SHERPA: Explainable Robust Algorithms for Privacy-Preserved Federated
Learning in Future Networks to Defend Against Data Poisoning Attacks

Chamara Sandeepa*, Bartlomiej Siniarski’, Shen Wang!, Madhusanka Liyanage®
“1185chool of Computer Science, University College Dublin, Ireland
*abeysinghe.sandeepa@ucdconnect.ie, Tbartlomiej.siniarski@uca’.ie, ishen.wang@ucaf.ie, $madhusanka@ucd.ie

Abstract—With the rapid progression of communication and
localisation of big data over billions of devices, distributed
Machine Learning (ML) techniques are emerging to cater for
the development of Artificial Intelligence (AI)-based services
in a distributed manner. Federated Learning (FL) is such an
innovative approach to achieve a privacy-preserved Al that
facilitates ML model sharing and aggregation while keeping
the participants’ data at the original source. However, recent
research has investigated threats from poisoning attacks in FL.
Several robust algorithms based on techniques such as similar-
ity metrics or anomaly filtering are proposed as solutions. Yet,
these approaches do not focus on investigating the intentions of
the attackers or providing justifications and evidence for sus-
pecting the behaviour of clients who are considered poisoners.
Therefore, we propose SHERPA, a robust algorithm that uses
Shapley Additive Explanations (SHAP) to identify potential
poisoners in an FL system. Based on this, we develop a novel
algorithm to differentiate poisoners via feature attribution
clustering. We launch data poisoning attacks for different
scenarios on multiple datasets and showcase our solution to
mitigate the attacks. Furthermore, we show that privacy-
targeted poisoning attacks can be mitigated with our approach.
Accompanying the Explainable AI (XAI) technique for defence,
our study reveals the potential for post-hoc feature attributions
in countering data poisoning attacks with better explainability
and improved justification in eliminating potentially malicious
clients in the aggregation process.

Index Terms—Federated Learning, XAI, SHAP, Data Poison-
ing, Beyond 5G/6G, Privacy, Defence, Robust Algorithm

1. Introduction

The advent of FL [1] has brought forth a transformative
approach to collaborative ML, allowing models to be trained
across a distributed network of devices while respecting
the privacy of data contributors. In FL, instead of directly
transmitting data to a central server, ML models are trained
locally by client devices. These models will then be for-
warded to the server that aggregates them to create a more
generalised global model. Thus, data will be kept locally
within the client device without being accessed by a third
party. This paradigm holds great promise in the context of
future Al-based services, spanning diverse domains such as

healthcare, zero-touch networks, finance, and the Internet
of Things (IoT), where the need for collective intelligence
without data centralisation is paramount.

Third-party service providers can utilise FL for training
models in a distributed manner from millions of client
devices using their local and private data without requiring
them to share data directly. Furthermore, next-generation
network architectures are envisioned to be fully Al-driven
[2], [3]. Therefore, they can be expected to rely highly on
up-to-date ML models, continuously trained by a distributed
and privacy-preserved architecture like FL. However, a surge
in identifying new threats and vulnerabilities in the privacy
of FL has been observed over recent years, which raises the
important requirement of solving these issues before fully
adopting the technique in associated service applications.
Examples of such attacks include property inference [4],
[5], [6], membership inference [7], model inversion [8], [9],
and poisoning [6], [10], [11]. Among them, inference and
model inversion attacks mainly target invading privacy.

Unlike these common privacy-related attacks, poisoning
attacks are widely known to be a security-related threat
rather than privacy since they generally aim to manipulate
model updates to make inaccurate predictions and damage
the model’s integrity. However, several recent works show
poisoning can be used as a tool in FL to infringe privacy
via these manipulations in the models [6], [7], [12]. Here,
data poisoning aims to introduce backdoors, triggers, or
biases in the final models. Privacy can get compromised
when the attacker gets information on a particular target data
when that data corrects the decision boundary of a biased
model during training. Then, the attacker can identify that
the particular target data is now included in the training
process. Alternatively, a trigger will get activated when the
model is trained by target data with a property the attacker
is interested in. If this property is private and sensitive to
individuals, their privacy will be affected significantly.

Therefore, if poisoning is detected early on and the
elimination of poisoning clients is possible, potential prob-
lems in data leakage will be eliminated. Several methods
are available for detecting poisoners, which use techniques
like model similarity metrics [13], [14], [15], [16] and
history-based reputation scores [14]. However, if a new
client is added, the possibility of determining such clients
without having a previous history is challenging. Further, the
similarity metrics may not fully cover a proper explanation



for eliminating a client; instead, they are only focused on
the majority and removing outliers. Therefore, when the
majority is malicious, these methods often may not work
properly. If there is a sufficient explanation when detecting a
potential malicious client, proper reasoning and justification
will be available to remove them. Thus, explainability would
be a critical requirement since the decisions taken against
FL poisoning should be understood by humans if needed,
and proper evidence and justifications should be provided
for necessary actions taken against the poisoners over the
FL network. Therefore, a robust system that provides an
interpretable solution for FL is required. For this, we pro-
pose a novel mechanism for detecting poisoners to assess
the quality of local model updates in an FL system and
eliminate potential poisoners in a justifiable manner.

1.1. Our Contributions

To the best of our knowledge, this is the first work to use
the clustering of SHAP feature attributions to design a robust
algorithm in FL to detect and eliminate poisoning influence
from the system. We further highlight our key contributions
as follows:

e We propose SHERPA, a novel, explainable, robust
algorithm designed to detect and eliminate poisoners
from an FL system. We use SHAP feature attribu-
tions to identify class-based key feature importances
of a client that are contributing to making it a
poisoner. Our solution aims to provide better justi-
fication for excluding and penalising any suspicious
client by considering their behaviour via anomalies
in feature attributions using HDBSCAN clustering.
With our approach, the aggregator can explain the
reason for any elimination since deviations in feature
attributions can demonstrate the model is not priori-
tising important features for the target classes. We
identify that no comprehensive investigation is done
on using post-hoc feature attribution techniques like
SHAP as a potential defence mechanism. Therefore,
with our approach, we bring the requirement of im-
proving the explainability in detecting the poisoners.

e We show that our proposed solution can detect
poisoned clients even when 80% of the clients are
poisoned with up to 98% detection accuracy. The
experimental results show that the proposed solution
can perform better than the state-of-the-art algo-
rithms like [13], [14], [17] in detecting poisoned
clients. We also compare our approach with varying
parameters and multiple datasets to further analyse
the behaviour of the solution under different config-
urations and scenarios.

e Our work discusses and demonstrates how poisoning
can impact the privacy of clients in a practical use
case and showcases the possibility of mitigating the
issues by eliminating the poisoners.

1.2. Outline

The rest of the paper is arranged as follows: Section 2
discusses related work associated with poisoning attacks on
FL. Section 3 provides an overview of the problem statement
with the system and threat models. Section 4 discusses the
proposed FL robust defence framework architecture along
with the novel defence algorithm. Section 5 provides exper-
iments performed on the algorithm. Discussions on results
are provided in Section 6. Finally, the paper concludes along
with future works in Section 7.

2. Related Works

This section provides a brief overview on the FL-based
poisoning attacks and its state-of-the art defence mecha-
nisms.

2.1. Poisoning Attacks on FL

In FL, the models that clients forward can potentially
leak information on the data and its properties. Based on
exploiting the model parameters shared, several attacks have
been identified. Common types of attacks on FL include
membership inference [7], [18], which attempts to infer
membership state of a client regarding the participation
in the FL process, property inference [5], [6], that aims
to detect specific properties or features in the dataset not
relevant to the main task, data reconstruction attacks [9]
that attempts to recover original dataset or part of it via
techniques like reversing the gradients shared by clients.
These attacks can be considered passive since they primarily
launch the attack by evaluating the received model updates.
However, the practicality of the attacks like inference may
lie in the requirement of correctly identifying the decision
boundary changes on the models with each update [6], [19],
which could be difficult unless the attacker has a highly
accurate understanding of the model behaviours.

For this, the attackers incorporate poisoning attacks to
artificially alter the decision boundary of FL models [6].
Therefore, poisoning is a major issue that comes as a sig-
nificant threat to both the security and privacy of FL. These
attacks then be a boosting technique for inference attacks to
improve their attack success rate [6], [7]. Further, attackers
also aim to compromise the utility of the models via poison-
ing updates. Backdoors and trigger attacks from poisoning
can also affect the utility of the model for a targeted set of
classes. These triggers are also used for privacy leakages,
where the trigger is activated when a specific property or
data in the private dataset appears in a target client [6],
[20]. Therefore, for practically implementing decentralised
FL applications in future BSG/6G networks, early detection
of poisoning and elimination are essential requirements to
be addressed.

