11: generated by the SLA Manager, if a violation occurs, it informs the
SLA Assessment, which will pass this information to the Federation Manager.

These interactions are shown in Figure 12.

Figure 12 Sequence diagram of the SLA lifecycle

4.4.1.1 SLA Definitions

The SLA Engine works internally with documents following the WS-Agreement standard
[5]. This standard defines a format based on XML with different parts, the main relevant
ones for us being:

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

Figure

• Context: information about agreement parties, the agreement’s lifetime, and the
template reference.

• Service Description Terms
(domain-specific description)

• Service References: refer to

• Service Properties: define variables in the context of an agreement.

• Guarantee Terms: define how guarantees are assessed and which compensation
methods apply in case of meeting or violating the service guarantees

o Service Level Objective (QoS rules)

o Penalties, Rewards

Since we are not using all of the protocol interactions and options, the SLA Engine
provides a REST interface that allows to manage SLA templates and agreements in a
custom JSON format. Hence, i
format needed by the repository and enforcement sub

WS-Agreement is quite generic and allows the definition of almost any term that might
constitute a QoS constraint. We have identified two groups of QoS asp
affect the performance of SymbIoTe resources and platforms:

• Availability,

• Load.

In order to formulate Key Performance Indicators based on these aspects, the Monitoring
component saves and performs statistical calculations across different p
such as:

• percentage of availability of resources

• average load of resources

All these metrics are sent to the SLA Engine upon request for assessment

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Figure 13. WS-Agreement data format

information about agreement parties, the agreement’s lifetime, and the

Service Description Terms: functional description of the service to provide
specific description).

: refer to the existing services (domain-specific description)

: define variables in the context of an agreement.

: define how guarantees are assessed and which compensation
methods apply in case of meeting or violating the service guarantees

el Objective (QoS rules),

Penalties, Rewards.

Since we are not using all of the protocol interactions and options, the SLA Engine
a REST interface that allows to manage SLA templates and agreements in a

Hence, it transforms them to and from the XML SLA
format needed by the repository and enforcement sub-components.

Agreement is quite generic and allows the definition of almost any term that might
constitute a QoS constraint. We have identified two groups of QoS asp
affect the performance of SymbIoTe resources and platforms:

In order to formulate Key Performance Indicators based on these aspects, the Monitoring
component saves and performs statistical calculations across different p

percentage of availability of resources,

average load of resources.

metrics are sent to the SLA Engine upon request for assessment

Resource Trading, Security and Federation Mechanisms

Page 31 of 87

information about agreement parties, the agreement’s lifetime, and the

: functional description of the service to provide

specific description).

: define variables in the context of an agreement.

: define how guarantees are assessed and which compensation
methods apply in case of meeting or violating the service guarantees:

Since we are not using all of the protocol interactions and options, the SLA Engine
a REST interface that allows to manage SLA templates and agreements in a

m to and from the XML SLA-Agreement

Agreement is quite generic and allows the definition of almost any term that might
constitute a QoS constraint. We have identified two groups of QoS aspects, which may

In order to formulate Key Performance Indicators based on these aspects, the Monitoring
component saves and performs statistical calculations across different periods of time

metrics are sent to the SLA Engine upon request for assessment.

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

4.4.2 QoS Enforcement: Monitoring

To guarantee a certain level of QoS, platforms need to monito
metrics periodically to the Monitoring component. This is done by the
framework, which is shown in

Figure

The central component present
Monitoring component. This component
are shared to the rest of the platfor
monitor are provided by symbIoTe components:

• Registration Handler
unregistration. When a resource is registered to
Monitoring component, upon
monitored for that particular

• Federation Manager: When a platform joins a federation, it
constraints that every resource shared
with. These QoS constraints will be based on metrics that must be monitored per
shared resource. The Federation Manager
those constraints and from that moment on, it
constraints on every shared resource.

The Platform Monitoring component
sent periodically. Given that the monitoring process is specific for every platform and even
for every device, the Platform Owner must develop a system to gather these metrics and
send them to the aforementioned
used as a template or a starting point
it and execute it periodically, for example in a task
periodically data about load and availability of
Core or to any federation.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

QoS Enforcement: Monitoring

To guarantee a certain level of QoS, platforms need to monitor their resources, sending
metrics periodically to the Monitoring component. This is done by the
framework, which is shown in Figure 14.

Figure 14. Monitoring framework

The central component present at every platform of the federation is the Platform
Monitoring component. This component gathers metrics from a series of resources, which
are shared to the rest of the platforms in the federation. The metrics and devices to
monitor are provided by symbIoTe components:

Registration Handler: It sends notifications about resource registration and
unregistration. When a resource is registered to be shared with

onitoring component, upon a notification reception, waits
for that particular resource.

: When a platform joins a federation, it receives
every resource shared in that particular federation

These QoS constraints will be based on metrics that must be monitored per
The Federation Manager informs the Monitoring component about

and from that moment on, it waits for metrics associated
on every shared resource.

The Platform Monitoring component offers a REST interface for data
periodically. Given that the monitoring process is specific for every platform and even

for every device, the Platform Owner must develop a system to gather these metrics and
aforementioned REST service. We provide a sample script that can

used as a template or a starting point for monitoring. The Platform Owner may personalize
it and execute it periodically, for example in a task scheduler like Unix
periodically data about load and availability of resources, which have bee

Resource Trading, Security and Federation Mechanisms

Page 32 of 87

r their resources, sending
metrics periodically to the Monitoring component. This is done by the Monitoring

every platform of the federation is the Platform
metrics from a series of resources, which

The metrics and devices to

notifications about resource registration and
within a federation, the

waits for metrics to be

receives a set of QoS
ederation must comply

These QoS constraints will be based on metrics that must be monitored per
the Monitoring component about

metrics associated to

data input that must be
periodically. Given that the monitoring process is specific for every platform and even

for every device, the Platform Owner must develop a system to gather these metrics and
REST service. We provide a sample script that can be

. The Platform Owner may personalize
scheduler like Unix cron, to send

resources, which have been shared, to the

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 33 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

The Platform Monitoring listens to these metrics and sends this data periodically to the
Core Resource Monitor in the core. This data includes raw metrics, such as availability and
load for every device shared with the core at one moment in time.

4.4.2.1 KPIs Metrics convention

The monitoring system is based around a simple and quite universal concept for metrics. A
metric is composed of a tag, a value and a timestamp. An SLA will define the tags that it
will check but for simplicity, we are going to consider two KPIs only as a basis (Table 1).

Tag KPI Description Measure

availability Accumulated calculation based on device availability Percentage

load Accumulated calculation based on device load Average

Table 1. Core Authentication and Authorization Manager

Note that this list can be easily expanded at any time with minimal modifications on the
Monitoring Platform.

Once the simple metrics are defined, that is, those containing the device's values, we will
implement a “KPI tag” using accumulated metrics. These tags are named using the
following convention:

KPI Tag = [device_type].[metric].[period],

Where:

• [device_type] = Type of device. This is optional and for individual devices it is
omitted;

• [metric] = Metric tag;

• [period] = Time period in which the calculation is done. It might be a number of days
or the special tag “all” that will perform the aggregation with all the values available
for the device since it was shared.

For example:

“g1.avai.all” is the % of availability for all metrics registered of devices of type “g1”.

“load.30” is the average load of a particular device during the last 30 days.

With these tags, we can compose QoS rules like:

• The availability of a every resource must be greater than X,

• The load average of devices of type T must not be greater than X,

• The availability of resources of type T must be greater than X in the last 10 days,

• And so on....

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 34 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

4.5 Trust and Reputation Approach

The symbIoTe framework enables efficient and interoperable resource sharing and access
between multiple L2 compliant IoT platforms. Trust and reputation of the entire system
plays a key role to ensure the acceptance of the proposed solution and fairness in the
symbIoTe ecosystem which engages invloved IoT platforms to follow certain rules and
comply with established standards or best practices.

First, we need to discuss and define the actual meaning and context of trust and reputation
within symbIoTe to ensure a consistent terminology in the following sections. Similarly to
the approach proposed in the FP7 project COMPOSE, we distinguish between the
following two terms:

• Trust reflects the probability that an unknown party acts as planned and provides
the requested action as promised. Thus, the trust calculation does not include any
historical data or previous behaviour but bases the trust estimation on future
interactions only which strongly creates a subjective and error-prone assessment.

• Reputation, however, uses different metrics from the past interactions to calculate
the appropriate value and therefore allows a more concise and broader estimation
of future behaviours based on historical information.

In symbIoTe, we are using these definitions but applying them on different levels of
granularity to gain a best-of-both approach on an extended scope. Thus, trust will be
relevant for offered and shared resources only, while reputation applies to platforms as a
whole. Thus, it allows the calculation and estimation of a multi-faceted trust and reputation
relationship within symbIoTe using all relevant information but still keeps in mind that IoT
resources may increase their quality and therefore also raise the resource trust value.

Besides the classic trust and reputation approach, we also follow an adapted Web-of-Trust
(WoT) principle [4] established in the Pretty Good Privacy (PGP) community. In the
symbIoTe context, each platform offering a resource within a federation will assign a pre-
calculated resource trust value to it. This information will be shared among all other
federation members and will ease the way for trust calculation in the foreign platforms per
resource. However, as this value is communicated by an unknown provider, another
mechanism should be established to prove the trustworthiness of the received trust value
and adapt it to other metrics as well. Here, the calculated platform reputation comes into
play as an important asset to internally assess the resource trust from the consumer
perspective. Based on the calculated resource trust and platform reputation values, the
adaptive resource trust value is calculated which now reflects the real subjective
probability taking into account the announced offered resource trust plus the internal
reputation of the provider itself. Thus, the calculation of adaptive resource trust for shared
resources provides a basis for taking better decisions and risk assessment for accessing
foreign resources within the federation

Using this multi-level trust approach in symbIoTe ensures that all involved IoT platforms
will benefit from uniform and common trust computation and representation scheme within
the symbIoTe ecosystem. This enables a convenient and automated approach to enrich
the resource selection procedure with additional properties representing the trust in
resources and their offering platforms as depicted in Figure 15.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 35 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 15. Multi-level trust management.

Thus, the multi-level trust management addresses the confidence in offered resources and
the reputation of other federated IoT platforms in the symbIoTe ecosystem. Amongst other
criteria, these trust values serve as a basis for calculation of an adaptive resource trust
rating reflecting a more realistic and platform-centric indicators, which may impact a
subjective decision for using specific resources, shared within the federation or influence
the decision for accepting bartering coupons of other platforms.

The following sequence diagram describes the needed interactions initiated by the Trust
Manager to calculate the three levels of trust.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 36 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 16. Sequence diagram of trust management

Additionally, each sequence, message and procedure of the sequence diagram depicted
in Figure 16 are explained in detail in the following paragraph.

Resource Trust:

• Message 1: Generated by the Trust Manager and sent to the Monitoring
component. It is used to request monitoring data associated with the platform’s own
resources.

• Message 2: Generated by the Monitoring and sent to the Trust Manager. It is used
to provide the previously requested data.

• Procedure 3: The Trust Manager calculates the resource trust.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 37 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 4: Generated by the Trust Manager and sent to the Registration Handler.
It is used to update the trust level of the resources registered within a federation.

Platform Reputation:

• Message 5: The Core Anomaly Detection component notifies the Trust Manager of
detected anomalies relevant for platform reputation update.

• Message 6: Generated by the Trust Manager and sent to the Core Bartering. It is
used to request the B&T history data associated with a foreign platform.

• Message 7: Generated by the Core Bartering & Trading and sent to the Trust
Manager. It is used to provide the previously requested B&T history data.

• Message 8: Generated by the Trust Manager and sent to the Federation Manager.
It is used to request federation history data associated with a foreign platform.

• Message 9: Generated by the Federation Manager and sent to the Trust Manager.
It is used to provide the previously requested federation history data.

• Message 10: Generated by the Trust Manager and sent to the Monitoring. It is used
to request monitoring data associated with a foreign platform’s resource.

• Message 11: Generated by the Monitoring and sent to the Trust Manager. It is used
to provide the previously requested monitoring data.

• Procedure 12: The Trust Manager calculates the foreign platform’s reputation level.

Adaptive Resource Trust:

• Message 13: The Trust Manager requests the shared resource trust value by the
federated platform from the Platform Registry.

• Message 14: The Platform Registry returns the current resource trust value.

• Procedure 15: The actual platform reputation value from the federated platform is
loaded.

• Procedure 16: The Trust Manager calculates the adaptive resource trust used by
other platform components.

The next subsections will define the approach for calculating the individual trust values.
The calculation methods, described below, will take input data and (usage) statistics from
other components for their algorithms to compute these ratings.

4.5.1 Resource Trust

Resource trust is a calculation done by every platform over the resources shared from
other platforms in the federation. This calculation gives indication about how well the
resource is behaving and how trustable it is to continue to work correctly. Many aspects
can be taken into consideration here to provide information about the different aspects of
the resource, e.g., security, battery life, dependability, behaviour and data stability. All
these aspects depend on different metrics to get a value with a final step to normalize
them giving a score between 0 (not trustable at all) and 100 (completely trustable).

So given a series of scores for aspects �� ∈ [0,100], where each aspect is a rational
number associated with a weight 	� ∈ [0,1] each weight being a rational number too so
that ∑ 	� = 1�

�� , the resource trust value will be calculated as �� = ∑ ���	�
�
�� , where �� is

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 38 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

the trust value for a particular resource that will be a rational number between 0 (not
trustable at all) and 100 (100% trustable).

With the gathered metrics, we can implement a simple algorithm based on two aspects:

• Dependability: Based on the availability of the resource. Monitoring will gather
metrics about whether a resource is available (1) or not (0) at a moment in time.
The dependability value will be calculated as the percentage of metrics in which
availability is one over the total values of this metric. This information is obtained
directly by querying the Monitoring component.

• Access: Based on statistics about successful and wrongly rejected attempts of
access the resource. On every access, the Resource Access Proxy will inform
about the success or failure of such operation. From these notifications, the
Trust Manager will calculate the percentage of successful accesses over the
total number of them. A wrongly rejected access is considered an attempt to get
data from a resource in which the user had the correct token and bartering
coupon (see Section 5) but the resource itself rejected the request.

