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Executive Summary 

This deliverable serves to summarize the input devices, data formats and methodologies adopted in the 

process of developing algorithms, software modules and applications for movement principle and 

qualities analysis.  

Section 1 introduces the report and lists its objectives whereas Section 2 gives an overview on the data 

capture systems that are used in the context of the project; in particular, a description of professional 

motion capture systems, used during the production of the WhoLoDancE repository, and low-end 

capture devices, that are used in the low-cost applications, is given.   

Section 3 introduces the methodology followed in the design and development of movement analysis 

algorithm and software modules, in particular a conceptual framework is described where the qualities 

of movement are organized in a hierarchical way, going from physical signals to abstract, complex 

concepts.    
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1. Introduction 

This deliverable serves to summarize the advancements in the development of multimodal data analysis 

techniques in the context of the WhoLoDancE project, this document will describe how data was 

captured and manipulated to be compatible with developed multi-modal analysis: data may be captured 

by a variety of different input devices, described in Section 2, that are characterized by very different 

performances and costs, from the expensive but very reliable optical motion capture system used to get 

professional-grade motion captures of movement to affordable devices that render the developed tools 

accessible by end-users.  

After the definition of suitable input devices (Section 2), this document will describe the methodology 

adopted for analysing the captured data: Section 3 will introduce a computational framework to 

compute qualities and analyse multi-modal data in a hierarchical way, starting from physical signals to 

more abstract concepts and qualities.    

2. Input devices for multimodal data acquisition and analysis 

This Section will give an overview on the input and capture systems that were used for data acquisition 

and for the subsequent analysis of movement qualities and principles.  

Professional capture systems 

Two professional motion capture systems were used in the framework of the project, one installed at 

UNIGE’s laboratory and one installed by Motek at Schram Studio in Amsterdam.  

UNIGE capturing platform 

The overall architecture for multimodal recordings is shown in the following figure. 

Videocamera recorder Videocamera recorder IMU recorder Audio recorder

Side videocamera

Front videocamera IMU (x-OSC) Headset mic

MoCap recorder (Qualisys)

 

Figure 1. the architecture of the recording platform used by UNIGE 



D3.4 - Report on multimodal signal modeling 
WhoLoDancE - H2020-ICT-2015 (688865) 

 

6 
 

The performer movements were captured by a Motion Capture system (MoCap recorder in the picture). 

The performer also wore a headset microphone, which was used to record breathing noise for possible 

further analysis. Moreover, the performer also wore Inertial Measurement Units (IMU). Finally, two 

broadcast quality video cameras were observing the scene, one from the front and one from a side. 

Synchronization was guaranteed by the EyesWeb XMI platform. On the MoCap recorder computer, 

EyesWeb was used to generate the reference clock used by all other recorders. The generated reference 

clock was sent to the other device in a format compatible with each specific device. As an example, the 

Qualisys Motion Capture system receives such clock encoded in an audio stream, in SMPTE format. Also, 

the two broadcast video-cameras and the Audio recorder used SMPTE encoded as an audio signal. The 

IMU recorder received the reference clock via network, through the OSC protocol. 

To guarantee synchronization EyesWeb kept track, for every recorded frame or sample, of the 

timestamp when the data was received. As a matter of facts, not all streams can be hardware-

synchronized (e.g., with a genlock signal), thus a software synchronization is performed by EyesWeb by 

keeping track of the time at which the data was received in a separate file, and using such information 

when playing back the data. IMU sensors or Kinect are examples of devices which were synchronized in 

this way. 

Each computer of the recording system run an EyesWeb XMI application, that allowed to record 

multimodal data (video, audio, motion capture, sensors).  

MOTEK capturing platform 

In order to go through the motion-captures processes at Motek, a multi-system setup, with large capture 

volume (up to 25 x 25 Meters) was available. The type of mocap that was used, was the Passive optical 

motion capture, with the use of a VICON1 T160 camera based system combined with a VICON VERO 

cameras system synchronized and captured on a workstation running Vicon BLADE2.0 data acquisition 

and analysis software suite. 

                                                             
1 https://www.vicon.com/ 
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Figure 2. Schram Studio in Amsterdam 

The recording made at Schram studio included motion capture, video from two full-HD video cameras 

with audio (ambient). 

Data captured by the MoCap systems were saved on the workstation running Vicon BLADe 2.0 and 

streamed to a second workstation running Autodesk MotionBuilder that was used to render live 

feedbacks given to the dancers.   