2.2. Existing Robust Algorithms

Several robust algorithms that aim to mitigate poisoning
attacks on FL are introduced in the research literature. The



following are some of the key existing techniques used for
detection and elimination of clients:

Krum [13]: This method considers the similarity between
the participant’s updates by assuming a poisoner would
propose an arbitrary gradient update compared with a benign
client. However, for better accurate results, this method
requires an estimation of the number of poisoners in the
network, which is unlikely to be determined early.
FoolsGold [14]: This technique assigns cosine similarity-
based reputation scores to participants based on their his-
torical contributions and uses these scores to weigh the
influence of their updates during aggregation. It may not
perform well if these reputation scores are not available.
Thus, this method may not recognise poisoners that appear
dynamically.

Trimmed Mean [21]: The trimmed mean is an aggregation
rule where the server identifies k; k < n/2 trim parameters
and eliminates the largest and smallest k values while ag-
gregating the remaining n — 2k values. This means that the
maximum number of malicious clients should be less than
50% of total clients.

Median [21]: In this technique, the server considers the
median value of each parameter received from clients to
minimise the effect of poisoners. This also has the issue of
assuming the system has less than 50% for malicious clients.
FLTrust [15]: This mechanism is also an aggregation
rule which uses ReLLU-clipped cosine similarity-based trust
scores to aggregate model updates. They use a root dataset,
maintain a separate model in the server, and assume the root
dataset is clean and generally represents the overall client
models. Therefore, this method may not work if client model
data deviates from the root dataset or the root dataset itself
is poisoned if taken from a third party. In our work, we also
use representative samples for deriving feature attributions.
However, they can be random values or zero vectors if a
trustworthy dataset is not available.

FLAME [16]: Here, the authors use a combined cosine
distance and clustering with Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
for determining poisoners. However, they assume a majority
of the clients (>50%) are benign, which can be a limiting
factor with these distance-based metrics. Furthermore, they
inject noise into the model updates, which can also affect
the model performance and utility.

MOAT [17]: This work uses SHAP feature attributions for
assessing poisoning in FL. However, they do not consider a
clustering approach for poisoning detection and use a z-
score of these features and a dynamic hyperparameter ¢
value that is set as a threshold for anomaly detection. This
value can be difficult to estimate early, and it can vary
significantly depending on the nature of the dataset. Our
approach does not rely on an arbitrary single value and
uses the combined behaviour of feature attributions itself
to determine the poisoners.

The majority of these techniques use general model
similarity metrics and do not consider the factors of how
these mechanisms work. Furthermore, some of them tend
to use arbitrary values assigned in the algorithms that do

not have clear justifications for why the mechanism works
with these values. We consider these limitations and propose
a robust aggregation mechanism with SHAP that aims to
clarify the reasons for eliminating any suspicious client who
can be a potential adversary.

3. Problem Statement

3.1. System Model

The basic components and actors of a FL-based system
include the following:

e Service provider - This entity is responsible for
identifying a service requirement and delivering the
design and infrastructure to facilitate the ML-based
service. The service could either be a third-party
application subscribed by a user or a background
utility-based service application.

o User device - The user subscribes to a service via a
user device. The users generate and store data in the
end-user device where the local models are trained.

o Aggregator - The aggregator is performing the av-
eraging of all the models received from clients. The
aggregation server can be the cloud server itself,
or it may also be an edge server close to the user
device. This is to reduce any latencies occurring in
communication between clients and servers during
model transmission rounds. Upon training, the up-
dated global model is forwarded back to the main
service provider.

An overview of the system model components and their
interactions are shown in Fig. 1.
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Figure 1: FL system model with multiple client actors

3.2. Threat Model

An adversary may attempt to poison the data in the
user device to make the local model biased or backdoored.
Suppose these poisoned models are aggregated by the server.
In that case, the attacker may be able to take control of
the model training process and also evade the privacy of
individuals via backdoor and inference attacks.



3.2.1. Poisoning Attacks. Here, numerous poisoning at-
tacks can be launched by an attacker, all aiming to perturb
the original dataset. The objective of the attacker could be to
take control of the aggregated gradient movement towards
a malicious objective to compromise the model utility. This
can be done by randomly moving the gradient away from
the optimal path or navigating the gradients of the global
model to a shifted or biased gradient, which can lead the
predictions to cause higher error towards a targeted set of
classes, creating a backdoor. The aggregation of N gradients
obtained via Stochastic Gradient Descent (SGD) in FL can
be represented as:

N
F(AWy, .., AWN) =Y NAW; 5Vid #0 (1)

i=1

where \; is the scaling value assigned to each gradient
AW,;. A set of k coordinated poisoning clients where a
single poisoning client j having the gradient AW; can shift
the overall model gradients towards a malicious objective
gradient AV if the combined poisoned gradients be:

k N
S ONAY; = AT - Y AW,
j=1 i=k+1
= F(AU, AT, AWy, . AWy) = AT (2)

Therefore, the attackers can poison their models to reach
the target objective AW by estimating the scaling factors and
individual gradients based on the global model parameters
from the previous round. This could either be done by
manipulating the model parameters directly or poisoning the
local data used to train the model. Local data poisoning can
be considered a more straightforward approach when the
malicious objective is focused towards a target set of output
classes since modified training data can modify the local
model updated towards the adversary goal.

We considered two types of data poisoning attacks that
are based on output labels: 1) random label poisoning and
2) target label poisoning. For a poisoning client with dataset
(X,Y) having N data samples, where X = {x1,z2,...,xn}
and Y = {y1,y2,...,yn }. Each value in Y is a label of any
value within the set of possible class labels C' = {1, 2, ..., c}.
Let S C {m,...,n}, which is the selected subset of indices
of data points selected by the client for poisoning. In random
poisoning, for each position of y value in the indices of S,
the attacker modifies the label [ of Y to any random label
[ € C. In the case of target label poisoning, the poison label
l is a single or targeted subset of labels in C.

3.2.2. Privacy Attacks via Poisoning. The privacy of be-
nign participants in an FL system is impacted if the attacker
gains knowledge about the membership state of a particular
user or the presence of a target property in the benign client’s
data. For this, the attacker typically uses a separate model
called attack model ), which is trained to detect alterations

in the decision boundary in the target features. This can be
denoted as [6]:

(QUf(My)) = A\)?P: P 3)

Where the attack model €2 is provided with the target f(M;)
at FL round ¢, which can either be the original model
parameters of the model M; or a set of predictions from
M;. Based on this input, €2 provides the probability of a
target property or membership state denoted in P or not,
shown by P, thresholded by \.

To train 2, the attacker may use a set of shadow models
G ={q,92, ., gm } that is similar in architecture to the tar-
get FL global model M. The shadow models are trained with
attacker-generated data [7], [18], and the attacker obtains a
dataset containing either the shadow model parameters or
the shadow model prediction vectors with and without the
desired property. This dataset is used to train €2, and the
attacker aims to detect the desired property changes in the
target model M.

0@
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Figure 2: An adversary can poison the global FL model
to make the decision boundary deviate from its original
position. When benign clients correct that boundary, the
adversary will know the target feature has appeared.

However, in reality, it may be difficult to determine
the decision boundary via shadow model training alone.
This could be because the shadow model may not exactly
represent a typical FL scenario since they are isolated
ML models. Furthermore, the attacker’s dataset may not
fully account for the general distribution of data in the
client models. Therefore, to amplify the decision boundary
changes from benign clients, the attacker uses poisoning
attacks as a strategy [6]. Fig. 2 shows that the decision
boundary is altered with poisoning, and when benign clients
reset the boundary, the attacker can identify the changes.
The attacker may alter the decision boundary related to a
certain property P by first poisoning only the data with
the target property and training the local model with the
poisoned dataset. However, the attacker does not alter any
data that does not have the property. This will result in a
backdoor where the aggregated model will perform poorly
only for the target property P. If an honest client trains their
dataset with the target property, they will tend to correct the
decision boundary of the global model. Once this change is
detected by the attack model (2, the attacker can conclude
that the data with the target property P has appeared in the
benign clients. If this property is specific to a particular
individual, the attacker can also predict the membership
state, verifying the participation of the target client in the
FL process. This will result in a privacy breach if these



properties and membership states are considered private and
sensitive attributes.

4. SHAP-based Defence

Future distributed ML services can be expected to adopt
FL-based distributed architectures to achieve high privacy
guarantees to the network’s end users. However, a critical
issue with such distributed, collaborative ML approaches
is the ability of untrusted users to influence the learning
process, unlike the current centralised data-based training.
To eliminate the threat of poisoners in the system, this
section proposes a custom architectural framework for FL-
based future networks to implement defence strategies and
eliminate threats from client models. To achieve enhanced
explainability when realising the threat of poisoning attacks
in FL learning systems, we develop a novel SHAP-based
poisoning detection and defence strategy.