The final value of resource trust will be calculated as a normalized value of both aspects,
with a weight of 50% for each of the two aforementioned aspects.

4.5.2 Platform Reputation

Each platform calculates its individual platform reputation value for other IoT platforms it
communicates or will interact with. Thus, this metric represents a platform-centric
indication per platform and therefore reflects a subjective confidence in other platforms
that they comply with the rules as agreed when a federation is formed. This perspective
facilitates an individual but a broader and long lasting view on surrounding peers and their
historic behaviour and actions. Key of the reputation calculation is the enforcement of a fair
and active symbIoTe ecosystem, which favours positive activities, active resource
offerings, and durable federation membership relationships. The next diagram visually
depicts the key categories and inputs used for platform reputation estimation.

Figure 17. Platform reputation

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 39 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

The platform reputation calculation is broken down into several sub functions taking into
account each of these categories listed in the illustration above.

Similar to the resource trust, the reputation value will also range from 0 (= no reputation) to
100 (= full reputation) which will represent 100% reputation for a foreign platform.

To periodically calculate each platform reputation, the following information is used:

• Federation: One crucial source of information is captured from the federation
management itself. It is based on the given historic and current memberships in
common federations plus the actual stability period during the membership. Also,
the number of shared resources within these federations enriches the overall
picture with respect to the possible platform reputation.

• B&T: Another important input channel for reputation calculation is B&T activities in
the past and the ratio of generated to consumed coupons as well as any negative
actions noticed by the Core Bartering & Trading component such as cancelled or
only one way confirmed coupon consumption.

• Anomaly Detection: The third source used for platform reputation estimation is the
central Anomaly Detection in the symbIoTe Core domain. Any abnormal or
suspicious behaviour reported by any platform will be processed and corresponding
events will be sent to concerned trust managers. Thus, these violation events will
also impact platform reputation.

Overall, the entire platform reputation calculation integrates three of the major information
sources currently available in the symbIoTe ecosystem. The generic and flexible
calculation approach, however, allows an easy extension to further parameters.

4.5.3 Adaptive Resource Trust

Based on the previously calculated resource trust and platform reputation information,
each platform is able to produce and adapt its individual trust estimation for shared
resources. Thus, the adaptive resource trust states only an internal, subjective value but
better reflects the real resource trust value from a platform-centric perspective.

As illustrated below, only these two factors enhanced with own monitoring information of
used foreign resources – if available - are influencing the adaptive resource trust value.

Figure 18. Adaptive Resource Trust

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 40 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

In general, the shared resource trust values are not questioned by the platform and
therefore directly input to the adaptive resource trust calculation. In case the
trustworthiness of these values need to be verified, the own monitoring component could
be adapted for foreign resource monitoring as well. Based on this additional information
the respective resource trust could be calculated for foreign resources and compared
against the shared value.

Further, the entire trust management does not rely on the reliability of external information
or a central trust and reputation system. Therefore, using such process ensures that long-
lived involvement and a good relationship with other peer platforms increase the general
confidence that the shared resource trust value is indeed accurate.

Also combining all trust and reputation levels from external as well as internal calculations
avoids negative impacts from misbehaving third parties or bad-mouthing effects.

4.6 Federated Resource Recommendations

The goal of this component is to detect equivalent resources (from other platforms) within
the same federation and, with this information, suggest to the platforms to only use one of
them. The main objective of taking such an action is to optimize power/energy
consumption (by not using needlessly the same resource multiple times in the same
place), to apply load balancing of equivalent resources and to enable a general cost
reduction within the Smart Space.

The following diagram (Figure 19) demonstrates how such a component would work.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 41 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 19. Sequence diagram of Federated Resource Recommendations

• Message 1: Generated by Federation Manager and sent to the Optimisation
Manager. It is used to trigger optimisation procedures. This trigger is activated on
defined fixed time intervals (i.e. scheduled tasks). Some criteria for the optimisation
can be passed by the Federation Manager (e.g., closeness of the sensors, current
load of the sensors).

• Message 2: Generated by the Optimisation Manager and sent to Platform Registry.
It is used to request the metadata of the resources within the federation.

• Message 3: Generated by the Platform Registry and sent to the Optimisation
Manager. It is used to provide the Optimisation Manager with the metadata of the
resources belonging to the platforms within the federation.

• Procedure 4: Procedure by the Optimisation Manager used to find resources similar
to the selected one.

• Message 5: Generated by the Optimisation Manager and sent to the local
Monitoring. It is used to request the current status and usage of the resource.

• Message 6: Generated by the local Monitoring and sent to the Optimisation
Manager. It is used to return the status and usage of the given resource.

• Message 7: Generated by the Optimisation Manager and sent to the foreign
Monitoring. It is used to request the current status and usage of the resource.

• Message 8: Generated by the foreign platform’s Monitoring and sent to the
Optimisation Manager. It is used to return the status and usage of the given
resource.

• Procedure 9: Procedure by the Optimisation Manager. It is used to choose generate
recommendations regarding the usage of the resources based on their status and
current workload. Additionally, the resources considered are marked as processed,
disabling them from being considered in the future during this process (optimising
the entire process).

• Message 10: Generated by the Optimisation Manager and sent to the Federation
Manager. It is used to provide the federation manager with the recommendations of
the best resources to be used.

• Message 11 (optional): Generated by the Federation Manager and sent to all the
federation managers of platforms belonging to the federation. It is used to share the
recommendations with the other platforms in the federation, since the information is
equally valuable and useful for the other platforms.

• Message 12 (async): Generated by the Administration and sent to the Federation
Manager. It is used to request the computed recommendations.

• Message 13: Generated by the Federation Manager and sent to the Administration.
It returns the calculated recommendations, to which the administrator can use to
take actions to optimize the usage of the platform’s resources.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 42 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

4.7 Conclusions and Future Work

The work discussed in this section highlights the architectural and component design for
L2 functionalities available in symbIoTe. In the current version, the detailed workflows and
interactions between the involved Core and Cloud components were presented from a
holistic system design perspective to envision the big picture of the federation
management concept used in symbIoTe and all underlying processes and aspects such as
resource sharing, SLA monitoring and enforcement, trust management or
recommendations.

Based on the detailed design and component workflows described in this section, future
work and activities will focus on the development, test and delivery of these components
and functionalities. Additionally, we will concentrate on the actual implementation and
documentation of the previously designed algorithms. To increase the impact and
attraction of external stakeholders by explicitly addressing the most urgent existing gaps in
current IoT environments, we will focus our efforts and work done in L2 on specific
challenges like distributed SLA handling, trust and reputation mechanisms and peer-to-
peer resource sharing within a highly distributed and heterogeneous ecosystem.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 43 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

5 Bartering and Trading

5.1 Overview

In this chapter, we report on the current state of the activities concerning resource
bartering and trading mechanisms in the context of IoT platform federations. The current
section presents the relevant concepts of bartering and trading and describes the
questionnaire designed to understand the IoT platforms involved in the symbIoTe project
and what aspects of cooperation they value. The results of the survey are then presented,
along with the conclusions that can be taken from it. These were used to design bartering
and trading solutions that are relevant and can bring value to platform owners. Finally, a
scenario for the first implementation of Bartering is presented, along with its architecture
design.

5.2 Fundamentals

The basic economic concept of bartering refers to a market situation where two or more
market participants exchange their respective goods or services directly for other goods or
services, without monetary implications. While the concept itself is a rather old one, it has
been repeatedly criticized for its alleged inefficiency, for instance with respect to difficulties
in matching suitable partners, issues with determining common value metrics, and
problems arising from the fact that certain goods may be indivisible and hence impossible
to precisely match in terms of their value. Eventually, the main justification for employing a
bartering mechanism originates from the fact that it allows two parties achieving a joint
win-win situation without the need of resorting to the explicit exchange of money.

In the context of an IoT middleware like symbIoTe, most of the aforementioned problems
disappear by definition: matching suitable partners is relatively easy, as all platforms
participating in symbIoTe are assumed to be prosumers, i.e. are interested in offering
services to other platforms (as producers) and using services from other platforms (as
consumers) at the same time. Hereby, a service typically consists of allowing or making
use of access to IoT resources, e.g., sensors and their corresponding data, which
circumvents the problem of indivisibility: we can easily define small units of service and
thus provide a mutually acceptable metrical unit for comparing the value/worth of an offer
or a request.

However, in order to increase the efficiency of the mechanism, we will not employ
bartering in its purest form, but instead consider the commonly accepted vouchers as a
means to subsume all important properties referring to a service offer or service request.
Hence, a voucher typically includes:

• Access Token;

• QoS Constraints;

• Details on requested service (wanted);

• Details on expected value (price);

• Time constraints (e.g., time-out conditions).

An alternative to vouchers (although very similar) is the concept of coupons. Contrary to
vouchers, these do not establish an agreement of exchange of resources between

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 44 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

federated platforms, but simply offer another platform access to a resource from the
platform that issued the coupon. The following example illustrates better, how they would
work:

1. Platform 1 (P1) wants to access a resource in Platform 2 (P2).

2. P1 issues a coupon that grants the holder access to one of its resources.

3. P1 request access to P2, offering the generated coupon.

4. P2 can, in the future, use the coupon to access P1 resources.

A more concrete use of the coupons can be found in Section 5.5.

Of course, symbIoTe will also offer a way to access resources from other platforms without
an immediate material counteroffer, i.e. by trading. Here, three basic scenarios have to be
considered:

• Direct Buy: a platform sells access to its own resources to an application/enabler or
another platform for a fixed price;

• Forward Trading: a platform is offering access to its own resources and asks for
corresponding requests (bids) from other platforms;

• Backward (reverse) Trading: a platform is looking for access to resources offered by
foreign platform(s).

Here, an agreement on monetary compensation is fundamental for closing a deal. In
microeconomics, such situations are usually treated within the framework of auction
theory, i.e., forward auctions (access to resources is offered, and requests are submitted
in the form of bids) and reverse auctions (access to resources is requested, and
corresponding offers, including access conditions, are received by the platform).

5.3 Survey about Practice and Concepts of Cooperation

In order to further model a concept of Bartering and Trading between symbIoTe platforms,
a questionnaire was presented to Platform Owners. In this questionnaire, platform owners
were requested to present their perspective of their platforms in general and related to
aspects of cooperation as well as the concept of a federation of IoT platforms as it would
be meaningful and valuable to them.

The answers from symbIoTe partners will then serve to model bartering and trading
scenarios that are relevant and of value to platform owners. Below it is possible to observe
the questions presented to the partners. Their answers are included in Annex A – Answers
of .

A) Platform Properties

1. What constitutes your platform: How do customers interact? Which resources
are you dealing with, and where do they come from? Why do customers
participate? How is revenue generated?

2. Generally, from your perspective: What constitutes a symbIoTe-compatible IoT
platform in general?

B) Federation Properties

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 45 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

3. Generally, from your perspective: What constitutes a federation: Agreements?
Mutual trust? Easy access to foreign resources? Please be as specific as possible.

4. What could be incentives or necessary conditions for your platform to enter a
federation? Be as specific as possible.

a. Can you describe the relevance of creating added values as an incentive
for your IoT platform to enter a federation?

b. Can you describe the relevance of the size of the other partners as a
potential condition for your IoT platform to enter a federation? Would you
rather prefer a federation amongst (roughly equal) peers, or a more
heterogeneous (in size etc.) composition of partners in a federation?

C) Cooperating Platforms within a Federation

5. Generally: What could be incentives or necessary conditions to cooperate with
other IoT platforms?

6. Generally, from your perspective: Are cooperations among IoT platforms rather
orthogonal or complementary in nature? Why?

7. What value do you see in cooperating with other IoT platforms in symbIoTe?

8. How would you like to cooperate with other platform owners? Be as specific as
possible.

9. What partners are valuable especially to you, with whom would you like to
cooperate? Be as specific as possible.

10. Please describe your ideal platform cooperation scenario, including partners,
which you would like to cooperate with in order to create value, either for you or
your customers.

11. How could resource bartering support you in this cooperation? Be as specific as
possible.

12. How could resource trading support you in this cooperation? Be as specific as
possible.

5.4 Fundamental Bartering and Trading Scenarios

In this section, the conclusions that can be taken from the answers to the questionnaire
are presented. Through these conclusions, it is possible to define bartering and trading
scenarios that are relevant and bring value to the platform owners.

The analysis of the questionnaire has led to the classification of platform owners into three
clusters with different characteristics, as can be seen in the following table (Table 2).

Lightweight

Standardization-
related

Trade

Main
Characteristics

Volunteers Product Platform as a
Federation

Incentives Exclusive Access Operative
interoperability,

seamless interaction

Network effect

Own Perspective Bartering Only - Bartering as trust
and reputation
building tool;

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 46 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Eventually leading
to trading

Partners n:m; improve offer Customer of customers;
exchange data

1:n; compliance

Goods Sensor access/raw data Filtered data Data/SLA

Interaction Prosumers Customer of customers Consumers

Example Platform OpenIoT, NAssist,
MoBaaS

Navigo NAssist, MoBaaS,
Kiola

symbIoTe
mechanism

Bartering

Trading

Table 2. Classification of platform owners

The various types of classification are the following:

• Lightweight: consists of platforms, which generate data as well as consume high
quality data and are willing to exchange data/services exclusively by means of
bartering.

• Standardization-oriented: the main focus relies on the interoperability provided by
symbIoTe itself and sees the B&T functionality just as a nice feature to have.

• Trade: the platform's main focus is to exchange data/services by means of trading,
thus the monetary gain can be considered the main goal. Before committing to a
trade agreement, bartering can be used as a prospecting tool, which can aid a
platform in assessing the trustworthiness of a potential partner.

We can also infer from the survey that, within the consortium, OpenIoT can be considered
the paradigmatic platform for a Bartering scenario, while NAssist is the best example for a
Trading scenario.

