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Abstract

A covering system is a collection of integer congruences such that every integer
satisfies at least one congruence in the collection. A covering system is called distinct
if all of its moduli are distinct. An expansive literature has developed on covering
systems since their introduction by Erdés. Here we provide a full classification
of distinct covering systems with at most ten moduli, which we group together
based on two forms of equivalence. As a consequence, we determine the minimum
cardinality of a distinct covering system with all moduli exceeding 2, which is 11.

1. Introduction

It may seem a rather uninspiring fact that every integer is congruent to either 0
or 1 modulo 2. However, if we impose additional requirements on the residues or
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moduli, the game of accounting for all integers with a collection of congruences
becomes much more interesting, leading to the following family of definitions.

Definition 1. For a,m € Z with m > 2, the congruence class a(mod m) is the set
of all integers congruent to a modulo m. A system of congruences is a collection
of congruence classes {ri(mod m1),...,r;(mod myg)}. Such a collection is called a
covering system if every integer n satisfies n = r; (mod m;) for some 1 < i < k.
A covering system is called distinct if all the moduli are distinct, and minimal if
all of the congruence classes are needed to cover the integers. In other words, in a
minimal covering system, if one were to remove any one of the congruence classes,
the remaining classes would not form a covering system.

Covering systems were introduced by Erdds [4] as a component of his proof of a
conjecture of Romanoff that there exists an arithmetic progression of odd numbers,
none of which take the form 2¥ + p for k € N and p prime. Specifically, his proof
utilized the distinct covering system

{0(mod 2), 0(mod 3), 1(mod 4), 3(mod 8), 7(mod 12), 23(mod 24)}. (1)

Inspired by a possible generalization of his proof, Erdds conjectured that there exist
distinct covering systems with arbitrarily large minimum modulus, which became
a coveted open problem. Nielsen [12] discovered a distinct covering system with
minimum modulus 40, and was the first to entertain in writing the possibility of
a negative resolution to Erdés’s conjecture. To date, the largest known minimum
modulus of a distinct covering system is 42, discovered by Owens [13]. Nielsen’s
suspicion was proven reality by Hough [8] in 2015, who showed that the minimum
modulus of a distinct covering system is at most 10'6. This upper bound has
since been lowered all the way to 616000 in work of Balister, Bollobas, Morris,
Sahadrabudhe, and Tiba [1].

Another famous question, due to Erdés and Selfridge, is the existence or nonexis-
tence of a distinct covering system with all odd moduli. This question remains open,
but for recent progress the interested reader can refer to [1], [6], [5], and [7]. Here we
have only scratched the surface of the massive covering system literature, focusing
on recent results. For a more complete survey and list of references, particularly
regarding less recent work, refer to [14] and [15].

The covering system (1) can be modified by replacing the final three congruences
with two, yielding

{0(mod 2), 0(mod 3), 1(mod 4), 1(mod 6), 11(mod 12)}. (2)

It is noted throughout the literature that (2) is a distinct covering system of min-
imum cardinality. In Section 2, we provide explicit case analysis to confirm this
assertion, and also address some follow-up questions. These discussions lead us to-
ward two natural forms of equivalence for distinct covering systems, which we use
in our later computational classification efforts.
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In Section 3, we follow techniques developed by Jenkin and Simpson [9], who
found distinct covering systems with all composite moduli and minimum cardinality
(which turns out to be 20), to extend our reach with algorithms written in Python.
Specifically, we classify all distinct covering systems with at most ten moduli, and
group them together based on the two forms of equivalence discussed in Section
2. In an abridged presentation of our findings, we include representatives of all
equivalence classes of distinct minimal covering systems with at most seven moduli,
as well a list of the sets of eight moduli that yield distinct minimal covering systems,
with counts of how many equivalence classes arise from each set. We also provide
summary data for £k = 9,10, and include a link to our full lists and code for the
interested reader.

A notable finding in our classification is that all distinct covering systems with
at most ten moduli have minimum modulus 2. When making his aforementioned
conjecture on the minimum modulus of distinct covering systems, Erdés [4] provided
a distinct covering system with minimum modulus 3, which utilizied 14 moduli,
the divisors of 120 that are greater than 2. In [3], he guessed that this system
had minimum cardinality amongst distinct covering systems whose moduli are all
greater than 2, but this was found to be incorrect by Krukenberg [11], whose thesis
included the 11-modulus distinct covering system

{[2,3], [0,4], [1,6], [2,8], [0,9], [3,12], [6,16], [3,18], [6,24], [33,36], [46,48]}.
3)
Here and for the remainder of the paper we use the shorthand notation [r,m] for
the congruence class r(mod m). Our classification efforts combine with (3) to yield
the following conclusion.