4.1. Defence System Architecture

Our proposed defence system involves multiple compo-
nents, which primarily incorporate the followings:

o FL aggregator - The process of FL involves an
aggregator, where we simulate a virtual aggregator
that performs the Federated Averaging (FedAvg)
aggregation function on the collected updates from
clients.

e Clients - The clients receive initial model updates
from the aggregator. Each client consists of a dataset,
which is used to train the local model and the models
are sent back to the aggregator.

o FL Process configurations - In our simulations, we
design our system to configure client and aggregator
for varying types of FL models and aggregation.
The datasets are also configurable with different
types and multiple strategies for poisoning, including
random and targeted data poisoning. It can also
configure the order and intervals of poisoning of
clients.

« Robust aggregation algorithm - The algorithm is
designed with SHAP, where the feature attributions
are first obtained and clustered to detect poisoners.
Then, the elimination of these potential poisoners
is done such that the aggregation will occur by
excluding the detected poisoning group.

o Fine tuning and visualisation - This component
provides visualisation of feature attribution groups
after clustering. It also provides options for hyper-
parameter tuning in the robust algorithm.

Fig. 3 presents a high-level design of the attack and
defence simulation system we developed.

4.2. Poisoning Detection via SHAP-based Feature
Attribution: Overview of the Approach

In FL-based robust aggregation algorithms, we mainly
observe that many defence mechanisms [13], [14], [15], [16]
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Figure 3: Overview of the defence system components

apply aggregation rules by evaluating the model parameters
directly via techniques like cosine similarity. However, there
are two main issues here:

4.2.1. Variation in Model Parameters. We identify that a
possibility exists for model parameters to vary significantly
from each other. For example, in the case of Neural Network
(NN) models, model parameters can vary significantly from
one layer to another, yet their predictions may have the
same value. This makes distance metrics produce reduced
similarities and misclassify benign clients as poisoners and
vice versa. We show that the cosine similarity of two models
M and M can be different at a layer ¢ when W@ = aW @,
where « is the ratio between the outputs from ¢ — 1 layers
of the two models, such that their predictions ¥ = Y
(more information on the derivation is available in Appendix
B.1). Therefore, we observe that two models can have more
variability in model parameters, yet their predictions can
have similar results.

4.2.2. High Similarity in Poisoning Model Parameters
to Benign Models. The next issue is that poisoners can
manipulate the model parameters to craft an update similar
to a benign client update. However, their output will be
poisoned. For example, an attacker can modify a selected
layer of a model M like the output layer L, such that all
other L — 1 layers remain the same as a benign model M.
However, this modification can result in a poisoned output
Y, which is significantly different from the benign model
output Y (information on the steps are provided in Appendix
B.2). Hence, even when a model is poisoned, poisoning
updates may not be detected if the similarity of the updates
is high.

Therefore, instead of relying on the black-box model pa-
rameters, we propose the assessment of SHAP-based model
output feature attributions, which can provide insights into
the differences between the model behaviours, which is the
important factor for both the poisoners and the real clients
(more information on SHAP available in Appendix A.2).
Despite how the black-box model parameters are arranged,
we consider the honesty of an update to depend on the nature
of the output they provide.

Even though model outputs can directly provide some
level of information on the poisoning, many model pre-
dictions may be required to detect a poisoning scenario
since the information from a prediction is limited to a



single prediction vector. Also, the amount of data available
to obtain predictions for model analysis is limited on the
aggregator side. Furthermore, developing another black-box
ML model to predict the poisoning via model predictions
would not justify the elimination of the poisoners due to
lack of explainability.

4.2.3. Observation of Poisoners via SHAP. To mitigate
the drawbacks of direct model outputs and enhance explain-
ability, we use XAl-technique SHAP to design a new robust
algorithm. Post-hoc explainers like SHAP can provide more
information on the trained model beyond model predictions,
which can inherently provide details on how well the model
recognises and prioritises the features in input data that are
relevant to decision-making. We make use of this property
as the basis for our robust algorithm development. Suppose
a benign local FL. model is trained for handwritten digit
recognition with MNIST dataset [22]. It outputs SHAP
feature attributions for the output label 3 as in Fig.4a. Here,
the high-intensity regions indicate high importance, and
the red colour shows a positive value. Thus, high positive
importance is given to the benign client, while a poisoned
client, indicated in Fig. 4b, does not have a similar score in
the same region.

|

(a) Benign

(b) Poisoned

Figure 4: Comparison of feature attributions in class 3 from
a benign client and a poisoned client. The benign client has
a high feature importance score, marked in red; meanwhile,
a poisoned client may not have similar importance for the
same region.

As shown by the comparison, the values of the features
between the two clients can vary significantly in certain
regions, which makes it easier to differentiate a poison client
from a group of benign clients.

4.2.4. Clustering of Feature Attributions. The SHAP
values for each client can be considered as a set of high-
dimensional vectors. Suppose the SHAP feature attribu-
tions for 3 clients for the same class () are given as
[p<@:C@> ¢<b:@> $<e:Q>] A simplified representation of
these vectors mapped to a two-dimensional plane is shown
in Fig. 5a. The cosine similarity between the two feature
attributions of client @ and b can be denoted as:

a-b
[all - [[b]]

where ||al| and ||b|| are the L2 norms of a and b.
However, in a case where the client ¢ is malicious and
placed close to a and b, a comparison of cosine similarity
of c relative to a and b could indicate ¢ as a benign client.
Therefore, we use the HDBSCAN algorithm to account

“

cos(a,b) =

for the K-Nearest Neighbours (KNN) around each feature
attribution, such that the differences are further enhanced
by considering the similarity among nearby clients (more
details in Appendix A.3).

(D<b’ Q>

¢<a,Q>

(a) Feature attributions (b) Distance calculation

Cluster A

Cluster B~

(€) Clustered attributions

Figure 5: Feature attribution distance calculation via HDB-
SCAN to increase the distance between suspicious attribu-
tions and a benign attribution cluster.

Fig. 5b shows an example of HDBSCAN operation
of accounting to both Euclidean distances and KNN core
distances among the clients a,b and c. Here, a sample
of 5 neighbours is taken to set the core distance. The
mutual reachability distance d,, cqcp 1S the metric used in
the HDBSCAN algorithm when developing clusters. Given
two points, the dpreqcn takes the maximum distance of
(deore(a)s deore(v)s d(b,c)) between the two points. In clients
a and c, the Euclidean distance d(, ) equals the core
distance of c¢. Therefore, d,,reqcn, fOor a and ¢ can be set
as dq,c). However, for b and c, deope(c)y > dp,c)» Which
makes dmreach = deore(c)- When obtaining the dpreach
between clients, they should either remain similar to the
Euclidean distance or be increased. Then, the cosine simi-
larity between clients b and ¢ with d,;, eqcn, should also be
reduced with increasing distance (described in Appendix C)
since dpreach(b,c) > d(b,c)- Hence, with low similarity, it is
easier to distinguish c in a separate cluster as represented in
Fig. Sc.

4.2.5. Detection of a Poisoning Scenario. The clustering
of SHAP values includes the features of the same class
assigned in a unique cluster. However, if a malicious client
aims to poison a class ¢y to ¢, their model will result in
output ¢; for the inputs corresponding to go. Fig. 6 repre-
sents a scenario where the SHAP values of a poisoned client
are introduced to the clustered attribution map with benign
clients. As the feature attributions vector of the poisoned
client are clustered at B, their class label should be ¢o.
However, the SHAP values are producing this vector under
the class g1, which indicates a label poisoning from class



g2 to q;. Therefore, the aggregator can consider excluding
this client during aggregation.

(a) Benign cluster (b) Poisoned cluster

Figure 6: Feature attributions for a class ¢; in the cluster
with feature attributions similar to ¢, leads to contradiction
and results in being recognised as a poisoning behaviour.

The next sections describe the detailed steps for imple-
menting the poisoning detection and defence algorithm.

4.3. Poisoning Detection Algorithm

We propose a novel framework named SHap-based
Explainable Robustness against Poisoning Algorithm
(SHERPA) for detecting and defending against different
types of data poisoning attacks done on FL local models.

4.3.1. Deriving Feature Attributions. The first step of the
algorithm is to obtain a set of feature attributions from local
models. A local model m; with class labels C = {1,2, ..., ¢}
is received by the aggregator. The SHAP feature attributions
¢<%3> obtained for each output class j of client i can then
be represented as ¢<“> = {¢y, o, .., ¢r} for k set of
features. These feature attributions require a sample value
x5 to the SHAP as shown in Equation 10 (in Appendix A.2).
The server can maintain a small sample dataset Dy where a
random subset d; C Dy is used for the baseline input data
for deriving the feature attributions from SHAP. During the
initiation of the FL service, the service provider trains the
first version of the global model with their local data. This
local data can be used as the baseline dataset DD, for model
evaluations. The baseline dataset can also be generated by
generative Al techniques [23]. An alternative is to use zero
vector [17] data if such sample data is not available. This
baseline data will be used in common across all the clients
to derive SHAP the feature attributions. Therefore, for C
classes, the list of all feature attributions per client : € N
in a FL system with N = [1,n] clients at FL. global round

t can be denoted as ¢ = {¢; "7 ot L o7
Thus,
o> = J e Q)
j=1

Therefore, for all N clients, the total set of features
corresponding to sample data zs in d, can be represented
as:

<1> <1,1> . <l,e>
t t t

Vews = | = : :
<n> <n,1> <n,c>
t t t

This matrix 7., can be used as the input for the cluster-
ing algorithm ©;, which can analyse the probability density
distributions among the clients. For each x, value in d, we
obtain 7, such that we form the final ¢, list that consists
of all values of feature sets corresponding to each element
in the subset d; with r values as 6; = {Vw, s Vewys s Ve, I
The steps are illustrated in Algorithm 1.