Using all this information, we designed three fundamental scenarios:

Bartering outside of a federation (Phase 1: "Dating"):

Assume platforms P1...Pn form an L2-compliant federation F within symbIoTe, while
platform P0 is not yet registered in symbIoTe. Because either platform P0 or federation F
(or both) have an incentive that P0 should join federation F, a bartering mechanism should
allow the potential partners to meet and get to know each other. In order to achieve this
goal, P0 is invited by the Core Bartering & Trading Manager to register with symbIoTe (L1)
and become L2-compliant. Then, the Core Bartering & Trading Manager asks P0 about
which of the platforms P1...Pn is interested in getting data from, and asks each of the
platforms P1...Pn whether they are interested in getting data from P0. Based on the
replies, the Core Bartering & Trading Manager sends P0 one Bartering Voucher (B-
Voucher, which gives access to platform data) for each platform it is interested in and
sends a "reverse" B-Voucher (giving access to P0 data) to each of the platforms P0 has
shown interest in. Similarly, all platforms P1...Pn which are interested in P0 data receive
one B-Voucher each (enabling this access), and at the same time P0 receives
corresponding "reverse" B-Vouchers allowing access to platform data within F.

Bartering within a federation (Phase 2: "Engagement"):

Suppose P0 has joined federation F. In order to build up further trust relationships, P0 and
one/several of the platforms P1...Pn decide to start bilateral data exchange for free. To this
end, the cloud (L2) Bartering & Trading managers of the two platforms willing to cooperate

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 47 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

bilaterally produce corresponding B-Vouchers, which give access to the data of the
respective partner platform. In contrast to the B-Vouchers of Phase 1, these B-Vouchers
now include some rough Quality of Service (QoS) specification (e.g. in terms of quality
classes like best effort etc.).

Trading within a federation (Phase 3: "Marriage"):

Finally, assume P0 and some other platforms within federation F have managed to build
up sufficient trust with each other that they would like to negotiate data/resource exchange
on a more fine-grained and binding level. To this end, their cloud (L2) Bartering & Trading
managers will have to agree on a detailed QoS agreement as part of a Trading-Voucher
(T-Voucher). Note that in this case, it is also possible that data/resource access is
receiving a monetary compensation - in this case, the T-Voucher fulfills merely the function
of a contract plus receipt. Such bilateral relations are non-exclusive ("polygamy" is
possible). The payment functionality, however, is considered out of scope for symbIoTe
and could be realized by some appropriate third-party service.

Note that, in any of these cases, voucher resolution is triggered by the cloud (L2) Bartering
& Trading component, which has to initiate an access policy update in the platform
components, i.e. AAM and/or RAP, respectively.

5.5 Bartering Sequence Diagram

In order to provide to the symbIoTe ecosystem a Bartering concept that can easily be
produced and deployed, it was decided that, for a first approach, a simpler Bartering model
should be designed and developed. This approach is similar to the one described in
Phase 2: “Engagement”. It opts to use coupons instead of the previously presented
vouchers. The difference between these two concepts is that vouchers imply an
agreement between two platforms on what is going to be bartered between them, while a
coupon is a simpler concept, where the holder of the coupon has access to resources from
a platform that generated it.

As such, a coupon contains the following information:

• Issuer (platformId): Who issued the coupon.

• Beneficiary (platformId) (optional): Who is the beneficiary of the coupon. This is
an optional field and, if left as such, it can be passed around through several
platforms.

• Federation Identifier (federationId): The federation this coupon belongs to.

• Resource Type: Type of resources being bartered.

• Expiration: Expiry date of the coupon.

• single Use: Boolean indicating if the coupon can be used only once, or several
times.

The following diagram represents the flow of actions when a platform wants to access
another federated platform’s data under a bartering scenario. The basic idea is that a
platform (P1), to access another platform’s (P2) resources, must provide a coupon that
grants such access. If P1 does not have such a coupon, it will generate its own coupon
and offer it in exchange for a coupon that grants access to the desired resource in P2. P2

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 48 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

can later use the received coupon to access resources on P1. By keeping track of the
coupons that are generated and used, the federation has an idea of which platforms are
not contributing to the federation (i.e. are generating a lot of coupons that go unused by
other platforms) and can take appropriate action.

The platforms are free to define the rules for bartering their own resources. This means
that platforms can specify, for example, if they are only willing to barter for certain types of
resources, or with platforms above a given trust level. These rules can be defined through
a JSON config file, and can be as simple or as complex as the platform owner desires.

It is also important to note the function of the Core B&T component. It keeps track of all the
movements regarding coupons (creation, usage, consumption). This allows it to have a
general idea of how the Bartering is working within a given federation, allowing the
detection of platforms that are not contributing or seeing if certain coupons have expired.
These sorts of statistics can be provided later to the Trust Manager.

Figure 20. Sequence diagram of Bartering

• Message 1: The symbIoTe Client requests from P1 BTM a coupon to access
resources in P2.

• Process 2: P1 BTM searches for coupons that allow access to resource in P2.

• If no coupon to access P2:

o Process 3: P1 BTM generates a coupon that allows the platform holding the
coupon to access P1 resources.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 49 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

o Message 4: Notify Core B&T about the creation of this coupon.

o Message 5: Request a coupon from P2 BTM, sending generated coupon in
return.

o Message 6: P2 BTM validates with Core B&T if coupon is valid.

o Process 7: P2 BTM validates if the deal is acceptable.

o Process 8: P2 BTM generated a coupon to be sent to P1 to allow access to
its resources.

o Message 9: Communicate to Core B&T about the creation of the coupon.

o Message 10: Return coupon to P1, allowing it to access resources in P2.

o Process 11: Fetch coupon from storage.

• Message 12: Return coupon to the client.

• Message 13: Request resource data, offering the coupon in exchange.

• Message 14: Validate federation token.

• Message 15: Validate received coupon.

• Message 16: Validate with Core B&T that received coupon has been
consumed/used.

• Message 17: Acknowledge that everything is ok with coupon.

• Message 18: Return the requested data.

• Message 19: Notify P1 BTM that it has consumed/used the coupon and
successfully received the data.

• Message 20: Notify Core B&T that coupon has been used.

5.6 Conclusion and Future Work for B&T

symbIoTe’s architecture has to be sufficiently versatile to be able to support different
platforms, domains and technologies. As such, a system that can cope with such a rich
environment will be complex by nature. As a module of the symbIoTe architecture,
Bartering and Trading might not necessarily be a core module needed to make the system
function, but it is very important for whoever will use the system in the future. It allows
users to buy, sell and trade access to their resources, making the system very dynamic.
This is of great interest to prosumers, which are envisioned to be symbIoTe’s main users.

Through a questionnaire to the platform owners of the consortium, it was possible to
design Bartering & Trading scenarios that are relevant and of value to them. Three B&T
scenarios were envisioned that created a flow of trust creation between the platform
owners, where, through the stages of “Dating”, “Engagement” and “Marriage”, platform
owners could create a more connected partnership.

With a simpler bartering scenario designed, future work will focus on developing, deploying
and testing the bartering components, so that platforms can take value from this symbIoTe
component.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 50 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

6 Federated Security

Security in symbIoTe was always treated with utmost care and the developed framework
was from the beginning designed to offer unreachable authentication and authorization
layer.

In order to achieve this task symbIoTe security architecture comprises multiple layers,
each with a different purpose, which are combined into a complete solution. As such, we
can define the following security layers:

1. Baseline Security.

2. Authentication.

3. Authorization.

4. Adverse Events Detection.

We will present how each of these layers contributes to secure federations with B&T
mechanisms.

6.1 Baseline

Baseline security is a set of dev-ops practices and requirements imposed on the system
required to provide a secure deployment environment, e.g., by enforcing Transport Layer
Security (TLS) on all communication channels (HTTP, AMQP) as well as providing audits
of software developed in the project. This way we make sure that the interactions defined
in the next sections can assume a secure channel between the actors and build upon this
assumption.

6.2 Authentication

Federations make full use of the symbIoTe Public Key Infrastructure (PKI) to manage
identities of actors and services participating in distributed scenarios. symbIoTe Core
services offer a root Certification Authority (CA) and the registered platforms in their Cloud
services are given intermediate CA powers to issue credentials for their users.

SymbIoTe-defined PKI provides, therefore, a vital support for authentication of actors and
services in federation scenarios by building certification chains and verifying if
communicating parties originate from the same root CA (symbIoTe Core) which proves
their authenticity.

Finally, the cryptographic material (elliptic curve keys) generated at this level is utilized to
provide signatures for payloads in the authorization layer. This way we are able to provide
a stateless mutual authentication mechanism where both the client and service can sign
the business payloads and be authenticated by the communication receiving party

6.2.1 Credentials Validation

Validation of tokens, keys stored in them and the signature is one of the most important
security tools in symbIoTe.

A unified API is exposed for the application developers to validate tokens, available in the
Security Helper library. To check the validation, symbIoTe security layer firstly verifies the
token string content to determine whether it is malformed during transmission or whether it

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 51 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

has a correct signature and has not yet expired. Afterwards, the AAM authority checks the
token.

Core or Platform AAMs check if the token issuer exists in the symbIoTe ecosystem, if the
issuer’s or subject’s public key was revoked, or if the issuer’s or subject’s certificate has
expired. What’s more, AAMs check in their databases, if the token was not revoked due to
a security breach.

In case of Foreign Token, validation of participation in the federation is made. If a Platform
has been removed from at least one federation after Foregin Token generation, the token
is considered invalid and client has to acquire a new one.

Furthermore, if an AAM of a federated platform is presented with a Foreign token issued
by itself, it reaches out to the platform that issued the Home token to check if the origin
credentials (aforementioned home token and clients public keys) were not revoked which
would trigger revocation of the Foreign token used in attempt for authorization.

6.2.2 Revocation

Due to the requirements in federations and components – actual usage of Foreign Tokens
- the revocation APIs presented in D1.4 [1] were improved. Now, symbIoTe additionally
allows the following actors to revoke the following:

• symbIoTe administrator:

o Core AAM components certificates;

• AAM administrator:

o its components certificates;

• all of the actors in all AAMs:

o foreign tokens.

All actors will need to present their credentials (username and password) to authorize their
actions. In case of foreign token revocation, only corresponding remote home token is
needed.

6.2.3 Mutual authentication

There were no changes made to the challenge-response procedure described in section
5.4.4 of D1.4 [1].

6.3 Authorization

At the authorization level, since symbIoTe strives to achieve interoperability in a complex
ecosystem with many resources and actors, we have decided to provide a very generic
authorization scheme framework, namely the Attribute-Based Access Control (ABAC)
paradigm. This allows platform owners to map their native authorization schemes, e.g.,
Identity Based Access Control schemes on top of ABAC which is available out of the box
in symbIoTe.

As a standardized vector for these attributes, symbIoTe makes use of JSON Web Token
concept and its trusted JSON Web Signature implementation. All authorization credentials
(attributes) are released to the actors from dedicated Authentication and Authorization
Managers (acting as the aforementioned CAs) and signed with their certificates. This way

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 52 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

the ABAC protected services (resources) can trust the contents of received attributes set
from the clients. A client can prove its rights to use a particular JWS Authorization Token
by providing to the service a hashed challenge signed with the private key matching the
one included in the Authorization token, serving as the supplement for the aforementioned
service authentication.

It is worth noting that the Authorization layer also supports two other concepts:

1) the Multi-Domain Access Right Composition - gaining access to a particular resource
by presenting authorization credentials acquired from different parties;

2) an Attribute Evaluation Engine that adds semantics to the attributes themselves, i.e.,
not only that it allows to check if the authorization payload contains a required attribute,
but it also can evaluate whether the value(s) associated with attribute(s) match
specified constraints (e.g. numeric value greater than a threshold or a string value
containing a specific substring).

6.3.1 Authorization token

At Level 2 we use the same definition of tokens as defined in D1.4 [1], hence there are no
changes here. To log into a service, an actor has to generate and send Login Request to
the AAM. Login Request is a JWS with relevant claims. To identify an actor trying to get
access into the system, a Login Request contains actor's unique identifier and the actor's
client identifier signed by the actor’s client itself. The procedure is described in detail in
Section 10.2 (Annex B of this document).

6.3.2 Tokens supporting federations

A Foreign Token is a token generated by AAMs of platforms participating in federation. It is
created in exchange for an actor’s Home Token. After its verification and validation, a
Foreign Token is generated containing new attributes defining affiliation to the appropriate
federation(s).

A Foreign Token preserves information about a Home Token issuer and its unique
identifier. This information is needed to check whether in the meantime the Home Token,
based on which the Foreign Token was issued, was not revoked due to any reasons, e.g.,
a security breach.

6.3.3 Access Policies

Section 5.4 of D1.4 [1] has already briefly presented the Access Policies to resources used
in symbIoTe. The mechanism has in the meantime evolved.

We have already supported Single Domain Access Policies, which fully satisfy the needs
of Federations. However, as symbIoTe security-related solution is a flexible and reusable,
T3.2 has been working on Multi-Domain Access Rights Composition.

The Multi-Domain Access Rights Composition (MDARC) represents an innovative
paradigm conceived in the context of H2020 symbIoTe project, which envisages the
opportunity to share heterogeneous resources in a federated ecosystem to applications
with properties and access rights obtained from different domains. This paradigm is an
evolution of what has already been developed and goes beyond the objectives of the
project itself. Furthermore, it could be used in symbIoTe for L3 and L4 Compliance.

Details of MDARC are available in Annex B (Section10). It include the following:

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 53 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Overview and its possible applications in symbIoTe.

• Possible approaches to implementing MDARC using eXtensible Access Control
Markup Language - including a review of few existing frameworks out in the market.

• Discussion showing that symbIoTe is designed in accordance with the XACML
architecture.

• Description of symbIoTe custom JSON-based Access Policies Domain Specific
Language.

6.4 Adverse Events Detection

Finally, at the highest level, symbIoTe Core Services can receive alerts about suspicious
authentication and authorization operations across the ecosystem and process them using
the Anomaly Detection Module in order to identify possible threats (e.g. multiple login
attempts, databases crawling or denial-of-service attacks on the core and platforms
components).

The WorkInProgress (WIP) Anomaly Detection Module (ADM) will:

• gather information about suspicious authentication and authorization operations:

o from AAMs;

o from components;

• analyze Zipkin traces.

For receiving information about detected anomalies and security requests containing
suggested actions, a plugin to existing modules is being developed: Anomaly Listener
Extension. It will offer an Anomaly Listener Service and be integrated with the Security
Handler component.