Data formats of professional motion capture systems 

Regarding the data formats, raw capture from both Vicon and Qualisys systems was converted to two 

agreed formats: FBX2 and C3D3. Both Vicon and Qualisys can generate this file type. In particular, data 

recorded by Motek was recorded directly in FBX format then converted to C3D, meanwhile UNIGE data 

was recorded to C3D then retargeted to a compatible format and finally converted to an FBX file format, 

in order to be used throughout the project, for visualization and interactive projection. The C3D format 

is probably one of the most commonly used formats for that purpose. More specifically, C3D is a binary 

or ASCII file format for motion capture data used in animation, biomechanics and gait analysis to store 

motion capture data. The format is flexible enough to store 3D coordinates and any numeric data in a 

single file. However, C3D format has been developed specifically for motion capture, in addition to the 

FBX format, which is for 3D animation in general. C3D and FBX formats can be easily used in analysis 

and visualization frameworks like Unity and EyesWeb XMI or converted in other data formats more 

suitable to be managed in web-based applications developed in JavaScript programming language or by 

general purpose languages like Python. 

Regarding our files, they contain a fully articulate skeleton, including the finger bones. Using a naming 

scheme compatible with Autodesk MotionBuilder4 (FBX) was selected, in order to be used as an avatar 

real-time throughput for the volumetric projection. 

                                                             
2 https://www.autodesk.com/products/fbx/overview 
3 https://www.c3d.org 
4 https://www.autodesk.com/products/motionbuilder/overview 
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So, the master data format that was used throughout the project is the FBX. FBX is a framework that 

allows someone to create, edit, and manage asset templates. An asset template defines the interface of 

an asset. In other words, it specifies the properties that an asset must have, in order to comply with a 

specific asset type. 

FBX is designed to describe animation scenes and is supported by many 3D animation software 

packages to transfer files among them. It can contain geometries, textures, cameras, lights, markers, 

skeleton, and animation. One large advantage that MotionBuilder has over other 3D animation packages 

is that it can take any of the other file formats, such as the C3D format in our case, and translate them 

into the .fbx format. This allows MotionBuilder to work as a type of “universal translator” between not 

only different animation systems, but also different types of skeletal structures. 

Data formats of video, audio and sensors 

Video recordings were taken with professional video camera systems: 

• recordings made by UNIGE include video cameras (720p @ 50FPS) encoded in mp4 h264 

video codec and included ambient audio in aac format.  

• recordings made by Motek included dual video cameras (1080p @ 30 FPS) encoded in mp4 

h264 video codec and included ambient audio in aac format. 

Sensors data, when available were recorded in CSV format, where each line of the file represented a 

frame of the sensor data, including the timestamp at which the data was recorded.  

Low-end capture systems 

In order to give access to the developed tools and application to more people without the need of having 

a professional motion capture system, a set of low-cost capture devices have been identified and 

selected to be used. 

Kinect V2 RGB-D sensor 

Microsoft Kinect represents a cheap and easy to use motion capture system, can provide full-body 

motion capture of multiple users at the same time, but its reliability and precision of measurement are 

far worse than the professional optical motion capture systems described above, these drawbacks had 

to be taken into account while designing and developing applications and movement qualities extraction 

module, production of the sensor has been discontinued in 2017 thus the use of alternatives (i.e., Intel 

RealSense5) is under investigation.    

                                                             
5 https://www.mouser.it/new/Intel/intel-realsense-ZR300-dev-kit/ 
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Figure 3. Microsoft Kinect For Windows V2 Sensor 

 

Notch Sensors 

Notch sensors (Figure 4) are an inertial-based motion capture kit that provide full-body motion capture: 

a set of 11 sensors allows the capture of movements and produces .fbx files that can be imported in the 

main animation and modelling software, including MotionBuilder.   

 

Figure 4. A set of six notch sensors that allows upper body tracking 
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IMU Sensors 

IMU sensors can be used to capture quantities related to movement such as accelerations and angular 

velocities of limbs. If correctly placed on a performer’s body, they can provide means of extracting 

movement dimensions. They are a cheaper though less reliable alternative of motion capture systems: 

x-io xOSC sensors6 (Figure 5) are an example of IMU sensors that have been used in the scope of the 

WhoLoDancE project.  

Data formats for movement analysis 

The data captured by devices can be sent to the analysis modules in two different ways, starting from 

real-time streams or off-line (i.e., streams stored on file or online repositories). In both cases, we 

distinguish different kinds of data-streams. 