Algorithm 1 Deriving Feature Attribution Inputs

1: Input: Sample baseline input data value z; with F
features for each data point, ML model function f of
client 7, set of class labels C'

2: Output: SHAP feature attributions for client ¢

3: function COMPUTESHAPVALUES()

4: Let <> = {}

5: for Class j in C do

6: Let ¢p<t7> = {}

7: for Feature [ in F' do S LS| 1)

8: Gi(l,7) = Xscr\ 1y H“\‘%{ﬂxs U
(1) = flao)} -

2 <> = <> U (1, )

10: end for

1 <> = ¢<i> Y p<ii>

12: end for

13: Return ¢<%>

14: end function

15: Input: List of client models M = {my, ma,...,my} at
round ¢, sample baseline data Dy, a set of class labels
C' of a model

16: Output: List of input feature attributions for clustering
Ot

17: function GETFEATUREATTRIBUTIONS()

18: Let ds = {3?1,.%‘2, ...,.Z’p};ds C Dy
19: Let §; = {}

20: for =, in d, do

21: Let v, = {}

22: for model m; in M do

23: ¢;"> = COMPUTESHAPVALUES (x5, m;, C)
24: Ve = Yew, YO

25: end for

26: 0p =0 U Vixs

27: end for

28: Return J;

29: end function

4.3.2. Clustering of Attributions. The clustering mecha-
nism implemented in our approach is HDBSCAN, where
each feature of ¢<%7> for all 74, in &; is assigned a cluster
label 0 as ©; = [0517, ..., 0577, ., 05 01> L, 057>
Here, two values of 6 may have the same cluster label

We consider the similarity of explanations of different
clients. Feature attributions belonging to the same class,
even if the clients are different, should have high probability
density among each other, such that the mutual reachability
distance among similar feature attributions is low and should
be grouped in the same cluster. Therefore, when considering



two clients a and b, if any one of the clients is not poisoned,
their SHAP feature attributions for the same class ¢ should
be included in the same cluster. This can be denoted as:

059> = 059> ;g€ (l,d, 2 € |ds| 6)

for two feature attributions a and b. However, if a client is
poisoned, feature attributions of the poisoned elements tend
to deviate from the same feature attributions, forming either
an outlier or belonging to a different cluster than its same
feature attribution cluster. Thus, in such cases, the above
equality among two attributions ¢ and b does not hold,
making 635 %%> 3 504>, This property is used to detect
the p01soners from bemgn clients.

4.3.3. Implementing Poisoning Client Detection via
Search by Cluster. For the search for poisoners in im-
plementation, it is easier to look from the perspective of
a cluster instead of comparing each client. Suppose the
unique values for cluster labels u(©) of ©, are given as
uw(©) = {0:]0; € ©}icq1,..jop3- For each unique cluster
label, the above relationships can be evaluated among dif-
ferent clients who belong to that cluster. For each cluster,
we iteratively search for clients who does not satisfy the
condition in Equation 6. Algorithms 2 and 3 provides the
the detailed process of detecting the poisoned clients.

Algorithm 2 Get Significant Client Label for Cluster

1: Input: set of client models Wy available in a cluster
0;, list of client class labels ; shown by each client in
cluster 6;, sample baseline data D
Output: Class label g. considered in the cluster 6;
function GETCLIENTLABELFORCLUSTER()

if ¢; = ¢;;V¢;,q; in Q; then > Same client label

A A

qc=—1 > Cluster has conflicting labels,
considering malicious

8: end if

9: Return ¢,

10: end function

4.4. Defending Against Poisoning

To defend the FL system against poisoning, the feature
attributions that do not belong to the same class should be
eliminated or suppressed before the aggregation. For this,
the aggregator maintains a record of suspicious score SF
for each client k at round ¢. If a certain client exceeds a
suspicious score T}, then it will be eliminated. Here, we
define T3, = st, where n is the total number of clients
and ng, = >, Si[i]. Thus, T}, denotes the average suspi-
cious score per client. The clients who exceed the threshold
average suspicious score will be eliminated. For the other
clients, we consider the suspicious score as a down-scaling
factor, which will be used before the aggregation as:

wy Z < ) [k wk @)

ICIIdI

where the global model parameter w; at round ¢ is obtained
by getting the sum of all parameters of K clients from which
a client k£ has nj, data samples out of n; total samples, and
C'is the set of classes, while d is the sample baseline subset
used to derive the SHAP values.

The elimination process is presented in Algorithm 3.

Algorithm 3 Elimination of Suspicious Clients

1: Input: The set of normalised client weights W =
{@wF;k € [1,n]}, Feature attributions list ¢; for round
t, threshold score T}, for poisoning clients, suspicious
counts list from previous round for each client S =
Uzzlsf_l, probability density-based clustering algo-
rithm function ©
Output: Aggregated weights w; for round ¢
function ELIMINATESUSPICIOUSCLIENTS()
Get O(6;) = U;ﬂzims:l g > Clustering
Let u(©) = {0;|0; € ©}ic1,..jo;y > Unique IDs
Let S; = 0,, > Suspicious scores list for each client
at current round ¢
7: for each cluster ID i € u(©) do

AR S

8: 0 = U{05P9> | 05797 € ©,]05P97 | = i}
9: = U{W[pl | 9<p"1> € 6; }|> client models in
cluster 9
10: Qo = U{q | 057> € 6;} » client labels in 6;
11: ¢ = GETCLIENTLABELFORCLUSTER(Wjy, Q)
12: for each Géf"” do
1 ifqg#qe
b Selp] = Silpl + 0 otherwise
14: end for
15: end for
16: Let ¢ = {}
17: for client p in S; do
18: if S:[p] > Th thenw wUO
19: else ¢ = wu(l \Clldl
20: end if
21: end for

22 S=5+5;

23 Return w; < > (Y[k].0F)
k=1
24: end function

5. Experiments

This section outlines and discusses the experimental
findings on the algorithm and a comparison of it with other
related works. We also apply the attack to a use case of
facial recognition where we simulate a privacy-related PAPI
attack from [6] and show the attack is mitigated with the
proposed approach.

5.1. Experimental Setup

The experiments were performed on a simulated FL
environment where we implemented the defence system



components with Pytorch and Flower [24] frameworks. The
system is run in a server instance with NVIDIA A4000
GPU, Intel Xeon 2.10 GHz CPU with 20 cores, and 128
GB RAM. We used multiple datasets for our experiments
together with their associated model configurations as fol-
lows:

5.1.1. MNIST. This is a set of 60,000 handwritten num-
bers from 0-9. Each data consists of 28x28 pixel grayscale
images. We used a Convolutional Neural Network (CNN)
model with 2 convolutional layers, where the first layer
consists of 32 output channels with kernel size 3 and stride
1. The second convolutional layer outputs 64 channels with
the same kernel size and stride of 3 and 1, respectively. It
is followed by two dropout layers and two fully connected
layers. The final output is given by a log softmax layer that
predicts the number denoted in the input image.

5.1.2. Fashion. Fashion dataset [25] is a collection of
28x28 grayscale images of 70,000 fashion products from 10
classes, with 7,000 images for each class. For this dataset,
we use a CNN model similar to MNIST with 2 convolution
layers followed by dropout and fully connected layers.

5.1.3. NSL-KDD. This dataset consists of 125,973 data
records and serves as a benchmark for Intrusion Detection
Systems (IDS) encompassing diverse network attack sce-
narios. For our experiments, we specifically focus on two
prominent categories of traffic: normal and Denial of Service
(DoS) attacks. The model used for this dataset is a NN
model with 512 nodes in a linear layer followed by dropout
layer and another linear layer with output classes for the
two categories.

5.1.4. 5G-NIDD. 5G-Network Intrusion Detection Dataset
(5G-NIDD) [26] is a recent IDS dataset with 9 types of
network attacks. This dataset consists of data extracted from
DoS and port attack scenarios. The dataset consists of 52
attributes on the network properties and the attack status.
In this dataset, we selected the two main categories, benign
and UDPFlood attack, for our experiments. We used an NN
model with three linear layers with 89, 30 and 2 nodes for
the training with the dataset.