Although this layer is not strictly related only to L2, it should be possible to integrate it with
the L2 Trust Manager to penalize misbehaving platforms (and their clients).

6.4.1 Zipkin

Zipkin is a distributed tracing system. It helps gather timing data needed to troubleshoot
latency problems in microservice architectures. It manages both the collection and lookup
of this data. Zipkin’s design is based on the Google Dapper paper.

SymbIoTe modules are instrumented to report timing data to Zipkin. In case of
troubleshooting latency problems or errors, traces can be sorted based on an application,
length of trace, annotation or timestamp. This information can be processed by the
Anomaly Detection Module to discover strange network traffic, which indicates an attack.

6.4.2 Anomaly Listener Extension

Anomaly Listener Extension (ALE) is a dedicated library that depends on the
Authentication Authorization Manager component and provides an interface
(IAnomaliesHelper) for managing blocked actions repository for a specific AAM.

It can be used by codes provided in SymbIoTeSecurity library to memorize malicious
actions and check if a user is blocked for his behavior.

Internally it consists of the following:

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

• Blocked Actions Repository
blocked event type, and timeout for blockade

• A service that implements IAnomaliesHelper

• A RESTful controller, that handles requests related to detected anomaly (requests
from Anomaly Detection Module

The communication between the modules is shown below

Figure

6.5 Security Levels

With consideration of the security layer
performance we propose two modes

• Offline Mode:

On this level, a component presented with AuthZ tokens is contacting its local AAM for
their validation. therein this case
have been issued by this AAM. If the tokens were issued by a different AAM
Certificates-Trust-Chain validation is performed (

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

epository that contains entries specifying blocked username,
blocked event type, and timeout for blockade;

service that implements IAnomaliesHelper;

controller, that handles requests related to detected anomaly (requests
from Anomaly Detection Module - ADM).

ommunication between the modules is shown below:

Figure 21. Interactions for anomaly detection

With consideration of the security layer’s communication impact on the
modes of security in symbIoTe:

component presented with AuthZ tokens is contacting its local AAM for
therein this case, the revocation verification is performed

AAM. If the tokens were issued by a different AAM
Chain validation is performed (for details see D1.4 [1]

Resource Trading, Security and Federation Mechanisms

Page 54 of 87

that contains entries specifying blocked username,

controller, that handles requests related to detected anomaly (requests

communication impact on the SymbIoTe

component presented with AuthZ tokens is contacting its local AAM for
revocation verification is performed using tokens that

AAM. If the tokens were issued by a different AAM, only the
[1] Section 5.4.1).

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 55 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 22. Offline Mode

• Online Mode:

The highest level of security is offered when communication with all available AAMs can
be guaranteed. A local AAM connects to the issuers of tokens and certificates to check
whether they are still valid and have not been revoked in the meantime

Figure 23. Online Mode

It is worth mentioning that since security-related communication may create a high
overhead in terms of generated messages and interactions between all the involved
AAMs, the AAMs in symbIoTe offer a configurable cache to store validation results for
remote tokens (if a tokens was found to be valid) and automatically persist revoked tokens
to reduce unneeded cross platform communication. Of course, this cache might contain
some stall entries and should associate a validity period to each cached entry.

6.6 Security Interfaces and Services supporting federations

6.6.1 AAMs: Interfaces and Services

Changes in federations have forced some updates in the existing interfaces and services.
The new APIs has been created to manage federations, acquire foreign tokens and revoke
them.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 56 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

Management of the federations can be performed only by the Administration. Admin
credentials, federation identifier and set of platform identifiers participating in federation
are needed.

Foreign token acquisition can be performed using REST clients. A POST request
containing client’s Home Token and optionally a Privacy Enhanced Mail (PEM) Certificate
String matching SPK from token is sent to the AAM.

Similarly to foreign token acquisition, foreign token revocation can be performed: a REST
client sends a POST request containing its Foreign Token and the corresponding Home
Token.

6.6.2 Security Handler (SH): Interfaces and Services

Security handler is a thin Java client providing methods allowing clients to acquire
authorization and authentication credentials required to gain access to symbIoTe
resources. It also contains method helping to acquire federated tokens from not local
AAMs:

• Map<AAM, Token> login(List<AAM> foreignAAMs, String homeToken) - allows one to
acquire FOREIGN tokens from AAMs in which one does not have an account in
exchange for a selected home token.

Foreign tokens are also cached in the Security Request wallet with the rest of the
credentials.

6.7 Plans for Security

The symbIoTe security team will collaborate closely with bartering and trading team to
reuse the developed concepts of handling Auth(Z) credentials and apply them to the
Bartering coupons (issuing, validation, revocation).

Furthermore, the MDARC and attribute level access policies definition mechanisms are
being worked on.

Then, existing AAM code will be modularized to allow reuse of its features within the WP4
monolithic SSP deployments.

Finally, T3.2 team will work on improving the Client Security Handler to offer higher level
interface to the symbIoTe Security layer, SH will also receive a boost to its independence
from the symbIoTe Core. T3.2 will also focus the efforts on Anomaly Detection Engine
development.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 57 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

7 Conclusion and Next Steps

This document provides a description of the concepts and mechanisms that allow
platforms to form federations in symbIoTe, taking into account the different paradigms for
resource sharing such as Quality of Service based or bartering and trading, with a special
emphasis on the security and trust issues and solutions that we have found like Service
Level Agreements for QoS assessment, ABAC, certificates trust chains and JWT for
security and the use of secure signed coupons for bartering.

Future work, which has been described in detail in each section, will complete the
implementation of the different components of the architecture as well as the algorithms
described in this deliverable, applying the different security mechanisms to all of them and
providing a final set of components that will enable IoT platforms to collaborate in an
autonomous, reliable and secure way.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 58 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

References

[1] symbIoTe project Deliverable D1.4 - Final Report on System Requirements and
Architecture; July 2017.

[2] symbIoTe project Deliverable D2.4 – Revised Semantics for IoT and Cloud Resources;
July 2017

[3] symbIoTe project Deliverable D2.5 - Final symbIoTe Virtual IoT Environment
Implementation; July 2017

[4] Caronni G., Walking the Web of Trust, 2010

[5] WS-Agreement standard – https://www.ogf.org/documents/GFD.107.pdf

[6] Oasis, Advancing open standards for the information society: https://www.oasis-
open.org/org

[7] XACML4J: https://mvnrepository.com/artifact/org.xacml4j

[8] SpEL + Spring Security:
https://www.researchgate.net/publication/266659391_Attribute_based_access_control_
for_APIs_in_Spring_security

[9] AuthZForce - https://authzforce.ow2.org/bin/view/Main/

[10] OpenAZ - https://github.com/apache/incubator-openaz

[11] Axiomatics - https://www.axiomatics.com/attribute-based-access-control/

[12] Casbin/jCasbin - https://github.com/casbin/casbin

[13] AT&T XACML - https://github.com/att/XACML

[14] node-abac - https://github.com/simon-barton/node-abac

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 59 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

8 Abbreviations

AAL Ambient Assisted Living

AAM Authentication and Authorization Manager

ABAC Attribute Based Access Control

ADM Anomaly Detection Module

AMQP Advanced Message Queuing Protocol

ALE Anomaly Listener Extension

API Application Programming Interface

ARR Access Resource Request

Auth(N) Authentication

Auth(Z) Authorization

CRUD Create, Read, Update and Delete

CSR Certificate Signing Request

DoW Description of Work

GA Grant Agreement

HCI Human-Computer-Interaction

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IoE Internet of Everything

IoT Internet of Things

JSON JavaScript Object Notation

KPI Key Performance Indicator

MDARC Multi-Domain Access Rights Composition

PAP Policy Administration Point

PDP Policy Decision Point

PGP Pretty Good Privacy

PEM Privacy-enhanced Electronic Mail

PEP Policy Enforcement Point

PIP Policy Information Point

POPD Protection of Personal Data

QoE Quality of Experience

QoS Quality of Service

RAP Resource Access Proxy

REST Representational State Transfer

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 60 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

RAP Resource Access Proxy

SH Security Handler

SLA Service Level Agreement

SPK Subject Public Key

TLS Transport Layer Security

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

WoT Web of Trust

WTP Willingness-To-Pay

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 61 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

9 Annex A – Answers of questionnaires

 1. Your Platform 2. Platforms
Generally

3. Federations
Generally

4. Your
Incentives for
federating

4a. Relevance
of creating
added values
for federating

MoBaaS Basically, MoBaaS
accepts various types of
sensor data from cities
(traffic, parking, air
quality) and processes
the data to offer services
to said cities
(municipalities and
citizens). Through web
and mobile apps, users
can use the various
services (e.g. ecological
routing). The resources
are sensors deployed
throughout the city,
provided by the cities
themselves. The
platform provides its
clients with smart city
services. Revenue is
generated by the city
paying for the platforms
services.

A platform which
makes its data and
services available
through
interoperable
interfaces. A
platform that
complies with the
various defined
compliance levels
(don’t know if this is
the answer you
were looking for?).

Generally, it
enables a better
cooperation
between platforms.
As such, through
mutual trust, it
should provide
better ways for
platforms to
interoperate. It
allows platforms the
enrich their services
with more data and
to enlarge their
geographical reach.
Additionally, it
enables the access
to foreign
resources.

Firstly, when
federating, security
of data and quality
of services must
guaranteed. It is
also necessary to
know if the
federation
candidate has
valuable data that
can enrich our own
platform. Then, as
long there is a
benefit to federate
with another
platform, the only
deterrent to
federate is the
amount of work
involved in setting
up the services
needed.

The added value
would be the main
incentive. It would
have to be enough
to justify the effort.

Navigo
Digitale

The Navigo Digitale IoT
Platform (ND) consists of
an integrated IoT system
for the management of
touristic ports’ services.
Development of the
platform has been
funded by Navigo. ND is
currently part of Navigo’s
commercial offer to
touristic ports: this offer
is still in development
and hasn’t generated
revenues so far (we
expect to formally launch
it at the Yare conference
in April 2017).

Interoperability is
the key aspect: we
are working on the
Smart Yachting
(SY) use case,
which, in order to
work, needs that the
platforms of the
Yacht and the Port
can seamlessly
interact.

Access to
resources (eg data
from sensors in the
Yacht) is paramount
to make the SY use
case work. For
federation, security
and reliability (e.g.
the integration “just
works”) looks like
key issues.

From the SY
perspective,
federation is an
enabling condition,
since two different
platforms (on the
port and on the
yacht) must
interoperate to
make the use case
work. In our case,
it is really a
“chicken & egg”
scenario: ports will
install SY
compliant IoT
platforms if enough
Yachts can
interoperate; Yacht
owners will install
symbIoTe, SY
compliant, IoT
platforms if the SY
use case is
available in enough
ports.

For SY is a bit like
“the other way
round”. We should
offer incentives to
allow yachting
manufacturers to
install symbIoTe,
SY compliant, IoT
platforms on board.
These incentives in
perspective are
related to the
quality of
application services
that we will be able
to add to the SY
use case (eg more
port software
applications to
integrate through
enablers; other
smart problems
that we can solve
through M2M
interactions, etc.).

KIOLA (not
in DoA)

Platform accepts various
types of health data
usually generated by
medical devices, e.g. a
blood pressure meter, a
glucose meter or a
fitness tracker. This data
is stored within the
platform and made
accessible through
webapps for medical

Interoperability is
the key aspect. A lot
of sensor vendors
use their own
platforms, so
symbIoTe could
seamlessly tie them
all together

Easy access to
foreign resources

A key issue is
security as KIOLA
is dealing with
highly-sensitive
person-related
information

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 62 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

staff. Revenue is
generated through
insurance companies
paying for the platform
services

OpenIoT Platform consists of
volunteers who are
willing to contribute data
about their environment
(i.e. air pollution). Except
those volunteers, we
have only a platform
operator/owner as other
stakeholder, which
provides an
infrastructure (computing
power and sensor units).
Resources are user's
(volunteer's) mobile
phones + sensors
provided by the platform
operator. We do not
have a specific
communication with
users and we do not
generate any revenue,
nor users are paid to
carry sensors around.
They do it to contribute
to their community.

I see a basically
three types of
users: 1. platform
owners that provide
an infrastructure
and computing
power; 2. users that
already use some
specific platform
(they have some
domain-specific app
on their phone,
tablet, pc...) and 3.
app developers
which aim for new,
potential users of
their (innovative)
apps - they drain
those new users
from the existing
user base which
use somesymbiote-
compatible platform.

Who will generate
revenue? - Not
clear to me, users
are definitely willing
to pay for good
apps, but how that
money will be
divided by all
stakeholders
(platform owner(s),
symbIoTe
provider(s), users
that actively
contribute data) is
not clear to me!

In my opinion
federation
represents an
agreement between
two platform
providers, and that
agreement enablers
better service
(including the better
quality or some
novel services) to
their users. I believe
that a federation to
exists, both
platforms needs to
see benefits from it.

Those benefits can
be various:
exclusively access
to the data (but
really exclusively,
meaning nobody
who is not in the
federation can not
access it),
accepting and
serving users from
different platforms,
selling data to
users from different
platforms.

What is added
value in this
context? I believe
we need to present
strong case here,
i.e. clearly
communicate what
is added value for a
platform to
establish a
federation.

But as I said
earlier, I fully
agree some
kind of added
value will be a
trigger to
create/join a
federation.

UniversAAL UniversAAL is an IoT
platform for home
automation and health
services with a specific
focus on elderly people;
As UniversAAL is also
used within the health
area, the answers given
in the KIOLA section
hold true here as well

BETaaS BETaaS will not be a
platform that will be
integrated within
Symbiote neither used in
any use cases.

BETaaS is a software
that can be used in built
a platfrom, but we don't
have an existing running
instance from the
platform.

Symphony Symphony can monitor,
supervise and control
many different building
systems, devices,

A platform which
makes its data and
services available
through the

Generally speaking,
federating platforms
allows the
resources exposed

One key aspect is
the access to
federated platform
resources: how it is

The use cases are
the principal entry
point to show the
value added of

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 63 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

controllers and networks
available from third-party
suppliers. By intelligently
correlating cross-system
information, a flexible
and highly efficient
platform is delivered to
the stakeholders.