Proposition 1. The minimum cardinality of a distinct covering system with all
moduli exceeding 2 is 11.

Building from [11], Dalton and Trifonov [2] have recently investigated the min-
imum least common multiple of a distinct covering system with a given minimum
modulus. However, this does not necessarily correspond to distinct covering systems
of minimal cardinality, and Proposition 1 is, to our knowledge, the first result of
its specific type. We conclude with a complete characterization of distinct covering
systems with exactly 11 moduli, all exceeding 2, all of which have the same set of
moduli as (3).

2. Preliminaries

We begin with some standard facts that are helpful in determining when a system
of congruences is or is not a covering system.



INTEGERS: 24A (2024) 4

Proposition 2. A system of congruences S = {r1(mod my),...,rg(mod my)} is a
covering system if and only if it covers a member of every congruence class modulo
M =lem(myq,...,mg).

The following definition and proposition are particularly helpful when ruling out
a set of moduli from potentially producing a covering system.

Definition 2. For a system of congruences S = {ri(mod my),...,ry(mod my)},
let R(S) =3, ~.

Proposition 3. If S is a covering system, then R(S) > 1, with equality holding if
and only if S is exact.

2.1. Distinct Covering Systems

As mentioned in the introduction, a wide variety of surveys, articles, and books (see
[9], [12], and [14] for just a few examples) mention that (2), or another covering
system with the same set of moduli, is a distinct covering system of minimum
cardinality. Presumably, the verification of this fact has been consistently left as
a pleasing exercise for the reader, which we carry out below after developing some
useful notation.

Definition 3. For k € N, we let C; denote the collection of all distinct minimal
covering systems with exactly & moduli.

Proposition 4. The collection Cy, is empty for k < 4.

Proof. Suppose S = {ri(mod my),...,rp(mod my)} with m; < --- < my is a
distinct minimal covering system. We begin by quickly ruling out £ < 3. By
Proposition 3, since 1/241/4+1/5 < 1, the only candidates for k¥ = 3 have m; = 2,
meo = 3. However, by the Chinese remainder theorem, choosing ri, 72 leaves two
missing classes modulo 6, which cannot be covered by a single class modulo m > 4.
Now we consider & = 4. By Proposition 3, since 1/3+1/4+1/5+1/6 < 1, we must
have m; = 2. We perform case analysis as follows:

Case 1: mg > 5.
(a) my4 > 8. Impossible by Proposition 3 as 1/2+1/5+1/6+1/8 < 1.

(b) (mga,ms,m4) = (5,6,7). Choosing ri,r3 leaves exactly two uncovered classes
modulo 6. Then, by the Chinese remainder theorem, choosing 7o leaves eight
missing classes modulo 30, which cannot be covered by a single class modulo 7.

Case 2: mo = 4. The choice r1, 75 leaves one uncovered class modulo 4.

(a) ms > 8. Impossible by Proposition 3 as 1/2+1/4+1/8+1/9 < 1.
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(b) mg € {5,7}. By the Chinese remainder theorem, choosing r3 leaves either four
missing classes modulo 20 or six missing classes modulo 28, which cannot be
covered by a single class modulo m > 6.

(¢) mg = 6. Choosing r3 leaves two uncovered classes modulo 12, which cannot be
covered by a single class modulo m > 7.

Case 3: mg = 3. By the Chinese remainder theorem, choosing ri, 72 leaves two
missing classes modulo 6.

(a) mgs > 6. This is impossible since 1/6+1/7 < 1/3, so the last two classes cannot
cover two classes modulo 6.

(b) ms = 5. By the Chinese remainder theorem, choosing r3 leaves eight missing
classes modulo 30, which cannot be covered by a single class modulo m > 6.