5.1.5. CelebA. CelebFaces Attributes Dataset (CelebA)
dataset consists of 202,599 face images of the size 178x218
with 40 binary attribute annotations describing the properties
of each face. We resize and normalise the input dataset to
a 32x32 size for faster training and aggregation of client
models. This model also consists of two convolutional layers
with kernel size 5 each and a max pool layer with kernel size
2 and stride 2. This is followed by 3 linear layers, which
outputs the target set of classes. Our use case here is to
classify the property of two genders, either male or female,
from the input images.

In the experiments, we first observe the effects of poi-
soning attacks shown by the SHAP feature attributions on
the model predictions.

5.2. Visualisation of Poisoning: Two Scenarios

Here, we performed random and targeted poisoning on a
system of 10 clients where 50% of the clients were poisoned.
To illustrate the effect of poisoning, we use the MNIST
dataset. For random poisoning, we modified all labels of
the clients. In targeted poisoning, we set all the labels to
the target class 3. The local models are trained for 10 FL
rounds.

5.2.1. SHAP Feature Attributions Maps. We use Algo-
rithm 1 and obtain the SHAP values for each client after
training. For each client, the SHAP feature attribution map-
ping is obtained for a sample random input data. For all
datasets, the feature attributions are equal to the number
of features in the dataset, which are represented for each
class. For example, in MNIST, each feature attribution map
consists of a 28x28 set of values for each of the ten classes
for the 0-9 digits. This is obtained for all the clients in the
FL system. Fig. 7 shows sample feature attribution values
mapped for a benign client and clients with random and
targeted poisoning trained on MNIST.

The feature attributions for all 10 classes given the
input value 3 for a benign client are shown in Fig. 7a.
We use the gradient explainer from SHAP to obtain the
feature attributions. The probability values show that the
client correctly identifies the expected class as 3; meanwhile,
the feature attributions also show more importance for class
3 than the other classes. However, for a poisoned client
with random poisoning, the attributions show feature impor-
tance for multiple random classes, while the model cannot
correctly classify the input class 3. Therefore, the feature
attributions do not show a clear result in random poisoning.
Thus, we can consider that the decision boundaries for all
classes have shifted, supporting the poisoner’s objective to
result in a utility drop when aggregating the poisoned model.

In the target poison, the attacker selects label 3 to be
the target label such that the accuracy does not drop for
that label. Therefore, the SHAP attributions also do not vary
significantly from a benign client for label 3. However, the
goal of the attacker is to modify the decision boundary of
the model such that if any other input is selected, they are
also classified as 3, as shown in Fig. 7d. Here, we observe
the SHAP attributions behave similarly to a random poison
scenario, which can be expected since the other class labels
than the target class are swapped similarly to random poison.

5.2.2. Clustering of SHAP Feature Attributions. We then
use the HDBSCAN clustering technique to obtain the rela-
tionship between each feature attribution set. The clustering
is done for all feature attributions from the clients. The
resulting clusters are mapped to t-SNE plots such that one
single point in the plot represents the mapping of total
feature attributions of a given client for a specific class.
Fig. 8 presents these t-SNE projections of the clusters for a
scenario of targeted poisoning of MNIST where two target
labels, 1 and 7, are swapped in 3 out of 10 clients. Here,
we mark each point by its corresponding class. From the
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Figure 7: SHAP feature attributions outputs for the 10 classes of MNIST. Benign clients have high feature importance and
prediction probability in the class at position 3, which is not shown for the randomly poisoned client. In target poison, the
poisoning client shows high prediction accuracy for target class 3 even though the label is 6, and SHAP feature attributions
show scattered feature importances due to the impact of poisoning.
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Figure 8: Targeted poisoning scenario with 3 clients out
of 10 are poisoned with 1 and 7 label swap poisoning.
The highlighted elements show the poisoned clients have
incorrectly classified the labels 1 and 7, yet their feature
attribution clusters indicate the original values.

clustering, it can be observed that the clusters are correctly
identified for each class by grouping the clients belonging to
the same class into the same cluster, except for the poisoned
classes 1 and 7.

Unlike other clusters, which have the same class label
for all points, we observe that the feature attributions of
the same cluster have two labels for the two clusters corre-
sponding to labels 1 and 7. Since we performed the label
poisoning only for the two classes, the decision boundaries
of other classes remained the same, which is evident by the
correct feature attributions with similar probability densities
as they were clustered correctly. However, for the 3 poisoned
clients, the decision boundaries for the target classes have
shifted such that 1 will be incorrectly classified as 7 and
vice versa. The feature attributions show this since they
belong in the wrong cluster, such that the feature attributions
corresponding to output label 1 are considered the attribu-
tions related to label 7. This anomalous behaviour shown
by feature attributions is the primary technique used in our
algorithm to identify and eliminate poisoners.

When we consider the behaviour of clustering for a
random poisoning scenario, we observe that all feature
attributions of poisoners are detected as a separate cluster,
as shown in Fig. 9. When randomly poisoning all the
classes, SHAP feature attributions of the poisoners will be
significantly different from benign clients, and since all the
trained labels are random, all the feature attributions of
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Figure 9: Random poisoning scenario with 3 clients out of
10 are poisoned. The highlighted clusters show that poison
feature attributions tend to form a different cluster than the
normal distribution of clusters representing each class.

poisoners will show similar probability densities. Thus, all
feature attributions from the poisoners are detected in the
same cluster. In this cluster, the labels are different, making
it clearly anomalous than the other clusters, which can be
detected by the detection algorithm. The poisoners are de-
tected based on this behaviour of feature attributions, which
can be provided as evidence. Therefore, the explainability of
the detection here implies the ability to provide justifications
by directly showing the suspicious feature attributions rather
than relying on variations in the black-box AI models.

5.3. Evaluation of SHERPA

5.3.1. Elimination of Poisoning. We implemented the de-
tection and defence mechanisms for multiple scenarios of
poisoning. First, we consider the impact of poisoning on
the accuracy of the FL global model. For the poisoning, we
consider random poisoning type since it creates a higher
impact on the model’s decision boundary, thus degrading
the overall model accuracy. Fig. 10 represents the impact of
random poisoning on the CelebA dataset over 20 global FL
rounds.

An adversary can perform poisoning continuously over
FL rounds, or they can skip certain rounds and perform peri-
odic poisoning, keeping intervals without poisoning between
two consecutive poisoning rounds to make it more difficult
for the detection algorithm to identify poisoning. However,
when analysing the impact of poisoning, continuous poi-
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Figure 10: Comparison of poisoning impact on accuracy for
continuous vs. periodic poisoning vs. poisoners removed.

soning has more impact on the aggregated model accuracy
than periodic poisoning by skipping 2 rounds. In periodic
poisoning, the decision boundary may get corrected back
when poisoning is not done, but that is difficult if poisoning
is continuously done. However, with our approach, both
continuous and periodic poisoning are avoided as our robust
algorithm can detect and eliminate the poisoners before the
final aggregation.

We also implemented our defence for datasets MNIST,
Fashion, NSL-KDD, and 5G-NIDD. Table 1 shows the
results based on the FL system with 20 clients, where 10
are comprised of random poisoning and run for 20 rounds.
The results show that the FL. main task accuracy drops with
poisoning when no defence is in place. However, with the
defence, the elimination of poisoners with our algorithm has
improved the accuracy close to the benign performance of
the system.

TABLE 1: FL main task accuracy without poisoners, with
poisoners and when poisoners are eliminated.

Dataset FL acc. No defence With defence

MNIST 0.875 0.769 0.873

Fashion 0.714 0.666 0.708
NSL-KDD 0.957 0.938 0.953
5G-NIDD 0.994 0.926 0.989

As the sample data ds, we used 1 random input image
for the MNIST and Fashion to obtain the SHAP values.
In cases like random poisoning, a poisoned model deviates
from benign models for any class. Thus, one input image
can provide reasonable accuracy in detection. We later ex-
perimented with multiple sample data, which is discussed
in Section 6.1.3. For NSL-KDD and 5G-NIDD, we used
10 sample data values for ds since more values can provide
better accuracy in case of binary classification scenario, also
discussed in Section 6.1.3.

TABLE 2: Accuracy of the defence in detecting poisoners.

Dataset FL Acc. Def. Acc. TPR TNR FPR FNR
MNIST 0.873 0.950 0.900 1.000 | 0.000 | 0.100
Fashion 0.708 0.930 0.920 | 0.940 | 0.060 | 0.080
NSL-KDD 0.953 0.868 0.980 | 0.756 | 0.244 | 0.020
5G-NIDD 0.989 0.848 0.860 | 0.836 | 0.164 | 0.140

Table 2 presents the performance of the defence mech-
anism in correctly detecting poisoners from benign clients.
Both scenarios have more than 90% defence accuracy at the
50% poisoning level.