The Symphony Insight
management station in
the cloud allows
operations,
administration and
management of the BMS
from any authorized
remote terminal. The
innovative BM-as-a-
service paradigm
provides a scalable
service architecture,
data security and
privacy, customized
dashboards and
business intelligence.

symbIoTe
interoperable
interfaces

by one to be used
by another and
vice-versa.

This implies many
key aspects to be
considered (i.e.
trading, security,
ecc..).

controlled and
where rules
themselves are
specified.

The regulation of
the access to the
resources is key
point for federating
platform.

entering the
federation. Smart
Residence and
Smart Yachting are
scenarios where
federation is a sort
of enabling
condition.

Worldline
(not in DoA)

Smart Stadium converts
visitors’ smartphones
and retailers’
smartphones/tablets to
IoT devices that can be
discovered and
accessed to satisfy their
needs in sport events:
selling, buying, getting
informed of news and
updates. All devices and
stadium supplies can be
located by proximity
using iBeacons
throughout the stadium.

Platforms register
their services and
related devices to
make them
accessible via
standardized APIs.

Federations stablish
the rules and
benefits to make
resources and
services from a
platform accessible
to a second
platform.

Federation is
required to
combine, to make
collaborate
different platforms
to provide further
features to end
users. Devices
(smart devices and
beacons) known by
a platform are
offered to unknown
platforms to enrich
their experience
and increase their
benefits.

As said before, the
added value is the
cooperation of
different platforms
to enrich their
features to end
users.

nAssist nAssist is a software
platform that enables the
creation of different
services on top of it. We
have customised the
platform to offer smart
home, security, energy
efficiency and health
applications.

Depending on the
applications, our
customers are telecoms,
energy service
providers, healthcare
providers, building
construction and
management, hardware
and appliance
manufacturers, retailers,
insurance companies
and end-users.
Customers interact with
the platform through a
web-based application or
a mobile app. They can
monitor energy
consumption at home,
control some appliances,
receive notifications and
alerts in real time,
receive pictures / video

IoT platforms are
compatible with
SymbIoTe if they
can maintain the
integrity of their
policies
(organisational,
technical and
security aspects)
between the
different
stakeholders, e.g.
that users
authenticate with
their local
credentials, data
integrity, etc. This
means that
SymbIoTe needs to
guarantee trust
between entities,
reputation and
branding.

A federation should
include
organisational and
business
agreements that
guarantee
autonomy,
cooperation and
flexibility. From a
technical point of
view, it should
include trust and
security.

Collaboration
opportunities,
network security,
reputation, access
to new business
models, new
services without
building new
infrastructure by
connecting
solutions, easier
access to new
customers and
partners.

S&C is a private
company that
enhances
competitive
differentiation by
increasing the
added value to its
services and
products. A
federation is an
effective way to
deploy new
service-based
business models,
and to access
customers and
collaboration
opportunities.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 64 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

in real time and obtain
predictions about energy
consumption. End-users
participate because they
can achieve a number of
benefits from these
applications: controlling
of their home,
awareness of energy
efficiency and, therefore,
saving money, improving
understanding and
awareness of their
health status, improving
wellbeing. The rest of
customers achieve
insights about end-users
behaviours that enable
them to improve and
customise their services.

We deal with sensors
and actuators located at
home that monitor
contextual information
that enable monitor user
behaviours, adapt
environment to their
needs and forecasting.

Spine Spine is an hardware
platform. It's just a board
exposing different IoT
and wireless protocol on
an USB connection.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 65 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

 4b. Relevance of
partner size for
federating

5. Incentives
and
conditions for
cooperating
among
platforms

6.
Cooperations
rather
orthogonal or
complementary

7. Value of
platform
cooperation
for you

8. Your
cooperation
preferences

MoBaaS Very indifferent, as long
as there is value in the
federation and the
security and quality of
service are guaranteed.

Ease of
cooperation
between federated
platforms;
selling/exchange of
resources/services.
Additionally, from a
business
perspective, it can
be a requirement
by the platform
buying/selling
services/data or a
public tender.

Can be both. Using
the Smart Mobility
use case as an
example, for the
interpolation
workflow, the
cooperation
between Open IoT
and Uwedat is
orthogonal, where
they both cooperate
to rate the air quality
levels of streets. On
the other hand,
MoBaaS can use
this data to feed its
routing service,
where the service
offered by the other
two platforms is
more
complementary.

Ease of
development of
cross-domain
applications
through the
interoperability
provided by the
symbIoTe
ecosystem.

Within the Smart
Mobility use case,
MoBaaS will use
the data
generated by
OpenIoT and
Uwedat in the
Interpolation
workflow to power
its routing engine.
This can be
extended to any
platforms (or
combination of) of
any city, allowing
MoBaaS to
provide the routing
service anywhere
where such data
is provided.

Navigo
Digitale

Yachting industry is a
very peculiar one: there
isn’t a single large
technological provider but
a variety of small
companies offering
services to yacht
manufacturers and
touristic ports. We are
facilitated for the SY use
case by the fact that the
largest yachting
manufacturers are in Italy
and already collaborates
with symbIote partners
Navigo and Nextworks.
Navigo also organizes
important event for this
industry like Yare: we
expect that this can
facilitate other
technological providers to
embrace symbIoTe and
the SY use case.

Incentives: the
availability of the
specific IoT
platform in the
Yachts produced
by important
manufacturers.

For implementing
the SY use case it
seems to me that
cooperation is
complementary (if I
correctly get the
question…).
Platforms in the boat
and in the port must
interoperate to fulfil
the use case.

Mostly related to
marketing. We
offer a solution for
ports: the more
Yachts can
interoperate with
our platform, the
more it will be
appealing to our
potential
customers.

Technological
providers for the
Yachting industry
in general:
Nextworks to start
with.

KIOLA (not
in DoA)

It is not really the size of
the partner, as the
reputation within the
healthcare area as well as
other factors, such as:
does the partner platform
comply with regulatory
aspects in the health
domain ?

In the health
domain linkage of
different health
sensors (which
may be in different
IoT domains) help
to track certain
health aspects of a
person; e.g. indoor
localization +
fitness tracker +
blood pressure
meter sensors help
to determine the
daily activities of an

Both Simple integration
of various (health-
related) sensors in
different platforms

e.g. bringing home
automation
services and
health monitoring
closer together

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 66 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

eldery person,
which in return can
be seen as
incentive.

OpenIoT Size definitely matters
(smile). I see two
scenarios: 1st (in my
opinion more likely): a
small (new) player in the
market will try to join a
federation with a big
player (i.e. platform
operator with large user
base) to accelerate its
penetration to the market
share. Big player will not
have to do much (since a
small player(s) will have
to adapt to the big player,
and big player will collect
its cut in all revenues). In
this scenario I don't see a
lot of cooperation
between players.
Examples of big playes:
ATOS, IBM offering
exclusive rights to use
their platform which is
used in various domains
and have a high number
of users. Small players:
SME(s) that have
developed their own
domain-specific platform
and (mobile) app for it.
Now they want to extend
their user base and
enable that all 'big player'
users can also use their
platform/data.

2nd scenario: two roughly
equals partners will make
a federation (or even
some kind of a merger) to
increase their cumulative
market share (and
influence). In this
scenario, the cooperation
between partners is
expected, both sides
need to invest some
effort.

I see two main
incentives: 1st
(obviously) money.
2nd user base
which becomes
accessible to both
platforms.
Necessary
condition: both
need to see some
interest

Can be both in my
opinion... see
answer 4b

Ideally through
symbIoTe.
symbIoTe can
offer means to find
suitable platform
and facilitate the
federation
agreement
(especially from a
technical point of
view)

So far, OpenIoT
did not envision
any type of
cooperation
(except of
cooperation
between multiple
instances which
basically means
sharing the data).

UniversAAL

BETaaS

Symphony The size matters from a
commercial point of view,
this is obvious, and with
size we refer to the
dimensions of the
company, more than to
the IoT platform which we
are federating with.

The main relevant thing is
the services provided: this
is the first thing to
consider when joining a
federation.

The ease of the
federation process
is the first incentive
to proceed: of
course a difficult
integration will
discourage any
possible partner.

The second point is
the possibility to
create an added
value to the
services provided
by the platform,
and certainly this is

Mainly
complementary.
Even collaborating
orthogonal platforms
can be considered
complementary, if
we see orthogonal
collaboration from a
holistic point of view

Relatively simple
development of
complex services
over multiple
collaborating
platforms.

Smart Yachting:
collaborating with
Navigo Digitale to
implement the use
case.

Smart Residence:
collaborating with
KIOLA, if needed,
for home
automation &
health care
features.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 67 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

strictly related to
money.

Worldline
(not in DoA)

Its size is not as relevant
as the quality of the
information and services it
provides.

Incentives: money
and/or a big
enhancement of my
platforms.
Conditions: ease of
usage and
development as
well as shared
effort in the
integration.

Can be both
depending on the
use case.

Easily integrate
features from
third-parties into
your application
via the simplified
API from
symbIoTe.

Retailer platforms,
sports events,
calendars and
real-time updates.

nAssist It will depend on the
functionalities and
services offered by the
other partners and their
trust and reputation, more
than their size. It could be
interesting to have trust
and reputation models for
partner selection when
there are more than one
partner offering the same
services or functionalities.

The main condition
to cooperate with
other IoT platforms
will be the
possibility to create
new services
without building
and investing in
new infrastructure.

It will depend on the
services to be built.
For example,
sharing outdoor
tracking data with
indoor tracking data
can enable to create
more robust user
behaviour patterns
that will lead to more
precise health
applications. This
would be a
complementary
cooperation.
However, an
orthogonal
cooperation would
be necessary to
create smart grids
services.

To create
innovative
solutions without
spending time to
build new
infrastructure.
Cooperation will
bring together the
range of expertise
and abilities to
design and deploy
these solutions.

Sharing
data/knowledge
and creating new
services together.

Spine

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 68 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

 9. Platform partners
valuable to you for
cooperating

10. Your ideal
platform
cooperation
scenario

11. Support by
bartering in this
cooperation?

12. Support by
trading in this
cooperation?

MoBaaS The partners within the Smart
Mobility Use Case (UNIZG-FER
and AIT). In the future, it could be
extended to other platforms who
provide similar services in different
cities (as stated in the previous
answer). It could be extended to
partners who can use the solution
in their local regions or that provide
contact with possible customers
(counties, environmental entities,
etc.)

MoBaaS provides
services for cities. It
needs sensor data to
provide this services.
Anything that allows the
finding and usage of
these resources is
valuable. The most
desirable cooperation
would be with a partner
with an excellent data
coverage over a city.
The main difficulty for
the kind of services
MoBaaS provides is
obtaining high quality
data and the lack of
investment to create a
high quality coverage.

Exchange of the
platform’s services with
the data from providers.
Still there needs to be
some profit
(transforming raw
“material” to a product).
So maybe trading is
more adequate for this
case or the profit form
selling the services can
be divided by the data
and service providers
somehow. In case
some entity doesn’t
want to make their data
available, it can be an
incentive for them to do
so by trading their data
with our services.

Through backward
trading, obtain access
to resources to feed the
services, which are later
sold to municipalities.
As such, our platform
would be in the middle
of the value chain Data
Source -> Service ->
End user, paying the
Data Providers for their
data and being paid for
the offered services by
the End Users.

Navigo
Digitale

See point 8.

The cooperation
scenario is clearly
defined in the SY use
case. For partners, see
point 8.

No bartering scenario
foreseen at present for
our platform.

No trading scenario
foreseen at present for
our platform.

KIOLA (not
in DoA)

Home automation platforms (e.g.
capable of indoor localization)

A home automation
platform capable of
doing indoor localization

Resource batering and
trading is a difficult topic
in the health area, as
resources are natually
very sensitive;

See 11

OpenIoT Partners from symbIoTe? If yes,
then those involved in use case
(AIT and UW).

Ideal scenario: when
I'm missing something
(either a physical device
or data item) I would go
and look and ask my
'partners' if they have it!
With this (when I find it)
I can offer some new
service. This is valid for
platform
operators/owners and
app developers.

For start, we need to
define what is a
resource? A physical
thing or data?

To barter a physical
devices we need to
develop technical
preconditions to enable
such functionality!

To barter data - how to
assess when data is
exchanged and how
much this is worth?

But overall, yes
bartering of resources
could help our use
case, in a way that
users would get better
quality information.

Same answer as
previous question...

UniversAAL

BETaaS

Symphony Navigo for SY and AIT for SR The collaborating
scenario are the SR
and the SY use case

No bartering scenario
foreseen at present for
our platform

No trading scenario
foreseen at present for
our platform

Worldline
(not in DoA)

From symbIoTe context, it would
be interesting to collaborate with
our colleagues from EduCampus
use case. Our platforms involving
visitors, retailers and information
points can coexist in universities,

A platform offering
decentralized services
to citizens. We offer
almost real-time
notifications to visitors,
so any partner could

Yes, once the
cooperation is defined
in terms of what’s a
resource, how valuable
is the provided service,
value of the data.

Yes, same as 11.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 69 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

plus those having important sport
teams and events.

take advantage of this if
their features fit our
business.

nAssist In SymbIoTe context, it could be
interesting to cooperate with smart
home use case, in particular with
health use case. For example, if
these partners can measure health
indicators such as vital signs, we
could combine this information with
the monitoring of activities of daily
living (ADLs), creating robust
healthcare services at home.

Our ideal platform
cooperation scenario
should include an easy
and secure access to
the information provided
by the different IoT
platforms by supporting
networking
requirements, privacy
data trust, data
anonymization, context
in which the data are
embedded (for data
analytics purposes).

Data/services bartering
will facilitate our
inclusion in the
marketplace by putting
our solutions on the
spot. A bartering
system will enable to
extend our solutions to
include shared
data/services and to
find new opportunities
while the brand
reputation is built. A
bartering system leads
to immediate benefits
and investment in the
future.

Once the reputation and
the corresponding trust
have been achieved,
data/services trading
will facilitate our role as
providers by improving
our business outcomes
and finding cost-
efficiencies.