• Motion capture streams: these kind of data streams contain information about joint position and 

orientation (e.g., the absolute position of a joint or its orientation); live streams would be 

received as a sequence of frames that contain the orientation and/or position of each joint, while 

in the case of off-line streams the information can be read from csv, fbx or json files. 

• Audio-visual streams coming from video/audio capture devices such as video cameras, 

microphones, or read from multimedia files of different formats (i.e., mp3, mp4, etc.). 

• RAW data streams coming from sensors: these streams can contain data captured by IMU, 

physiological and/or other kind of sensors, in this case, for the real-time processing, each sensor 

streams each captured quantity, while off-line analysis will be computed from single column csv 

files containing raw sensor data. 

3. Analysis methodologies for multimodal data analysis 

This section introduces a computational framework that was followed in developing data- and model-

driven algorithms and techniques to extract movement qualities from the available data from both high- 

and low-end capture sensors. 

                                                             
6 http://x-io.co.uk/x-osc/ 

Figure 5. X-io XOSC a 9-axis IUM sensor 
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Multi-Layered Computational Framework of Qualities in Movement  

Within the WhoLoDancE project, several movement principles and qualities were proposed (see D1.6). 

We now propose a Multi-Layered Computational Framework to analyse those quantities.  

 

Figure 6. Multi-Layered Computational Framework of Qualities in Movement 

It consists of four different layers and addresses aspects of movement analysis at different spatial and 

temporal scales: 

Level 1 - points: physical data that can be detected by (real or virtual) sensors in real-time (for 

example, position/orientation of the body planes). 

Level 2 - Low-Level Features: Time-series, not subject to interpretation, detected uniquely 

starting from instantaneous physical data on the shortest time span needed for their definition 

and depending on the characteristics of the human sensorial channels. 

Level 3 - qualities: perceptual features, starting from physical and sensorial data from level 2, 

computed on larger time intervals (typically 0.5-3s). 

Level 4 - affects: perceptual and contextual features, keeping into account context and 

narrative structure, i.e. how different qualities evolve along time. This usually requires a large 

time span. 

The analysis methodologies of movement principles and qualities proposed in D3.5, are following this 

framework, where principles are organized hierarchically in spatial and temporal aspects.  

Analysis of movement qualities 

The work carried out in the framework of the WhoLoDancE project was characterized by a strict 

collaboration with choreographers and dancers in order to get inspiration in both identifying the 

vocabulary of principles and in the definition and refinement of algorithms for their automated 

measurement.  

The qualities are organised in a hierarchical structure that follows the framework presented before (see 

Figure 1).  

http://www.infomus.org/people/niewiadomski/papers/MOCO16_camurri_et_al.pdf
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Layer 1 – Physical Signals: Virtual sensors 

Layer 1 (Physical signals) grounds on the concept of virtual sensor, understood as a single physical 

sensor (or as the integration/fusion of data from many physical sensors) combined with signal 

conditioning (e.g., de-noising and filtering), and with techniques for extraction of specific raw data. For 

example, an RGB-D physical sensor (e.g., Kinect) may be associated with virtual sensors providing the 

3D trajectories of specific body parts, the silhouette of the tracked bodies, and the depth image. At layer 

1 thus data is captured by an array of virtual sensors, associated to a broad range of physical sensors, 

including motion capture, video cameras, microphones, and physiological sensors. We characterize each 

virtual sensor with its sampling rate and with the data it provides (e.g., an image, a 3D position, an 

acceleration, a numeric sample, an audio or a physiological signal).  

Layer 2 – Low-Level Features: Time-series 

Layer 2 (Low-level Features) receives the raw data from the array of virtual sensors at layer 1 and 

extracts a collection of features characterizing movement locally in time. That is, low-level features are 

usually computed instantaneously on the raw data, or on small buffers of a few samples, by using a 

sliding-window approach with maximum overlap. Thus, low-level features are represented as time-

series having usually the same sampling rate as the raw data they are computed from. Time-series may 

be either univariate (e.g., kinetic energy) or multivariate (e.g., the x, y and z components of velocity).  

Layer 3 – Mid-level features: perceptual features 

Whilst analysis at layer 2 is local in time, layer 3 (Mid-level Features) deals with structural aspects, i.e., 

it computes features that either describe one single movement unit or, if movement units cannot be 

easily identified (e.g., in a dance performance consisting of a continuous stream of tightly interlaced 

movements), operates on time windows which are long enough to grab the dynamic evolution of 

movement along time.  