5.3.2. Impact of Defence on the Accuracy. Eliminating
suspicious clients will reduce the overall contributions from
some clients. However, since they are highly likely to be
poisoned, aggregating these contributions will eventually
result in worse accuracy for the test predictions. We ex-
perimented with how the accuracy of the system behaves
when the poisoners are removed, compared to a scenario
where there are no poisoners in the system. Fig. 11 shows
the average accuracy variation of 10 experiments of an FL
system with 10 clients trained with the MNIST dataset for
50 FL aggregation rounds each, where 50% of clients are
malicious and eliminated, compared to a system where all
clients are benign.
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Figure 11: Main task test accuracy and loss of the aggregated
model without poisoning vs. with poisoners eliminated.

(a) Accuracy

The results show that when eliminating the clients, the
resulting accuracy is also similar to the original test accuracy
without poisoning even after removing 50% of the malicious
clients. This resulting accuracy is similar to a scenario where
5 honest clients are aggregating the model. Thus, with more
client participation, higher accuracy levels can be maintained
even after eliminating a portion of suspects.

5.3.3. Comparison with other Robust Algorithms. We
evaluated the detection accuracy of poisoners of our ap-
proach compared to existing poisoning techniques Multi-
Krum [13], FoolsGold [14], and MOAT [17] for poisoning
of MNIST dataset. We set 20 total clients where the poi-
soner percentages ranged from 20% to 80%. The results are
provided in Table 3.

Our approach is applicable to various ranges of poi-
soning where the defence strategy can identify 98% of
poisoners even when the majority of 80% of clients are
poisoned. Our method also provides full coverage for low
poisoning percentages where the algorithm can identify all
poisoners compared with other approaches. The levels of
false negatives are lower in our method, such that detection
of poisoners as benign is minimal compared with others,
which is more critical as the utility of the FL. model can get
compromised if poisoned models are aggregated.

5.4. Poisoning-based Privacy Attacks and Defences

Poisoning attacks are used as a key step in achieving
better accurate results in privacy-related attacks such as
property inference. We tested this by launching a type of
PAPI attack [6] on the FL system. In the PAPI attack, the



TABLE 3: Poison detection accuracy of SHERPA compared
to existing approaches.

Method Metric 1.0 % ?0 % 5.0 % 1?0 %
poisoned poisoned poisoned poisoned

TPR 0.800 0.533 0.550 0.750

TNR 0.970 0.800 0.550 0.000

Krum [13] FPR 0.030 0.200 0.450 1.000
FNR 0.200 0.467 0.450 0.250

Acc 0.960 0.720 0.550 0.600

TPR 0.000 0.200 0.300 0.763

TNR 1.000 0.970 0.940 0.170

FoolsGold [14] | FPR 0.000 0.030 0.060 0.030
FNR 1.000 0.800 0.700 0.237

Acc 0.900 0.740 0.620 0.780

TPR 0.400 0.267 0.440 0.700

TNR 0.700 0.771 0.420 0.500

MOAT [17] FPR 0.300 0.229 0.580 0.500
FNR 0.600 0.733 0.560 0.300

Acc 0.670 0.620 0.430 0.660

TPR 1.000 1.000 1.000 1.000

TNR 1.000 1.000 1.000 0.900

Ours FPR 0.000 0.000 0.000 0.100
FNR 0.000 0.000 0.000 0.000

Acc 1.000 1.000 1.000 0.980

attacker aims to identify if a certain property in the training
dataset occurs at a particular FL training round. For this,
the attacker injects poisoning samples where only the data
records with the target property are randomly poisoned,
while other records are kept in their original form. To
implement the attack, we selected the dataset CelebA, which
consists of facial images of people, along with its given
binary attributes like gender and hair colour. For the model’s
main task, we selected gender classification from images.
However, we selected the black hair colour as the target ir-
relevant property to be identified by the attacker, such that if
any model is trained with facial images with the property of
black hair, it will be detected by the attacker when analysing
the global model after each FL round. An attacker may also
use property inference to reveal the identity of a person
participating in the FL training process from the client side.
This can be invoked by selecting multiple properties for the
attack that are specific to a targeted individual.

The attacker consists of samples containing the target
property black hair, and they poison the gender variable
in those records by target poisoning the existing value to
gender = male. The system consists of 10 total clients,
and we used 3 poisoning clients, where each client contained
1,000 poisoned records. When performing the aggregation
by including the poisoners, we observe a drop in accuracy
in the iterations where the target property is appearing in
other benign clients periodically, as shown in Fig. 12.
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Figure 12: Accuracy of the property inference attack with
poisoners vs. poisoners eliminated.

The inclusion of poisoners alters the decision boundary
for the target class, which will be corrected by the honest
clients. This alteration of decision boundary correction is
reflected as the key information that is used for the property
inference attack. We also implemented an attack model,
which aims to automatically recognise this change for the
attacker. This attack model inputs a set of flattened model
parameters from a client and predicts if the target property is
available in that client. For the training of the attack model,
the attacker can use poisoners’ local model updates from FL
training, where the attacker knows that property is occurring
in the poisoned models. The attacker can also include benign
model updates without the property such that the dataset
with and without the property can be made to train the attack
model.

Since the inclusion of local models to the FL training
by an attacker can be limited, we also use a set of shadow
models where we create a set of 100 shadow models [6],
[18] with the same NN architecture as the target models and
each is trained for 10 rounds. The attack model is a random
forest classifier with 50 estimators. After training the attack
model, it is tested with the original aggregated FL models
such that the attack with poisoning has a success rate of
85.2%. However, if the poisoners are eliminated from the
FL system, it can be observed that the accuracy has dropped
to 31.6%, which is lower than the random guessing accuracy.
The results are shown in Table 4.

TABLE 4: Comparison of attack success with poisoning vs.
after elimination of poisoners in the FL system.

Status Accuracy Precision Recall F1
With poisoning 0.852 0.860 0.840 0.850
No poisoning 0.316 0.160 0.500 0.240

Therefore, eliminating the poisoners from the FL system
will make privacy attacks that are linked with poisoning
more difficult, even without any other privacy-enhancing
techniques. The aggregation process can itself act as privacy
preservation, which does not cause any trade-offs like utility
in the case of techniques like differential privacy [27].

6. Discussion

In this section, we consider various aspects of our robust
algorithm and the factors that may affect the process. We
also highlight the significance and novelty of our work
compared with the state-of-the-art.

6.1. Factors affecting Clustering

6.1.1. Explainer Type. The clustering technique HDB-
SCAN can depend on the explanations that are input to
the algorithm. The input data may depend on the explainer
type, where there can be multiple methods to implement
the SHAP feature attribution technique. We compared two
techniques, deep explainer and gradient explainer, to eval-
uate how they may impact the overall clustering. Fig. 13
provides the accuracy of the overall convergence of the FL



system with 10 clients for MNIST, where 50% of the total
clients are poisoners and run for 20 rounds.

i g et
R e ot
e =5

Accuracy
-

0.2 =e=Deep Explainer
Gradient Explainer

1 3 5 b/, 9 11 13 15 17 19
Iterations

Figure 13: Comparison of the FL global model accuracy
when using deep explainer vs. gradient explainer.

TABLE 5: Comparison of explainer type with the FL. main
task accuracy and defence accuracy.

Explainer FL Acc. Def. Acc. TPR TNR FPR FNR
Gradient Exp. 0.931 0.905 0.850 | 0.960 | 0.040 | 0.150
Deep Exp. 0.923 0.920 0.850 | 0.990 | 0.010 | 0.150

Here, we observe that both explainers have identified
and eliminated poisoners in a similar manner, such that the
FL global model accuracies of the two scenarios are 93.1%
for gradient explainer and 92.3% deep explainer, shown in
Table 5. Also, the defence accuracy is close to 90.5% and
92.0% for the gradient explainer and deep explainer, respec-
tively. The process of SHAP is described in Equation 10
(Appendix A.2), where there are multiple implementations
of techniques to calculate the SHAP values following the
same equation. Therefore, the different implementations of
SHAP can lead to similar results in detecting poisoners.

6.1.2. Configuration of Cluster Count. The output given
by the clustering algorithm is then considered for poisoner
detection, where the number of clusters may not necessarily
be the same as the total number of classes unless parameters
like cluster size or epsilon values are set. However, our pro-
posed algorithm does not require the total number of clusters
to be the number of classes. It only requires the information
within a cluster, such that the clients belong to the same label
class. Therefore, we can perform the detection conveniently
with a minimal configuration overhead.

6.1.3. Detection Accuracy Improvements with Sample
Reference Data. We evaluated the impact of the detection
algorithm if the sample data size of d; is modified. For
this, we use MNIST dataset for multi-class classification
and CelebA for binary classification scenarios. When con-
sidering the MNIST, we do not observe significant variation
after ds = 2, yet the computation time taken for calculations
has significantly increased with higher d, due to calculation
of feature attributions each item in dg. This is presented in
Table 6.