Spine

Table 3 Answers to questioners

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 70 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

10 Annex B – Updated implementation of L1

In this annex, it is presented novelties and updates to security related content described in
D1.4 [1] and D2.5 [3] as the work of T3.2 continued and improved some of the security
layer mechanism presented there.

The most notable changes is providing two layer authentication:

• using actors credentials to create accounts and acquire their client’s certificates:

o including full Certificates Signing Requests support;

• using the certificates and private keys to request HOME tokens and generate mutual-
authentication payloads.

We describe below new and updated procedures necessary to acquire SymbIoTe Auth(N)
and Auth(Z) payloads.

10.1 Certificates acquisition

In order to acquire relevant SymbIoTe certificates through Administration GUI or directly
using the AAMs’ REST endpoint, the actor (user/platform owner) needs to provide their
credentials and a CSR with the following specifics:

Actor AAM
type

Input's format (CSR) Input's format in
REGEX

Result

Common
(either

ordinary user
(app) or
platform
owner)

Core &
Platform

CN=username@clientId@platformId
(or SymbIoTe_Core_AAMfor core

user)

^(CN=)(([\w-
])+)(@)(([\w-
])+)(@)(([\w-])+)$

User client's certificate
for acquiring HOME

tokens

Home AAM
Administrator
credentials

 CN=componentId@platformId ^(CN=)(([\w-
])+)(@)(([\w-])+)$

components'
certificate (e.g.

SymbIoTe_Core_AAM
for the core)

Platform
Owner

Core CN=platformId ^(CN=)(([\w-])+)$ Platform AAM's
certificate

Table 4 Certificates acquisition

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

10.1.1 Clients’ / Components’

 Figure 24 Sequence Diagram

• Operation 0: User has generated a Keystore.

• Message 1: Generated by the User and delivered to their Home AAM to fetch the
certificate fields and fill in the CSR properly, it is a request for the (root or intermediate
CA (AAM's) certificate.

• Message 2: Home AAM delivers CA certificate to the User.

• Operation 3: User stores received CA Certificate in his Keystore for offline Trust
Validation.

• Operation 4: the User generates a client key pair (public
ECDSA_256 algorithm.

• Operation 5: the User generates a certificate signing request (CSR) with a CN
matching the aforementioned scheme that matches the Home AAM certificate dat

• Message 6: the User sends a request for a certificate to the Home AAM (e.g. for the
core through the Administration module) that has the following elements:

o username,

o password,

o client_id,

o CSR (Certificate Signing Request)

• Operation 7: Home AAM verifie
requested in the CSR; newly signed certificate is written in Home AAM's database for
that particular user and its client_id.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Clients’ / Components’ Certificates acquisition

Sequence Diagram of certificates acquisition

: User has generated a Keystore.

: Generated by the User and delivered to their Home AAM to fetch the
fill in the CSR properly, it is a request for the (root or intermediate

: Home AAM delivers CA certificate to the User.

: User stores received CA Certificate in his Keystore for offline Trust

: the User generates a client key pair (public and private) by applying

: the User generates a certificate signing request (CSR) with a CN
matching the aforementioned scheme that matches the Home AAM certificate dat

: the User sends a request for a certificate to the Home AAM (e.g. for the
core through the Administration module) that has the following elements:

CSR (Certificate Signing Request)

: Home AAM verifies the request and signs the certificate that was
requested in the CSR; newly signed certificate is written in Home AAM's database for
that particular user and its client_id.

Resource Trading, Security and Federation Mechanisms

Page 71 of 87

ertificates acquisition

: Generated by the User and delivered to their Home AAM to fetch the
fill in the CSR properly, it is a request for the (root or intermediate

: User stores received CA Certificate in his Keystore for offline Trust-chain

private) by applying

: the User generates a certificate signing request (CSR) with a CN
matching the aforementioned scheme that matches the Home AAM certificate data.

: the User sends a request for a certificate to the Home AAM (e.g. for the
core through the Administration module) that has the following elements:

s the request and signs the certificate that was
requested in the CSR; newly signed certificate is written in Home AAM's database for

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

• Message 8: generated by Home AAM and delivered to the client, it returns either a
valid certificate or an error message.

• Operation 9: User stores received, signed Certificate in his Keystore.

From now on, the User can log in to his Home AAM and acquire home tokens from it.

10.1.2 Platform AAM intermediate CA certificate acquisition from Core A

Prerequisites:

• PO is registered in the CoreAAM

• Platform is registered in the CoreAAM

Figure 25 Sequence Diagram

• Operation 0: Platform Owner has generated all of the following:
and Platform CSR.

• Message 1: Platform Owner requests signing his certificate from the Core
Authentication and Authorization Manager. Request should contain: CSR, PO's
username, PO's password, Platform's ID.

• Operation 2: Core Authenticatio
certificate and registers it in Database.

• Message 3: Core Authentication and Authorization Manager returns Signed
Certificate to Platform Owner.

• Operation 4: Platform Owner adds received, signed Certificate from C
Authentication and Authorization Manager to previously generated Keystore.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

: generated by Home AAM and delivered to the client, it returns either a
valid certificate or an error message.

: User stores received, signed Certificate in his Keystore.

the User can log in to his Home AAM and acquire home tokens from it.

Platform AAM intermediate CA certificate acquisition from Core A

PO is registered in the CoreAAM

Platform is registered in the CoreAAM

Sequence Diagram of intermediate CA certificate acquisition

: Platform Owner has generated all of the following:

: Platform Owner requests signing his certificate from the Core
Authentication and Authorization Manager. Request should contain: CSR, PO's
username, PO's password, Platform's ID.

: Core Authentication and Authorization Manager signs received
certificate and registers it in Database.

: Core Authentication and Authorization Manager returns Signed
Certificate to Platform Owner.

: Platform Owner adds received, signed Certificate from C
Authentication and Authorization Manager to previously generated Keystore.

Resource Trading, Security and Federation Mechanisms

Page 72 of 87

: generated by Home AAM and delivered to the client, it returns either a

: User stores received, signed Certificate in his Keystore.

the User can log in to his Home AAM and acquire home tokens from it.

Platform AAM intermediate CA certificate acquisition from Core AAM

iate CA certificate acquisition

: Platform Owner has generated all of the following: Keystore, KeyPair

: Platform Owner requests signing his certificate from the Core
Authentication and Authorization Manager. Request should contain: CSR, PO's

n and Authorization Manager signs received

: Core Authentication and Authorization Manager returns Signed

: Platform Owner adds received, signed Certificate from Core
Authentication and Authorization Manager to previously generated Keystore.

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

• Message 5: Platform Owner sends a request to the Core Authentication and
Authorization Manager to receive Root CA Certificate.

• Message 6: Core Authentication and Authorization M
with Root CA Certificate.

• Operation 7: Platform Owner adds Root CA Certificate to Keystore. At this point
Platform Owner has java keystore with the certificates and a private key needed to
run a platform AAM instance

10.2 Token acquisition

Having initialized their client (with AuthN material), the actors (users) can proceed to
acquire AuthZ payloads - tokens

10.2.1 Home token acquisition

Prerequisites:

• user has issued a certificate for the client he wants to log from

• Message 1: generated by the user and sent to HOME AAM, it is a login request that
includes username and client_id and signed with the private key that matches this
tuple

• Message 2: AAM verifies the data sent by the
records

• Message 3: generated by HOME AAM and sent to the client; it contains a HOME
token with a public key that matches the private key used for signing the login
request

10.2.2 Foreign token acquisition

In exchange for HOME tokens,

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

: Platform Owner sends a request to the Core Authentication and
Authorization Manager to receive Root CA Certificate.

: Core Authentication and Authorization Manager responds to request
with Root CA Certificate.

: Platform Owner adds Root CA Certificate to Keystore. At this point
Platform Owner has java keystore with the certificates and a private key needed to
run a platform AAM instance.

Having initialized their client (with AuthN material), the actors (users) can proceed to
tokens

Home token acquisition

user has issued a certificate for the client he wants to log from

Figure 26. Full online

: generated by the user and sent to HOME AAM, it is a login request that
includes username and client_id and signed with the private key that matches this

: AAM verifies the data sent by the user by comparing it with its database

: generated by HOME AAM and sent to the client; it contains a HOME
token with a public key that matches the private key used for signing the login

Foreign token acquisition

tokens, the clients can try to acquire FOREIGN tokens

Resource Trading, Security and Federation Mechanisms

Page 73 of 87

: Platform Owner sends a request to the Core Authentication and

anager responds to request

: Platform Owner adds Root CA Certificate to Keystore. At this point
Platform Owner has java keystore with the certificates and a private key needed to

Having initialized their client (with AuthN material), the actors (users) can proceed to

: generated by the user and sent to HOME AAM, it is a login request that
includes username and client_id and signed with the private key that matches this

user by comparing it with its database

: generated by HOME AAM and sent to the client; it contains a HOME
token with a public key that matches the private key used for signing the login

the clients can try to acquire FOREIGN tokens.

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

Figure 27. Sequence Diagram

• Procedure 1: User requests HOME token.

• Message 2: Application forwards request to Security

• Message 3: Security handler sends Login Request to Home Authentication and
Authorization Manager to obtain Home Token

• Procedure 4: Home Authentication and Authorization Manager verifies received
request

• Message 5: If verification is successful Home
Manager returns Home Token to Application's Security Handler

• Message 6: Security Handler informs Application whether obtaining Home Token
was successful

• Message 7: User is informed by Application if Obtaining Home Token su

• Procedure 8: User Requests Foreign token

• Message 9: Application forwards request to Security Handler

• Message 10: Application's Security Handler sends Home Token optionally with
client certificate and / or AAM certificate to Federated Authentication
Authorization Manager

• Procedure 11: Federated Authentication and Authorization Manager validates
received Home Token

• Procedure 12: Verification of any asynchronous revocation of the remaining tokens
(i.e., if token has been revoked by the Home AAM
indicated within the token itself).

• Procedure 13: Federated AAM checks with Attribute Mapping Function if the HOME
token presented in the request is allowed to obtain a Foreign token

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Sequence Diagram of foreign token acquisition

: User requests HOME token.

: Application forwards request to Security Handler

: Security handler sends Login Request to Home Authentication and
Authorization Manager to obtain Home Token

: Home Authentication and Authorization Manager verifies received

: If verification is successful Home Authentication and Authorization
Manager returns Home Token to Application's Security Handler

: Security Handler informs Application whether obtaining Home Token

: User is informed by Application if Obtaining Home Token su

: User Requests Foreign token

: Application forwards request to Security Handler

: Application's Security Handler sends Home Token optionally with
client certificate and / or AAM certificate to Federated Authentication

: Federated Authentication and Authorization Manager validates

: Verification of any asynchronous revocation of the remaining tokens
(i.e., if token has been revoked by the Home AAM before the expiration time
indicated within the token itself).

: Federated AAM checks with Attribute Mapping Function if the HOME
token presented in the request is allowed to obtain a Foreign token

Resource Trading, Security and Federation Mechanisms

Page 74 of 87

of foreign token acquisition

: Security handler sends Login Request to Home Authentication and

: Home Authentication and Authorization Manager verifies received

Authentication and Authorization

: Security Handler informs Application whether obtaining Home Token

: User is informed by Application if Obtaining Home Token succeeded

: Application's Security Handler sends Home Token optionally with
client certificate and / or AAM certificate to Federated Authentication and

: Federated Authentication and Authorization Manager validates

: Verification of any asynchronous revocation of the remaining tokens
before the expiration time

: Federated AAM checks with Attribute Mapping Function if the HOME
token presented in the request is allowed to obtain a Foreign token

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

• Message 14: Upon successful validation and Att
Authentication and Authorization Manager provides Foreign token to Application's
Security Handler

• Message 15: Application's Security Handler informs Application about outcome of
obtaining Foreign Token

• Message 16: Application forwa

10.2.3 Guest Token Acquisition

The guest token grants access to public resources registered in the Core and/or Platforms
Registries.

Prerequisites:

• client has network access to whatever symbiote AAM

Figure 28. Sequence Diagram

• Message 1: generated by the user and sent to arbitrary AAM in symbIoTe; the user
logs in to GUEST AAM with dedicated GUEST API

• Message 2: generated by the AAM and sent to the user; it is a response that
contains a GUEST token (and possibly, still under discussion a private key and a
certificate of that token)

10.3 Access to resource

In this diagram, we present the full interaction in between Core and Cloud domain
components for a client using
access a resource.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

: Upon successful validation and Attribute Mapping Federated
Authentication and Authorization Manager provides Foreign token to Application's

: Application's Security Handler informs Application about outcome of
obtaining Foreign Token

: Application forwards obtained information to User

Guest Token Acquisition

The guest token grants access to public resources registered in the Core and/or Platforms

client has network access to whatever symbiote AAM

Sequence Diagram of guest token acquisition

: generated by the user and sent to arbitrary AAM in symbIoTe; the user
logs in to GUEST AAM with dedicated GUEST API

: generated by the AAM and sent to the user; it is a response that
contains a GUEST token (and possibly, still under discussion a private key and a
certificate of that token)

we present the full interaction in between Core and Cloud domain
client using application core account and exchanged federated token to

Resource Trading, Security and Federation Mechanisms

Page 75 of 87

ribute Mapping Federated
Authentication and Authorization Manager provides Foreign token to Application's

: Application's Security Handler informs Application about outcome of

The guest token grants access to public resources registered in the Core and/or Platforms

of guest token acquisition

: generated by the user and sent to arbitrary AAM in symbIoTe; the user

: generated by the AAM and sent to the user; it is a response that
contains a GUEST token (and possibly, still under discussion a private key and a

we present the full interaction in between Core and Cloud domain
account and exchanged federated token to

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

Figure 29.

For apps registered in the:

Core AAM

• Message 1 (optional): generated by the Application/Enabler and sent to the
Application Security Handler. It is used to issue home token from the Core AAM. If
the Application/Enabler is already logged in, it is not necessary.

• Message 2 (optional) (AppAAInterface)
Handler and sent to the Core
(the application must perform the "sign in" with the AAM before, so we assume the
application is already registered). It is used to authenticate the Application/Enabler.
If the Application/Enabler is alrea

• Message 3 (optional): generated by the Core AAM in the IoT platform and sent to
the Application Security Handler. It is used to provide the home token(s) with
attributes included. If the Application/Enabler is already log
necessary.