(¢) ms = 4. Choosing r3 leaves two uncovered classes modulo 12, which are incon-
gruent modulo 3 and hence incongruent modulo 6, so they cannot be covered
by a single class modulo m > 5. O

Since (2) does indeed have minimum cardinality amongst distinct minimal cov-
ering systems, it is natural to ask whether it is, in any sense, unique in this regard.
In the most literal sense, we quickly see this to not be the case, as one can add any
fixed number to each residue, or take the negative of every residue, yielding a total
of 24 technically different distinct covering systems with moduli {2, 3,4, 6,12}.

The following definition and proposition generalize this observation that a cov-
ering system immediately spawns a family of related covering systems via simple
transformations. The proposition follows from a more general result of Jones and
White [10].

Definition 4. For a system of congruences S = {ri(mod my),...,r(mod ms)}
and a,n € Z, we define

aS 4+ n = {ary +n(mod my),...,ary + n(mod my)}.
Proposition 5. Suppose S = {r1(mod my),...,r,(mod my)} is a system of con-
gruences, and let M = lem(myq,...,mg). Suppose further that a,n € Z with

ged(a, M) = 1. Then, S is a covering system if and only if aS + n is a cover-
mg system.

In particular, Proposition 5 induces an equivalence relation on C; where S is equiv-
alent to aS + n for all a,n € Z with ged(a, M) = 1, which we refer to as affine
equivalence.

Since we know that the minimum cardinality of a distinct minimal covering
system is 5, a natural question is whether distinct minimal covering systems exist
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for all larger cardinalities. Note that the insistence that the covering systems be
minimal prevents us from simply tacking on additional congruences to existing
covering systems. The following definition and proposition demonstrate a quick and
elementary way of using an existing distinct minimal covering system to produce a
new distinct minimal covering system with exactly one additional congruence.

Definition 5. For a system of congruences S = {ri(mod my),...,ry(mod my)},
we define 6(S) = {1(mod 2), 2r;(mod 2m,), ..., 2rg(mod 2my)}. A system S € Cy
is called 0-primitive if S,S +1 ¢ §(C—1).

Proposition 6. For a system of congruences S, §(S) € Cr11 if and only if S € C.

Proof. Suppose S = {ri(mod mq),...,r;(mod mg)} is a system of congruences.
To say that S € Cj, is to say three things: S is a covering system, S has exactly k
congruences with all distinct moduli, and if any of the congruences were removed
from S, it would no longer be a covering system. We will show that each of these
properties hold if and only if the analogous properties hold for §(Cy), with k replaced
by k+1.

Since S" = {2r1(mod 2m;), ..., 2r;(mod 2m;)} consists entirely of even integers,
while 1(mod 2) is the set of all odd integers, we see that

4(S) = {1(mod 2), 2r;(mod 2my), ..., 2rg(mod 2m4)}

is a covering system if and only if S covers all even integers, which is equivalent to
S covering all integers.

This equivalence can also be applied to compare S\ {r;(mod m;)} and 6(S5) \
{2r;(mod 2m;)} for each 1 < i < k. The former fails to be a covering system if and
only if the latter does (and (S) \ {1(mod 2)} always fails to be a covering system),
hence S is minimal if and only if §(S) is minimal.

Finally, for distinctness, m; # m; if and only if 2m; # 2m;, and my,...,m; > 1
implies 2myq,...,2m; > 2, so the k moduli of S are all distinct if and only if the
k + 1 moduli of §(S) are all distinct. O

By starting with any member of Cs, say (2), and iteratively applying 0, we have
the following corollary.

Corollary 1. The collection Cy, is nonempty for all k > 5.

The map ¢ induces an equivalence relation on C = [J;— 5 Cx, where two covering
systems are equivalent if one can be obtained from the other by applying § some
number of times. In other words, the J-equivalence classes are determined by the J-
primitive covering systems, which each spawn an infinite family of distinct minimal
covering systems via iteration of J.
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3. Computations

Following the lead of Jenkin and Simpson [9], we conduct a computation to clas-
sify all distinct minimal covering systems with at most 10 moduli. We call a
list of moduli {mq,...,mx} good if there exist residues {ry,...,rr} such that
{r1(mod my),...,rx(mod my)} is a covering system and bad otherwise. Our first
goal is to create a manageable list which contains all lists of good moduli with car-
dinality at most 10. The following proposition from [9] is crucial to our approach.

Proposition 7. If S = {ri(mod my),...,rx(mod my)} is a minimal covering sys-
tem and [['_, p%* is the prime factorization of lem(my, ..., my), then S1_, ai(p; —
H+1<k.