The binary classification can result in fewer clusters
since the number of classes is 2, and thus, a limited set
of feature attributions will be available for clustering if
the sample size is d; = 1. To enhance the accuracy, we

TABLE 6: Comparison of Models with varying dg for
multiclass classification for MNIST.

Type TPR TNR FPR FNR Accuracy Time (s)
ds =1 1.000 | 0.846 | 0.154 | 0.000 0.923 0.525+0.074
dy =2 1.000 | 0.986 | 0.014 | 0.000 0.993 1.208+0.064
ds =5 1.000 | 0.996 | 0.004 | 0.000 0.998 2.568+0.099
ds, = 10 1.000 | 0.996 | 0.004 | 0.000 0.998 5.130+1.200

can increase the amount of sample data used for the ref-
erence set. When considering the application scenario gen-
der classification with the CelebA dataset, we are required
to implement binary classification. The classifier for local
clients will output only two genders, male or female, as
the main task output. For the robust aggregation, the SHAP
feature attributions will, therefore, be the original output for
2 classes per each z sample data in d,. With the increased
amount of sample data at the reference set ds, we observe
the accuracy of the defence has also increased for a scenario
with 10 clients, and 50% of them are poisoners. We ran the
defence for 10 rounds and compared the accuracy of the
poisoning client detection over the rounds. This is shown in
Table 7.

TABLE 7: Comparison of Models with varying d for binary
classification for CelebA.

Type TPR TNR FPR FNR
1 | 0600 | 0543 | 0.457 | 0.400 0.560
s =D 1.000 | 0.914 | 0.086 | 0.000 0.940

Accuracy

As shown from the results, for d, = 1, we obtain a total
accuracy of 56% for correctly detecting poisoners. However,
with d; = 5, this detection capability has increased to 94%.
An increased number of sample data can increase the overall
accuracy of the multi-class classification, but if the class
count is high, the model will be accurate even at dy = 1, as
shown by the previous results. Therefore, this may be more
useful with a small number of classes in the model.
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Figure 14: Differentiating poisoners for binary classification.

We also analyse the t-SNE plot for the gender classifica-
tion of the distribution of SHAP feature attributions of client
models. Fig. 14 shows that clients are scattered into multiple
clusters, even though they have only two output classes.
However, their feature attribution values corresponding to
a class remain the same. In this scenario, feature attribu-
tion value clusters result from the corresponding example
representative data since each example data x; can have a
unique set of feature importance values. However, the —1
values denote outliers, and they are clustered in the same
cluster by the HDBSCAN algorithm. These outlier clusters



represent the poisoners, which are detected by our algorithm
since the feature attributions are conflicting with each other.

6.2. Performance Costs

The computation time for SHAP feature attributions is
considerably higher when compared with simple distance
metric calculations like cosine similarity, which is often
used in robust algorithms, since currently, the attributions
for a given feature have to be calculated for all combina-
tions of features to determine how important that feature
is. However, the technique is performed on a server rather
than a client device and thus can have higher computation
capability and resources. Further experimental details on the
computation time are provided in Appendix D.2. Moreover,
in a practical scenario, all clients may not send the models at
the same time, and they may send the models periodically,
from which the aggregator has enough time to compute the
feature attributions for a particular client. In this case, the
time consumption for the defence will not have an impact
on the overall aggregation time, as the time for sending an
updated iteration may require more time than the time that
can take to evaluate the client model.

6.3. Comparison with Related Works

Recent advances in the robust algorithms in the context
of FL can be observed to use clustering and similarity
score-based approaches often. Some approaches are per-
forming direct elimination of clients [17]; meanwhile, other
approaches may penalise the clients based on the trust
scores or distance metrics [14], [15]. However, none of
the techniques we presented use a SHAP and clustering-
based mechanism to detect poisoners that can identify and
differentiate suspicious clients while creating the possibility
of providing which features in a specific client are poisoned
and what classes the poisoners are targeting. Our work can
provide an investigation of the malicious intentions of the
poisoner, where the defence mechanism can identify if the
poisoning is performed on a targeted property or in a random
manner. Table 8§ summarises our contributions compared
with the existing robust algorithms.

7. Conclusion and Future Work

This research investigated the possibility of utilising
SHAP-based post-hoc feature attributions as a novel defence
against poisoning attacks on FL. We presented our robust
algorithm, SHERPA, that assesses SHAP feature attributions
from FL clients via the aggregator and uses HDBSCAN
clustering to detect and eliminate poisoners. Unlike the ex-
isting approaches, we aimed to provide better justifications
for considering a particular client update as a suspect of
poisoning by observing the behaviour of class-based feature
attributions of clients. Our results show that poisoning can
be determined via feature attributions with higher detection
accuracy than the existing benchmarks, along with better

TABLE 8: Summary contribution of our work.

Characteristics Ref | Ref | Ref | Ref | Ref | Our
[(171| [141| 1131 [211] [16]1| work
Use of XAI SHAP-based poison- H L L L L H

ing detection

Clustering of client updates L L L L H
Assessment of poisoner intentions M L L L M
Suspicious scores assessment for | L M M L L
poisoners

Justifications for poisoner elimina- L

tion
Evaluation of privacy attacks with L L L L L
poisoning
Enhancing the explainability of the | M L L L L
defence mechanisms
High accuracy of poisoning detec- M M L L M
tion at high poisoning levels
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=={ =~ I =~ I =~ I =~ ===~

High: The paper considers this area in high detail.
Medium: The paper partially considers this area, no specific focus.
Low: The paper has no/very low consideration in this area.

explanations of the targeted features that can identify the
adversary’s malicious goals and intentions. With the in-
formation, an organisation can assess the significance of
the model information that is targeted by attackers and
take action to eliminate future threats arising from such
vulnerabilities. For future research direction, we aim to
enhance the explainable Al techniques for more lightweight
implementation based on minority attributions and use a
new architecture of hierarchical FL-based aggregation to
distribute computational load efficiently.
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Appendix A.
Preliminaries

A.l1. Federated Learning

FL is a distributed ML technique that is designed with
the aim of privacy preservation at the user level. FL com-
prises many clients and an aggregator, where the clients
receive an initial model parameter w; from the aggregator
at the FL aggregation round 1. A client can then run local
training rounds for the received model using their private
data. Local models are then shared with an aggregator. The
aggregator combines many local model updates together to
create a global model. The aggregation process can be made
with a technique such as FedAvg [1], which is represented
as;

n
w30 M ®)

where the global model parameter w; at round ¢ obtained
by getting the sum of all parameters of K clients where a
client k has nj data samples out of n; total samples.

Then these aggregated global models are forwarded back
to the client, starting a new FL aggregation round with the
client. Throughout the process, client data remains within



the client device, ensuring the privacy of data by eliminating
the requirement of transmitting it to a third party. Appli-
cations like future B5G/6G network-based services can be
expected to highly utilise FL-based approaches to collabora-
tively train ML models for both third-party applications and
Al-driven 6G services [28], which also make FL a target
for adversaries to launch attacks against the model integrity
and the privacy of users via poisoning attacks.

A.2. Shapley Additive Explanations

Understanding the behaviour of complex models like
deep neural networks is difficult due to its large number
of parameters and their dependencies. Therefore, a simpler
explanation model is used to create a more interpretable
approximation of the original model. One approach for
creating such explanations is to map a relation between
simplified inputs and an approximate output from the model.
Additive feature attribution is such a technique, which uses
a linear function to create a simple explainer model in the
form of [29]:

M
=¢o+ > iz €))
i=1

where 2’ € 0,1 with M being the number of simplified in-
put features, and ¢; is the attribution of feature ¢. The SHAP
technique can be used to derive these feature attributions.

SHAP [29] is regarded as an XAI method which as-
sesses the contributions of features of an ML model via
its outputs. Since SHAP is used after the model is trained
as a separate technique to reverse-engineer and understand
model behaviour, it is considered a post-hoc XAI method
[30]. It provides the resulting attributions for each feature
by individually evaluating the importance of the presence
or absence of these particular features. Feature attribution
score ¢; for a target feature ¢ is obtained by calculating its
combinations of subsets of features with and without the
target feature 7. This is represented as:

o= ¥ PSR e -

SCF\{i}

f(xs)]
(10)

where F is the set of all features and S C F'. The model
f is first trained with values x; with the features from S and
including feature ¢. Then, it is trained by excluding ¢. The
difference is obtained between the two, and this is repeated
for all possible sets of S excluding i. The summation of
all values results in the additive feature attribution for the
target feature 7. Work in [31] shows that SHAP can provide
relatively high decision accuracy in a shorter time period
for end users in real-world use cases, compared with other
post-hoc XAI techniques like LIME or tree interpreter, apart
from the original data, which is not accessible in FL. In this
paper, we use these feature attribution values from SHAP as
inputs to the algorithm, where we can get an understanding
of the model behaviour and detect potential poisoners.