Furthermore, features at layer 3 are at such a level of abstraction that they represent amodal 

descriptors, i.e., the level where perceptual channels integrate. This mean that, for example, Fluidity is a 

meaningful feature to characterize both audio and movement. Amodal descriptors enable the design of 

mapping strategies from movement to the sonic domain: we can analyse a movement starting from 

physical signals (layer 1) up to layer 3, and then we can map features at layer 3 back down to the physical 

signal in the sonic domain. Analysis and processing at layer 3 goes through two basic steps: 

segmentation and computation of amodal features.  

Segmentation. The segmentation step identifies the analysis unit for layer 3. This can either be a single 

movement unit (e.g., a gesture) in a stream of movements or a time window of a defined duration. In the 

former case, segmentation may operate at different levels, which means that a movement unit may be, 

e.g., a single movement or a whole phrase. Depending on how segmentation is performed, layer 3 

produces different outputs. If single movement units are isolated, these are conceived as events. This 

means that it is not possible to determine a sampling rate anymore. Rather, each single event is 

associated with a given time, typically the time instant when the movement unit ends. An array of values 

of features is associated with each of such events; this means that the output of layer 3 is, in this case, a 

specific position in a multidimensional feature space or, in other words, a location in a multidimensional 

map. If, instead, analysis is still performed on time windows, such windows are either not overlapped 

or partially overlapped. A sampling rate can still be determined, based on windows duration and 

overlap, and an array of values of features is computed for each time window. In this case, the output of 

layer 3 is a trajectory in a multidimensional feature space, or in other words, a path in a 

multidimensional map. Features computed at layer 2 are usually employed to perform segmentation. 
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One of the simplest techniques consists in analysing kinetic energy by applying a possibly adaptive 

threshold. More sophisticated techniques exploit, e.g., machine learning approaches, where a vector of 

values, obtained by applying analysis primitives to layer 2 time-series, is used to train and feed 

recognizers for distinguishing between pauses and movements. In case real-time analysis is not needed 

and an archive of dance performances is available, manual annotation can be carried out when 

automatic segmentation is not accurate enough. 

Computation of features. Two major approaches are applied for computing mid-level amodal features:  

- direct computation of mid-level features specifically defined and grounded on low-level features 

and/or physical signals (e.g., smoothness is involved in the computation of fluidity); 

- application of analysis primitives to one or many low-level features. Unary operators can be applied, 

e.g., to retrieve salient events, and to estimate the complexity of a movement by computing, for example, 

sample entropy (Richman & Moorman, 2000) on one or more time-series of low-level features; see e.g., 

(Glowinski, et al., 2011). Binary and n-ary operators can be applied e.g., for measuring the relationships 

between time-series of low-level features computed on the movement of different body parts (limbs). 

For example, synchronization techniques are applied to evaluate coordination between hands (the so 

called intra-personal synchronization) or coordination between dancers in a group (i.e., inter-personal 

synchronization). Causality provides information on whether the movement of a joint leads or follows 

the movement of another joint in the body, or it can explain the leadership of a dancer or of the 

movement of a musician in a group (Glowinski, Gnecco, Piana, & Camurri, 2013). Predictive models are 

applied, e.g., to estimate the extent at which actual movement corresponds to or violate expectations 

(i.e., something related to tension). 

Layer 4 – Expressive Qualities 

While the previous layers focus mainly on features at a growing level of abstraction from Layer 1 to 

Layer 3, this layer mainly focuses on the nonverbal communication of movement qualities to an external 

observer. Memory and Context are factors that intervene mainly at this layer, characterized by 

observation within layered and longer time intervals. Both memory (the history of previous movement 

qualities) and context may influence how an external observer perceives and interprets a feature in 

terms e.g., of expectancy (Camurri, Krumhansl, Mazzarino, & Volpe, 2004), saliency (unexpected, rare, 

contrasting movements, may contribute to raise the sensitivity to specific movement features), and 

sensitivity (stillness may raise the sensitivity to very tiny movements). The factors may be modelled as 

possible biases in the measure of a feature to get a measure that better reflects the perceived quality of 

a movement. At layer 4, machine learning techniques are often employed to map a point or a trajectory 

in a multidimensional space obtained at layer 3 onto the nonverbal communicative intention an external 

observer perceives. Both supervised and unsupervised approaches are adopted. Considering, for 

example, communication of emotions, several approaches are available in literature, ranging e.g., from 

clustering (Glowinski, et al., 2011) to support vector machines (Piana, Staglianò, Odone, & Camurri, 

2016), to several ways of integrating and fusing different classifiers; see examples in (Kleinsmith & 

Bianchi-Berthouze, 2013). 
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