Since we are only concerned with covering systems of cardinality at most 10, this
proposition reduces our search to a finite list of potential least common multiples,
say L. As previously known, and shown explicitly in Proposition 4, there are no
distinct covering systems of cardinality less than 5, so we seek a list which contains
all good lists of moduli with cardinality at least 5 and at most 10, each of which
has least common multiple in L. To do this, we employ an algorithm which takes
a list of integers M as input, and builds a list that contains, for each m € M, all
subsets of distinct divisors of m of cardinality 5 <4 < 10. To optimize efficiency, we
run the algorithm with M = L', where L’ C L is a subset of minimal size with the
property that every element of L divides an element of L’. Now that we have an
initial list of potentially good lists of moduli, we are ready to further whittle down
the search. Specifically, we use a powerful algorithm outlined in Section 3 of [9],
which takes as input a list of moduli and returns ‘bad’ or ‘don’t know’. Although
the algorithm cannot always detect whether a list is bad, it does so often enough
to greatly reduce the search space.

We check each of the remaining lists of moduli in a more brutal manner. For
each list my < - -+ < my, we create a list of systems {r;(mod my),...,rg(mod my)}
with the following property: for 1 < i < j < k, if m; | m;, then r; # r; (mod m;).
Otherwise, r;(mod m;) would be entirely contained in r;(mod m;), and the system
would not be minimal. The systems are also chosen to guarantee that there is at
least one representative from every affine equivalence class.

Equipped with a list of potential systems for a specific list of moduli, we check
whether each system covers Z. We accomplish this by exploiting Proposition 2
and checking whether the system covers {0,1,...,M — 1}, where M is the least
common multiple of the moduli. Left with a list of covering systems, we use
straightforward algorithms to check each for minimality and reduce the list so
that there are unique representatives for each d-primitive affine equivalence class.
The following table contains an abridged version of the results of our computa-
tions, while our complete lists of data, and all annotated code, are available at
https://github.com/andrewlott99/Kinnaird22_CoveringSystems.
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k o-primitive affine equivalence classes in Cy

5 {[1,2],[1, 3], [2,4],]2,6],[0,12]}

6 {[1,2],[1,3],[2,4], 2, 6], [4, 8], [0, 24]}, {[1, 2], [1, 3], [2, 4], [4, 8], [8, 12], [0, 24] },
{[1,2],[1,3],2,6], 4, 8], [6,12], [0, 24] }

7 15 equivalence classes, 11 sets of moduli:

b k) b b j| b

11,3, [2.4],[2, 6], [3, 9] [6, 18], [0, 36]},
{[1,2],11,3], [2,4],[2,6],[6,9], [12, 18], 0, 36]},
{[1,2],[1,3], (2, 4], [2,6], [8,16], [12, 24], [0, 48]},
{[1,2],[1,3],[2,4], [4, 8], [8,12], [8, 16], [0, 48]},
{[1,2],11,3],[2,4],[4, 8], 8, 16], [8, 24], [0, 48]},
{[1,2],[1,3], [2,4],[3,9],[8,12], [6, 18], [0, 36]},
{[1,2],11,3], 2,4],[6,9], [8,12], [12, 18], [0, 36]},
{[1,2], [1, 3], [2,4], [8,12], [8, 16], [12, 24], [0, 48]},
{l[1,2], 1, 3], 2,6], [4,8], [6,12], [8, 16], [0, 48]},
{[1,2], 11,3}, 12,6, [3, 9], [6, 12], [6, 18], [0, 36]},
{[1,2],11,3], [2,6],[6,9], [6,12], [12, 18], [0, 36]},
{[1,2],[1,3], [2.6],[6, 12], [8, 16], [12, 241, [0, 48]},
{[1,2], 2,4 [2.6], [3, 9], [4,12], [6, 18], [0, 36]},
{[1,2], [2,4], [2,6], 6,9, [4, 12], [12, 18], [0, 36]}