A.3. HDBSCAN Clustering

HDBSCAN [32] is a clustering algorithm that derives
the probability distribution of the data to identify clusters
within it. To approximate the probability distribution, the
algorithm uses a metric called mutual reachability distance
dmreach, Which is defined as [32]:

dmreach(aa b) = mam{dcore (a)7 dcore(b)a d(a, b)} (1 1)

where d.,.. are the core distances of two points a and b
which are the distances of k nearest neighbours for each
point. The other is the distance between the two points,
which can be a metric like Euclidean distance. Based on the
probability distribution with distances, the algorithm creates
a hierarchy of clusters where high-probability points are
placed in the same cluster.

Based on the clusters created, HDBSCAN generates a
Minimum Spacing Tree (MST) at various probability den-
sities indicated by distances among points in MST. Here,
higher distances indicate low probability density between
points. Fig. 15 shows an MST generated for the clusters
generated for SHAP feature attributions of 10 models in an
FL system where 4 clients are poisoners.
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Figure 15: MST and condensed tree in HDBSCAN cluster-
ing graphs for an FL client analysis of a system with 10
clients with 4 randomly poisoned clients.

The algorithm then creates a condensed tree where
the clusters are separated automatically based on the
user-defined parameters, including min_cluster_size and
man_samples.



Appendix B.
Comparison between model weights and pre-
dictions

B.1. Model weights

Suppose an NN model M with n layers is used to obtain
a prediction Y. For the input layer, let the input for the
model be X. The input layer propagates the input as:

7O —wOx 4 pD
AW = o(zW) (12)

At a layer ¢, let the output from the previous layer ¢ — 1
is Z(-1).

Z(i—l) — W(i—l)A(i—Z) + b(Z _ 1)
AUY = 5(z071) (13)

and the next layer
70 = W@ 401 4 5@ (14)

Suppose the weight vector of a new model M is different
by a set of A values at layer ¢ — 1. Then, the output from
layer ¢+ — 1 is

Z(i*l) — (W+ A)(i—l)A(i72) +b(’b71)
A=Y = 5(Z0-D) (15)

For two models M and M to have equal outputs A at
layer i, the value Z(Y) and Z(") should be equal. In such a
case, we can get

W@ AG=1) () = (@) 4G=1) 4 (D) (16)

7 1—1
i _ WAy
. AG=1)
, (i-1) A(i-2) 4 p(i-1)
_wo oW AT ) g
a((W-|—A)(” Ali=2) 4 p(i-1)
WO = aw® (18)

where « is the ratio between the outputs from ¢ — 1 layers
in the two models M and M.

The cosine similarity between the two models at layer ¢
can therefore be obtained as

W 1) a0
0s(0) a

IWOWO -l W@

Here, the o value can be set such that the cosine
similarity of layer ¢ can lead to a very low value between
the models M and M. However, their final predictions
will be similar since the next layer, 7, compensates for
the difference. Yet, the cosine similarity between these two
layers will also be low as the model weights are changed.
The perturbations A can be applied for all layers such that
the overall model M will be significantly different from

19)

the original model M. Thus, measuring the similarity by
directly applying it to model parameters may not always
result in a more accurate depiction of the poisoning due
to the stochasticity of the model update parameters when
compared with the outputs from the models.

B.2. Model poisoning scenario evaluation

From the perspective of an attacker, the model updates
may be manipulated via model poisoning attacks, such that
the model parameters can be very similar, yet the predictions
given by the poisoned model can consist of backdoors. Here,
we present such an example scenario. For a NN model M,
the output layer L can be represented as

ZWL) — L) g(L=1) 4 (L) (20)
Y =o(2W) (1)

where Y is the output prediction vector from the model
M. Suppose an attacker copies the model update M as M.
The objective of the attacker is to modify the last layer of the
model M such that predictions would result in the attacker’s
targeted output Y. In this case, the attacker can adjust the
final layer’s weights by following the procedure below.

7 =0 N(Y) (22)

If W) s the updated weight of the poisoned model, given
that the activation function o is either linear or it is possible
to get an approximated inverse function, we can obtain

ZW) =g 1(Y) = W AL 4 () (23)
) — oM (Y) —b®)

AT 24)
from Equation 20, we can derive that,
L L -1 L
A(Lfl):Z( ) — p(L) o (y),b( ) 25
W (L) W (L)
substituting in Equation 24,
—1(v L
W = ) = (26)

o 1Y) —bD)

Therefore, we can consider that W) = W (XE) | where
only the layer L is modified by 3 in the poisoned model,
such that the output will result in poisoned Y. However,
since all the other L — 1 layers in the NN are unchanged,
this can result in a high cosine similarity in the poisoned
model M, compared to the benign model M. Thus, we can
consider that similarity-based detection directly applied to
model parameters may not provide resilience against crafted
model updates that result in high model similarity. However,
the output of the model can determine the effect of poisoning
in such situations since the benign update Y is very different
from the malicious update Y.



Appendix C.
Distance comparison with cosine similarity

For two normalised vectors a and b, the Euclidean
distance between the two can be derived as ||a — b||.
This can also be represented by the law of cosines as:

la = bl = v/[la][ + bl — 2l[af[ [ cos(6)  @7)

In case where Euclidean distance ||a—b||; > ||a—bl|2, we
get,
lal* + [[bl|* — 2[lall[b|| cos(61) > [lal|* + [[b]|*
—2||all[/b[fcos(02)  (28)

Since the vectors are normalised, we get ||a|| = ||b|| =
1.
Thus,
2 —2cos(01) > 2 — 2cos(0s) (29)
cos(61) < cos(62) (30)

A
AY

\
\ lla-bll,
\
\

\
AY

a

Figure 16: Cosine similarity of two vectors a and b with
varying Euclidean distance

Therefore, the cosine similarity tends to decrease with
the increase of the Euclidean distance between two nor-
malised vectors. This shows that the higher the distances
between two feature attribution vectors a and b, the lower
the similarity between them and thus, they may fall into two
separate clusters during the clustering process.

Appendix D.
Other Results

D.1. Accuracy with client count

We tested how our defence works with a varying number
of total clients in the FL system, with 20, 50, and 100 clients,
where 50% of the total clients in each case are poisoned. The
defence accuracy has remained higher despite the increased
number of clients, with significantly small false negatives of
having undetected poisoners.

TABLE 9: Accuracy of the defence in detecting poisoners
with client count for NSL-KDD.

Client No. | Def. Acc. TPR TNR FPR FNR
20 0.868 0980 | 0.756 | 0.244 | 0.020
50 0.852 0920 | 0.784 | 0.216 | 0.080
100 0.818 0.880 | 0.756 | 0.244 | 0.120

D.2. Time consumption of the defence

Table 10 presents the average time consumption in sec-
onds to run a single FL aggregation round for different
client configurations of 10 and 20 running with the MNIST
dataset. The number of poisoners does not have an impact
on time, leading to similar computation costs over varying
levels of poisoning.

TABLE 10: Time consumption for MNIST under different
poisoner counts.

Poisoner ct. 10 clients (s) 20 clients (s)
0% 8.903 15.990
50% 8.922 16.010
70% 8.893 15.980

Furthermore, we observed a linear increase in aver-
age time consumption for all the cases, where 20 clients
consume approximately twice the overall computation time
compared to 10 clients in the FL system. The runtime also
varies with the dataset, as indicated in Table 11.

TABLE 11: Time consumption for the FL defence under
MNIST and NSL-KDD datasets with 20 total clients.

Dataset Def. Acc. Total Time (s) Avg. Time (s)
MNIST 0.923 16.0101-1.873 0.800+0.419
NSL-KDD 0.868 1.3084+0.130 0.065+0.029

Image datasets like MNIST may consume more time due
to their higher number of features than NSL-KDD. Thus,
the total time required for NSL-KDD per 20 clients and
the average time computation required per single client are
lower.



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper presents SHERPA, a defense against poison-
ing attacks for Federated Learning models. SHERPA relies
on SHAP values to identify if a client prioritizes relevant
features for a given class. The feature attributions of client
models are clustered (HDBSCAN) and then flagged if an
infected model falls outside the expected cluster. The advan-
tage of this methodology is that it not only flags poisoned
client models but also explains why the client was marked as
poisoned (e.g., not prioritizing features of the target class).
Experiments show that even when 80% of the clients are
poisoned, SHERPA still has an accuracy of 98%.

E.2. Scientific Contributions

e Creates a New Tool to Enable Future Science.
e Provides a Valuable Step Forward in an Established
Field.

E.3. Reasons for Acceptance

1) The proposed methodology provides a valuable step
in identifying poisoned clients for Federated Learn-
ing models.

2) SHERPA provides evidence as to why the model
believes the client is poisoned, expanding on ex-
plainable Al (XAI).