• Message 4 (optional): generated by the Application Security Handler and sent to the
Application/Enabler. It is used to deliver the core token.

Platform/Enabler - interaction is as above but with the relevant (be it Platform/Ena
home AAM to the use. Acquiring foreign tokens is useful only in FEDERATED scenario, in
normal usage of owned resources, a HOME token is enough.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

 Sequence Diagram of access to resource

: generated by the Application/Enabler and sent to the
Application Security Handler. It is used to issue home token from the Core AAM. If
the Application/Enabler is already logged in, it is not necessary.

Message 2 (optional) (AppAAInterface): generated by the Application Security
Handler and sent to the Core AAM in which the Application/Enabler is registered
(the application must perform the "sign in" with the AAM before, so we assume the
application is already registered). It is used to authenticate the Application/Enabler.
If the Application/Enabler is already logged in, it is not necessary.

: generated by the Core AAM in the IoT platform and sent to
the Application Security Handler. It is used to provide the home token(s) with
attributes included. If the Application/Enabler is already log

: generated by the Application Security Handler and sent to the
Application/Enabler. It is used to deliver the core token.

interaction is as above but with the relevant (be it Platform/Ena
Acquiring foreign tokens is useful only in FEDERATED scenario, in

normal usage of owned resources, a HOME token is enough.

Resource Trading, Security and Federation Mechanisms

Page 76 of 87

of access to resource

: generated by the Application/Enabler and sent to the
Application Security Handler. It is used to issue home token from the Core AAM. If

: generated by the Application Security
AAM in which the Application/Enabler is registered

(the application must perform the "sign in" with the AAM before, so we assume the
application is already registered). It is used to authenticate the Application/Enabler.

dy logged in, it is not necessary.

: generated by the Core AAM in the IoT platform and sent to
the Application Security Handler. It is used to provide the home token(s) with
attributes included. If the Application/Enabler is already logged in, it is not

: generated by the Application Security Handler and sent to the

interaction is as above but with the relevant (be it Platform/Enabler)
Acquiring foreign tokens is useful only in FEDERATED scenario, in

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 77 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 5 (optional): generated by the Application/Enabler and sent to Application
Security Handler. It is used to trigger the operations for obtaining the foreign token
from IoT platform. If the Application/Enabler already has valid foreign token, it is not
necessary.

• Message 6 (optional) (AAInterface): generated by the Application Security Handler
and sent to the foreign AAM in IoT platform. It is used to trigger the operations for
obtaining the foreign token(s). If the Application/Enabler already has valid foreign
token, it is not necessary.

• Procedure 7 (optional): verification of the time validity, authenticity and integrity of
the provided token. If the Application/Enabler already has valid foreign token, it is
not necessary.

• Procedure 8 (optional) (PlatformAAInterface): verification of any asynchronous
revocation of the token (i.e., if token has been revoked by the home AAM before the
expiration time indicated within the token itself). If the Application/Enabler already
has valid foreign token, it is not necessary.

• Procedure 9 (optional): procedure that, in case it is needed, translates attributes
that the Application/Enabler has in the home IoT platform in a new set of attributes
that it has in the core layer. If attributes are the same or the Application/Enabler
already has valid foreign token, it is not necessary.

• Message 10 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver foreign token with new attribute(s). If the
Application/Enabler already has valid foreign token, it is not necessary.

• Message 11 (optional): generated by the Application Security Handler and sent to
the Application/Enabler. It is used to forward the foreign token generated at the
previous step.

• Message 12 (ChooseResInterface): Application/Enabler sends request access to
selected resources to Core Resource Access Monitor. Message includes tokens
used for authorization

• Message 13: It is used to ask to the security handler to verify the complete validity
of the Security Request

• Procedure 14:verification of the time validity, authenticity and integrity of the
provided token

• Message 15: verification of any asynchronous revocation of the token (i.e., if token
has been revoked by the home AAM before the expiration time indicated within the
token itself).

• Message 16: It is used to communicate the outcome of the Security Request
validation procedures performed by the CRAM Security Handler.

• Message 17: Core Recoure Access Monitor returns list of URLs for selected
resources in IoT platform

• Message 18 (AccessResourceInterface): generated by the Application/Enabler and
sent to the Resource Access Proxy in the resource responsible IoT platform. It is
used to access resources, while providing the authorization tokens previously
obtained.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 78 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 19: generated by the Resource Access Proxy and sent to the Security
Handler in the resource responsible IoT platform. It is used to ask to the security
handler to verify the complete validity of the token.

• Procedure 20: verification of the time validity, authenticity and integrity of the
provided token and check if the attributes included in the core token satisfy the
access policy associated to the requested resource.

• Procedure 21: verification of any asynchronous revocation of the token (i.e., if token
has been revoked by the home AAM before the expiration time indicated within the
token itself).

• Message 22: generated by the Security Handler in the resource responsible IoT
platform and sent to the Resource Access Proxy. It is used to communicate the
outcome of the token validation procedures performed by the RAP Security
Handler.

• Message 23: Resource Access Proxy requests a RAP Service Response from it's
Security Handler.

• Message 24: RAP receives RAP Service Response from Security Handler

• Message 25: (ReportUsageInterface) asynchronously emit resource usage per
use/per stream start along with Resource Access Proxy Service Response

• Message 26: Application/Enabler forwards RAP Response to Security Handler for
validation.

• Procedure 27: Security Handler validates RAP Response using suitable RAP
certificate fetchable from AAM.

• Message 28: Security Handler returns status of validation.

• Message 29: Forward the usage report per use/per stream start along with
Resource Access Proxy Service Response to Core Resource Access Monitor

• Message 30: Core Resource Access Monitor asynchronously sends resource
usage report to Anomaly Detection Module.

• Message 31: (ReportUsageInterface) this message informs Core Resource Access
Monitor when the stream is ended

• Message 32: Forward the usage end report to Anomaly Detection Module

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

11 Annex C - Multi-Domain

The MDARC paradigm throws its basis on the Attribute
mechanisms. ABAC is the baseline approach adopted by symbIoTe to protect the access
to resources. With ABAC, the MDARC paradigm still protects resour
remote applications to access to a given resource only if it is able to be in possession of a
set of attributes that matches the access policy assigned to the resource itself.

The key interesting aspect that characterizes the MDARC paradigm
these attributes. The main idea is that the application can be registered in more than one
domain (or, to simplify, IoT platforms). Therefore, it is able to collect for each domain a set
of attributes that locally encodes its prope
application can combine these attributes coming from different domains in order to ask the
access to a resource exposed elsewhere (see

Figure 30.

Without loss of generality, the proposed example assumes that there are three IoT
platforms: PlatformA, Platform
PlatformA and PlatformB. The application would like to access to the resource in Platform
The policy says that the application must have ATTRIBUTE
the resource. The application can retrieve ATTRIBUTE
from PlatformB. The application combines these attributes and contact
Access Proxy (RAP) in Platform

Thanks to the decoupled native of authentication and authorization mechanisms already
developed in symbIoTe for both L1 and L2 levels, the MDARC paradigm can be easily
implemented.

Authentication and authorization procedures still embrace

• Home authentications
platforms where it is registered to (i.e., Platform
contacts the Authentication and Authorization Manager (AAM) component of each
platform for retrieving HOME tokens.

• Foreign authentication
component of the foreign platform Platform

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

Domain Access Rights Composition

The MDARC paradigm throws its basis on the Attribute-Based Access Control (ABAC)
mechanisms. ABAC is the baseline approach adopted by symbIoTe to protect the access
to resources. With ABAC, the MDARC paradigm still protects resour
remote applications to access to a given resource only if it is able to be in possession of a
set of attributes that matches the access policy assigned to the resource itself.

The key interesting aspect that characterizes the MDARC paradigm refers to the nature of
these attributes. The main idea is that the application can be registered in more than one
domain (or, to simplify, IoT platforms). Therefore, it is able to collect for each domain a set
of attributes that locally encodes its properties and its access capabilities. Indeed, the
application can combine these attributes coming from different domains in order to ask the
access to a resource exposed elsewhere (see Figure 30).

 Multi-Domain Access Rights Composition

Without loss of generality, the proposed example assumes that there are three IoT
, PlatformB and PlatformC. The application is registered in platforms

The application would like to access to the resource in Platform
application must have ATTRIBUTEA and ATTRIBUTE

the resource. The application can retrieve ATTRIBUTEA from Platform
. The application combines these attributes and contact

Access Proxy (RAP) in PlatformC.

Thanks to the decoupled native of authentication and authorization mechanisms already
both L1 and L2 levels, the MDARC paradigm can be easily

zation procedures still embrace three main steps:

Home authentications: At the beginning the application performs the login in the
registered to (i.e., PlatformA and Platform

contacts the Authentication and Authorization Manager (AAM) component of each
for retrieving HOME tokens.

Foreign authentication: The application sends all its HOME tokens to the AAM
omponent of the foreign platform PlatformC. The AAM component of the foreign

Resource Trading, Security and Federation Mechanisms

Page 79 of 87

Access Rights Composition

Based Access Control (ABAC)
mechanisms. ABAC is the baseline approach adopted by symbIoTe to protect the access
to resources. With ABAC, the MDARC paradigm still protects resources by allowing
remote applications to access to a given resource only if it is able to be in possession of a
set of attributes that matches the access policy assigned to the resource itself.

refers to the nature of
these attributes. The main idea is that the application can be registered in more than one
domain (or, to simplify, IoT platforms). Therefore, it is able to collect for each domain a set

rties and its access capabilities. Indeed, the
application can combine these attributes coming from different domains in order to ask the

Domain Access Rights Composition

Without loss of generality, the proposed example assumes that there are three IoT
registered in platforms

The application would like to access to the resource in PlatformC.
and ATTRIBUTEB to access

m PlatformA and ATTRIBUTEB
. The application combines these attributes and contacts the Resource

Thanks to the decoupled native of authentication and authorization mechanisms already
both L1 and L2 levels, the MDARC paradigm can be easily

three main steps:

: At the beginning the application performs the login in the
and PlatformB). To this end, it

contacts the Authentication and Authorization Manager (AAM) component of each

: The application sends all its HOME tokens to the AAM
. The AAM component of the foreign

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

platform initiates the challenge
the real owner of the tokens, thus preventing both replay and impersonation
attacks. In the case the challenge
the AAM component of the foreign platform validates the tokens, verifies that they
have not been revoked by contacting AAM components of the HOME platforms
(i.e., PlatformA and Platform
generates a FOREIGN token that stores the set of attributes mapped from those
contained in HOME tokens.

• Resource access authorization
the FOREIGN token retriev
response mechanism to verify that the application is the real owner of the token. In
the case the challenge
verifies that the tokens are valid an
its reference platform AAM component. Then it checks the provided attributes
against the access policy associated with the requested resource: if the attributes
supplied by the applications are sufficient to
the resource (according to the ABAC logic) the RAP grants access to the resource.
Otherwise, the access is denied.

Figure 31. Sequence Diagram of

• Message 1 (optional): generated by the Application and sent to the Application
Security Handler. It is used to trigger the recovery of the HOME token from the
Platform A. If the Application is already logged in Platform A, it is not necessary.

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

platform initiates the challenge-response mechanism to verify that the application is
the real owner of the tokens, thus preventing both replay and impersonation

ase the challenge-response mechanism is successfully completed,
the AAM component of the foreign platform validates the tokens, verifies that they
have not been revoked by contacting AAM components of the HOME platforms

and PlatformB) and performs the attribute mapping function. Then, it
generates a FOREIGN token that stores the set of attributes mapped from those
contained in HOME tokens.

Resource access authorization: The application contacts the RAP and delivers
the FOREIGN token retrieved at the previous step. The RAP initiates the challenge
response mechanism to verify that the application is the real owner of the token. In
the case the challenge-response mechanism is successfully completed, the RAP
verifies that the tokens are valid and that they have not been revoked by contacting
its reference platform AAM component. Then it checks the provided attributes
against the access policy associated with the requested resource: if the attributes
supplied by the applications are sufficient to satisfy the access policy associated to
the resource (according to the ABAC logic) the RAP grants access to the resource.
Otherwise, the access is denied.

Sequence Diagram of Multi-Domain Access Rights Composition

: generated by the Application and sent to the Application
Security Handler. It is used to trigger the recovery of the HOME token from the
Platform A. If the Application is already logged in Platform A, it is not necessary.

Resource Trading, Security and Federation Mechanisms

Page 80 of 87

response mechanism to verify that the application is
the real owner of the tokens, thus preventing both replay and impersonation

response mechanism is successfully completed,
the AAM component of the foreign platform validates the tokens, verifies that they
have not been revoked by contacting AAM components of the HOME platforms

performs the attribute mapping function. Then, it
generates a FOREIGN token that stores the set of attributes mapped from those

: The application contacts the RAP and delivers
ed at the previous step. The RAP initiates the challenge-

response mechanism to verify that the application is the real owner of the token. In
response mechanism is successfully completed, the RAP

d that they have not been revoked by contacting
its reference platform AAM component. Then it checks the provided attributes
against the access policy associated with the requested resource: if the attributes

satisfy the access policy associated to
the resource (according to the ABAC logic) the RAP grants access to the resource.

omain Access Rights Composition

: generated by the Application and sent to the Application
Security Handler. It is used to trigger the recovery of the HOME token from the
Platform A. If the Application is already logged in Platform A, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 81 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

• Message 2 (optional) (HomeAAInterface): generated by the Application Security
Handler and sent to the home AAM in Platform A, in which the Application is
registered. It is used to authenticate the Application. If the Application is already
logged in, it is not necessary.

• Message 3 (optional): generated by the home AAM in the platform A and sent to the
Application Security Handler. It is used to provide the HOME token with attributes
included. If the Application is already logged in Platform A, it is not necessary.

• Message 4(optional): generated by the Application Security Handler and sent to the
Application. It is used to deliver the HOME token from the Platform A.

• Message 5 (optional): generated by the Application and sent to the Application
Security Handler. It is used to trigger the recovery of the HOME token from the
Platform B. If the Application is already logged in Platform B, it is not necessary.