8 85 equivalence classes, one or two with each of the following 50 sets of moduli:
{2,3,4,6,8,9,18,72}, {2,3,4,6,8,9, 36,72}, {2, 3,4,6,8,16, 32,96},
{2,3,4,6,8,18,36,72}, {2,3,4,6,8,32,48,96}, {2,3,4,6,9, 18,24, 72},
{2,3,4,6,9,24, 36,72}, {2,3,4,6, 16,24, 32,96}, {2,3,4,6,18,24, 36,72},
{2,3,4,6,24,32,48,96}, {2,3,4,8,9,12,18,72}, {2,3,4,8,9,12,36,72},
{2,3,4,8,9,18,24, 36}, {273,4,8,9,18 24,72}, {2,3,4,8,9,24, 36,72}7
{2,3,4,8,12,16,32,96}, {2,3,4,8,12,18,36,72}, {2,3,4, 8,12, 32,48, 96},
{2,3,4,8,16,24,32,96}, {2,3,4,8,16,32,48,96}, {2,3,4,8,18,24, 36, 72},
{2,3,4,8,24,32,48,96}, {2,3,4,9,12,18,24, 72}, {2,3,4,9, 12, 24, 36, 72},
{2,3,4,12,16,24, 32,96}, {2,3,4,12,18,24, 36, 72}, {2,3,4,12,24, 32,48, 96},
{2,3,6,8,9,12,18,72}, {2,3,6,8,9,12, 36 72} {2,3,6,8,9,18,24,36},
{2,3,6,8,9,18,36,72}, {2,3,6,8,12,16, 32,96}, {2,3,6,8,12,18, 36,72},
{2,3,6,8,12,32,48,96}, {2,3,6,9,12,18,24, 72}, {2,3,6,9,12, 24, 36, 72},
{2,3,6,9,18,24, 36,72}, {2,3,6,12, 16 24,32,96}, {2,3,6,12, 18 24 36,72},
{2,3,6,12,24,32,48,96}, {2,4,6,8,9,12,18,72}, {2,4,6,8,9,12, 36,72},
{2,4,6,8,9,18,24, 36}, {2,4,6,8,9,18,24,72} {2, 4, 6,8,9,24, 36,72},
{2,4,6,9,12,18,24,72}, {2,4,6,9,12,24, 36,72}, {2,4,8,9,12, 18,24, 36},
{2,4,8,9,12,18,24,72}, {2,4,8,9,12, 24, 36, 72}

9 585 equivalence classes, 248 sets of moduli:

e 1,2,4 or 6 equivalence classes for each set of moduli

e All systems have minimum modulus 2

e Maximum moduli: 30,48, 60, 72,80, 108, 144, 192

e Moduli have no prime factors greater than 5

10 | 6267 equivalence classes, 1652 sets of moduli

e 1,24 6,8,12, or 18 equivalence classes for each set of moduli

e All systems have minimum modulus 2

e Maximum moduli: 30, 40, 45, 48, 60, 72, 80, 90, 96, 108, 120, 144, 160, 192, 216, 288, 384
e Moduli have no prime factors greater than 5

Table 1: A single representative from each é-primitive affine equivalence class in Cy,
for £k = 5,6,7, a complete list of all sets of moduli for Cg, and summary data for Cgy
and ClO~
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Table 1 completes the proof of Proposition 1, since all of the classified covering
systems have minimum modulus 2, and (3) is a distinct covering system with min-
imum modulus 3 and exactly 11 moduli. To go slightly further, we investigate the
extent to which (3) is unique in this regard. Again using Proposition 7 and the
aforementioned Jenkin-Simpson algorithm, the moduli of (3) is the only list of 11
moduli, all exceeding 2, that survives the pruning process. From there, we run a
brute force search with SageMath to classify all distinct covering systems with this
specific list of moduli. Up to affine equivalence, we can translate any such system
to contain O(mod 9) and 0(mod 16). With appropriate scaling we can also fix the
congruence 1(mod 3), and by minimality no congruence class in the system can
contain any other, which further narrows the search. The SageMath computation
produces eight covering systems, four pairs related by multiplication by 7, and we
conclude with the following strengthening of Proposition 1.

Proposition 8. There are exactly four affine equivalence classes of distinct covering
systems with at most 11 moduli, all exceeding 2, represented respectively by

{[3, 18], [O, 24], [33, 36], [8, 48}},
[3, 18], [8, 24], [33, 36], [24, 48]},
{131, 2.4}, 15,61, 481,10, 9, 3, 12}, 0, 16]} 0 [15, 18], [0, 24], [21, 36], [8, 48]},
[

15, 18], [8, 24], [21, 36], [24, 48]}
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