• Message 6 (optional) (HomeAAInterface): generated by the Application Security
Handler and sent to the Home AAM in Platform B, in which the Application is
registered. It is used to authenticate the Application. If the Application is already
logged in, it is not necessary.

• Message 7 (optional): generated by the home AAM in the Platform B and sent to
the Application Security Handler. It is used to provide the HOME token with
attributes included. If the Application is already logged in Platform B, it is not
necessary.

• Message 8 (optional): generated by the Application Security Handler and sent to the
Application. It is used to deliver the HOME token from the Platform B.

• Message 9 (optional): generated by the Application and sent to Application Security
Handler. It is used to trigger the operations for obtaining the foreign token(s) from
IoT platform C. If the Application already has valid foreign token(s) for IoT Platform
C, it is not necessary.

• Message 10 (optional) (ForeignAAInterface): generated by the Application Security
Handler and sent to the foreign AAM in Platform C. It is used to trigger the
operations for obtaining the FOREIGN token from Platform C. If the Application
already has valid FOREIGN token from Platform C, it is not necessary.

• Procedure 11 (optional) (SecurityInterface): procedure that allows the Application
Security Handler that is acting on behalf of the Application to demonstrate that it is
the real owner of the token(s). If the Application already has valid foreign token(s)
from Platform C, it is not necessary.

• Procedure 12 (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Application already has valid foreign token(s) from
Platform C, it is not necessary.

• Procedure 13 (optional) (ForeignAAInterface): verification of any asynchronous
revocation of the token(s) (i.e., if any token(s) have been revoked by the respective
home AAM before the expiration time indicated within the token itself). If the
Application already has valid foreign token(s), it is not necessary.

• Procedure 14(optional): procedure that, in case it is needed, translates attributes
that the Application has in the HOME Platform A and Platform B in a new set of

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 82 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

attributes that it has in the Platform C. If attributes are the same or the Application
already has valid FOREIGN token from Platform C, it is not necessary.

• Message 15 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver the FOREIGN token with the new attribute(s).
If the Application already has valid FOREIGN token from Platform C, it is not
necessary.

• Message 16 (optional): generated by the Application Security Handler and sent to
the Application. It is used to forward the foreign token generated at the previous
step.

• Message 17 (AccessResourceInterface) (mandatory): generated by the Application
and sent to the Resource Access Proxy in the FOREIGN Platform C. It is used to
access resources, while providing the foreign token previously obtained.

• Message 18 (mandatory): generated by the Resource Access Proxy and sent to the
RAP Security Handler in the FOREIGN Platform C. It is used to ask to the security
handler to verify the complete validity of the token and the related access policy.

• Procedure 19 (AppSecurityInterface) (mandatory): procedure that allows the
Application Security Handler that is acting on behalf of the Application to
demonstrate that it is the real owner of the token(s).

• Procedure 20 (mandatory): verification of the time validity, authenticity and integrity
of the provided token(s).

• Procedure 21 (mandatory): verification of any asynchronous revocation of the
token(s) (i.e., if any token(s) have been revoked by the foreign AAM before the
expiration time indicated within the token itself).

• Procedure 22 (mandatory): it is used to check if the attributes included in the
FOREIGN token satisfy the access policy associated to the requested resource.

• Message 23 (mandatory): generated by the RAP Security Handler and sent to the
Resource Access Proxy. It is used to deliver the result of the operation executed at
the previous step.

• Message 24(mandatory): generated by the RAP and delivered to the Application. It
is used to communicate the required data or to provide some error codes in case
the access is denied.

11.1 eXtensible Access Control Markup Language (XACML) Engines

The concept of Attribute Based Access Control (ABAC) represents a logical authorization
model, which provides a dynamic and context-aware access control mechanism. It serves
to protect resources (i.e. data, devices, services and other) from unauthorized operations
like reading, writing, editing, deleting, copying, modifying and executing. The owner of a
resource establishes a policy that describes with attributes whom and what operations can
be performed on this object. If a subject has the attributes that satisfies the access control
policy established by the resource owner, then the subject is authorized to perform the
desired operation on that object.

eXtensible Access Control Markup Language is a standard to define the access control
policies to resources in XML format, maintained by OASIS [6]. The latest version is

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 83 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

XACML 3.0, standardized in January 2013. Furthermore, the standard defines an
architecture that specifies four main actors to handle access decisions: Policy
Administration Point (PAP), Policy Enforcement Point (PEP), Policy Decision Point (PDP),
and Policy Information Point (PIP).

• Policy Administration Point (PAP): PAP is the repository where the policies are
defined and managed. It provides the policies to the PDP.

• Policy Enforcement Point (PEP): PEP is the interface that protect a resource. It
receives the access requests and makes a decision request to the PDP to obtain
the access decision.

• Policy Decision Point (PDP): PDP is the main point for the access requests. It
collects all the necessary information (policy, subject, resource, access type,
context) and concludes if permits or denies the access to the resource.

• Policy Information Point (PIP): PIP is the point where the source attributes values
are defined.

Figure 32. XACML Architecture

Workflow, an Application sends an Access Resource Request (ARR) which is intercepted
by the PEP.

1. The PEP converts the ARR in XACML format and forwards it to the PDP.

2. The PDP evaluates the ARR against the policy managed by PAP.

3. If needed it also retrieves attribute values from PIP.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 84 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

4. The PDP makes a decision (Permit/Deny) and send it to the PEP.

5. The Application can/cannot access to the requested resource.

11.1.1 ABAC Framework Comparison

In this section, an ABAC framework comparison table is presented by highlighting the pros
and cons for each solution that could be adopted in symbIoTe.

Name

XACML
v.

Tech. License
Pros

Cons

XACML4J [7]

XACML
2.0, 3.0

Java LGPL 3.0 ● Native implementation of
XACML architecture

● Spring Module support

● Last commit 2014

SpEL + Spring
Security [8]

none Java Open
Source

● Fully customizable
● Possible Integration with

XACML

● Implementation from scratch
● Poor documentation

AuthZForce [9]

XACML
3.0

Java Apache 2 ● Project maintained.
● Fully documented.
● Standard compliant.

● Use external PEP proxy
● Configuration effort

OpenAZ [10]

XACML
3.0

Java Apache 2 ● Provide PEP Decision API
● Standard compliant

● Project retired
● Poor documentation

Axiomatics
[11]

XACML
3.0

Java Proprietary ● Perfect integration with
Spring Security

● Supports multiple
environments

● Streamlines policy editing

● Commercial nature:
● This is not suitable for research

purposes
● Currently the white papers are

not available
Casbin/jCasbin
[12]

none Golang/Java Apache 2 ● Fully customizable
● Support ACL, RBAC, ABAC
● RESTful
● PERM metamodel (Policy,

Effect, Request, Matchers)
● Many adopters
● Provides an XACML

translator

● Not manage authentication
● Not manage the list of users or

roles

AT&T XACML
[13]

XACML
3.0

Java MIT ● Provides PEP, PDP, PAP,
PAP Admin,

● REST support
● Contains sample code with

test
● PAP contains XACML 3.0

Policy Editor, attribute
dictionary support

● XACML JSON Profile v1.0 WD
14 (Last update is Oct 2017)

node-abac [14] none JavaScript MIT ● JSON/YAML Policy
● Simple usage, simple

configuration

● Poor documentation, examples
and test

● Basic data type operations

Table 5 ABAC Framework Comparison Table

The advantages of XACML technology compared to using a custom approach include:

• It is a standard language, so it’s revised daily by a large expert community. It is not
necessary to implement your customized system from scratch.

• It is interoperable, therefore it guarantees the system capability to cooperate and
exchange information with other components in a complete and bug-free manner,
with resources’ reliability and optimization using the same standard language.

• It is generic, so you can enable Access Control in any environment, which allows
you to write access policies that fit into different types of applications.

• It is powerful, in fact, it provides support for various features, data types, and
extensions.

688156 - symbIoTe - H2020-ICT-2015

Version 1.1
 © Copyrig

The goal is to find an effect
attributes, and making decisions on the access request. In order to use a single format to
enable data representation (i.e. JSON) in symbIoTe, it is necessary to analyze the
frameworks' properties in the literature.

In fact, the introduction of a framework that uses XML as a policy implementation language
would be a further effort for integration.

A detailed study of solutions available in the State of the Art, it might be efficient to adopt a
not-standardized solution (proprietary), in order to permit:

• an easier integration;

• save time and effort for the implementation

• avoid the Access Policy engine implementation and the integration from scratch

• inline with JSON message format exchanged between

Although this approach is efficient respect to the adoption for a framework already defined
in the literature, this implies a lack of interoperability compared to XACML

11.2 XACML in symbIoTe

The follow sequence diagram proposed, describes how coul
architecture in symbIoTe, in order to provide the Attribute Based Access Control
functionalities.

Figure 33. XACML Architecture proposal in symbIoTe

The solution proposes:

• PDP component should be integrated in

• PEP and PAP components in the RAP

Regarding this solution, an application that wants to access resources, should send an
Access Resource Request (ARR) by including the Authorization Token(s) that contain
attributes. Subsequently the Token Validation operation and the Challenge Response
procedure, the PEP will make a XACML decision request to PDP (parsing firstly the

2015 D3.2 - Resource Trading, Security and Federation Mechanisms
Public

right 2018, the Members of the symbIoTe consortium

ive solution for defining access policies, processing user’s
attributes, and making decisions on the access request. In order to use a single format to
enable data representation (i.e. JSON) in symbIoTe, it is necessary to analyze the

s in the literature.

In fact, the introduction of a framework that uses XML as a policy implementation language
would be a further effort for integration.

A detailed study of solutions available in the State of the Art, it might be efficient to adopt a
standardized solution (proprietary), in order to permit:

save time and effort for the implementation;

avoid the Access Policy engine implementation and the integration from scratch

inline with JSON message format exchanged between components

Although this approach is efficient respect to the adoption for a framework already defined
in the literature, this implies a lack of interoperability compared to XACML

XACML in symbIoTe

The follow sequence diagram proposed, describes how could be adopted XACML
architecture in symbIoTe, in order to provide the Attribute Based Access Control

XACML Architecture proposal in symbIoTe

PDP component should be integrated in the RAP Security Handler

PEP and PAP components in the RAP.

Regarding this solution, an application that wants to access resources, should send an
Access Resource Request (ARR) by including the Authorization Token(s) that contain

the Token Validation operation and the Challenge Response
procedure, the PEP will make a XACML decision request to PDP (parsing firstly the

Resource Trading, Security and Federation Mechanisms

Page 85 of 87

ive solution for defining access policies, processing user’s
attributes, and making decisions on the access request. In order to use a single format to
enable data representation (i.e. JSON) in symbIoTe, it is necessary to analyze the

In fact, the introduction of a framework that uses XML as a policy implementation language

A detailed study of solutions available in the State of the Art, it might be efficient to adopt a

avoid the Access Policy engine implementation and the integration from scratch;

components.

Although this approach is efficient respect to the adoption for a framework already defined
in the literature, this implies a lack of interoperability compared to XACML.

d be adopted XACML
architecture in symbIoTe, in order to provide the Attribute Based Access Control

XACML Architecture proposal in symbIoTe

the RAP Security Handler;

Regarding this solution, an application that wants to access resources, should send an
Access Resource Request (ARR) by including the Authorization Token(s) that contain

the Token Validation operation and the Challenge Response
procedure, the PEP will make a XACML decision request to PDP (parsing firstly the

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 86 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

received attributes). The PDP defined the SH will evaluate if the attributes sent by the
application match the policy by sending the XACML response to the PEP component.
Finally, the RAP will send the outcome (the resource requested or an error message
status code) to the Application.

11.3 Custom JSON Resolver for Access Policies

Following the requirements of the symbIoTe with regard to fine-grained access control
from multiple domains, a DSL (Domain Specific Language) for definition of composite
access policies has been designed. First of all, it is vital to identify key entities and
keyword for access policies DSL. Following the composite pattern, we have marked
access policy with its characteristics as main building block for DSL.

Access policy in symbIoTe can be built in a composite or simple manner. Composite
access policy is described using other simple or composite access policies and the
relations between them.

For definition of Access Policies in symbIoTe, following keywords should be used (and
those are therefore reserved keywords):

• operator - Operator for validating simple access policies or denoting relations
between policies in composite access policy;

• policy - Set of simple access policies in composite access policy;

• policyType - Type of access policy: {composite, boolean, numeric, string};

• tokenFieldName - Field name in token that should be used for access policy
validation;

• valueType - Type of value against access policy should be validated (Optional) :
{numeric, bool, string, enum};

• value - Value against which token field is validated: anySimpleType or array(for
string policy operators).

Relations between access policies are denoted using:

• Composite Policy Operators

• AND

• OR

• NAND

• NOR

Due to the reason that composite access policies in symbIoTe can be built using
nested single access policies, it is essential to define rules for building simple
access policies. The main difference between simple and composite access policies
is that simple access policies cannot carry other access policies needed to satisfy
logical clauses during validation of access rights.

• Main building blocks for simple access policies are:

o Comparable type - data type which should be compared against value
provided by user in order to validate access policy.

688156 - symbIoTe - H2020-ICT-2015 D3.2 - Resource Trading, Security and Federation Mechanisms
 Public

Version 1.1 Page 87 of 87
 © Copyright 2018, the Members of the symbIoTe consortium

o Operator - mathematical or logical operation again which the value is
compared

� Definition of operator is dependent on the comparable type in the
access policy.

• Currently defined comparable types in symbIoTe access policy DSL are:

o Numeric (integer, float, double);

o String;

o Boolean.

• Furthermore, operators used within simple access policies(depending on the
comparable types) are :

o Boolean Policy Operators

� isTrue

� isFalse

o Numeric Policy Operators

� equals (EQ)

� notEquals (NOT)

� greatherThan (GT)

� lessThan (LT)

� greatherOrEqualThen (GE)

� lessOrEqualThen(LE)

o String Policy Operators

� equalsIgnoreCase

� IN

� IN-IgnoreCase

� NOT IN

� NOT IN - IgnoreCase

� regexp

Using this XACML-alike DSL future integrators of the platforms within symbIoTe will be
provided with a capability to define fine-grained ABAC based access policies, matching the
needs of their native platforms and applications.

