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Abstract

The standard model of physics classifies particles into elementary leptons and hadrons composed of quarks.
In this article the existence of an alternate ordering principle will be demonstrated giving particle energies to
be  quantized  as  a  function of  the  fine-structure  constant,  α.  The  quantization  can  be  derived  using  an
appropriate  wave  function  that  acts  as  a  probability  amplitude  on  the  electric  field.  Necessary  input
parameters are elementary charge and electric constant  only.  The value of α itself  can be approximated
numerically by the gamma functions of the integrals involved.
The model  may be used to  calculate  other  particle  properties.  The magnetic  moment  can be calculated
directly from the electromagnetic fields.  In the range of femtometer the wave function overlap provides a
mechanism  for  strong  interaction.  Gravitational  force  can  be  calculated  quantitatively  with  model
parameters. The model gives some indication for a common base of strong, Coulomb and gravitational force.

1.1 Introduction

Particle  zoo is  the  informal  though fairly common nickname to  describe what  was formerly known as
"elementary particles". The standard model of physics [1] divides these particles into leptons, considered to
be the fundamental "elementary particles" and the hadrons, composed of two (mesons) or three (baryons)
quarks. Well hidden in the data of particle energies lies another ordering principle which can be derived by
interpreting particles as electromagnetic objects subject to some general principles of quantum mechanics
[2]. The concept of expressing mass in electromagnetic terms is almost as old as Maxwell´s equation, going
back as far as 1881 with the work of J.J.Thomson [3]. W.Wien was a prominent advocate of reducing mass
and gravitation to electromagnetism and based on the works of O.Heaviside [4] and others in 1900 presented
a mass-energy relation for charged particles in a form that is still in use today with minor modifications, E =
3/4 mc0

2 [5]1. 
In the model presented here, the particles are interpreted as some kind of standing electromagnetic wave
originating from a rotating electromagnetic  field  with the  E-vector  pointing towards the  origin.  Neutral
particles  are  supposed  to  exhibit  nodes2 separating  corresponding  equal  volume  elements  of  opposite
polarity.  To  obtain  quantifiable  results,  the  electromagnetic  field  will  be  modified  with  an  appropriate
exponential function, Ψ(r, ϑ, φ, e, ε)  3, serving as probability amplitude of the field. The two integrals needed
to calculate energy in point charge and photon representation exhibit the following two relations:  
1) Their product - resulting from energy conservation - is characterized by containing the product of the two
gamma functions Γ(1/3)|Γ(-1/3)| ≈ α-1/(4π), 
2) their ratio features a quantization of energy states with powers of 1/3 n over some base α0, a relation that
can be found in the particle data with  α0 = α  as:

Wn /We  = 1.509( yl
m)-1/3 Π k=0

n α^(-1/3k )            n = {0;1;2;..} (1)

with We = energy of electron, Wn = energy of particle n and yl
m representing the angular part of Ψ(r, ϑ, φ). For

spherical symmetry y0
0 = 1 holds, corresponding particles are e, µ, η, p/n, Λ, Σ and Δ 4. The factor 1.509 is

related to angular momentum |J| = 1/2, see 2.2, 2.5, 2.8. 

1 Here E denotes energy - in all other parts of this article energy is identified by the letter W while E is for electric field;
m = mass ; c0 = speed of light in vacuum;
2 nodes of positive and negative charge regions will have to coincide with nodes of the wave function but not 
necessarily vice versa.
3 r = distance from origin, ϑ, φ = angular coordinates, e = elementary charge, ε = electric constant 
4 The relation of the masses e, µ, π with α was noted in 1952 by Y.Nambu [6]. M.MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [7].

1  PP171231



The terms for calculating energy do not distinguish between charged and neutral particles and have to be
considered a  first  approximation,  accurate  only within order  of  magnitude of  the  spread of  energies  of
particle families, typically in a range of ± 0.01.
Apart from calculating particle energies the model may be used to describe other particle properties. The
magnetic moment of particles can be calculated directly from the electromagnetic fields modified by Ψ. At
distances comparable to particle size, typically femtometer for hadrons, direct interaction of particle wave
functions (“overlap”) has to be expected. Interpreting this interaction as strong interaction and considering
the basic spatial characteristics of the functions may provide a possible explanation why leptons, in particular
the tauon, are not subject to this interaction. Gravitational force can be calculated quantitatively with model
parameters i.e. as function of elementary charge and electric constant.
Terms for potential  energy of  strong and Coulomb interaction as  well  as  particle energy (mass)  can be
attributed to the terms of the expansion for r  ̶ > 0 of the incomplete gamma function of the integrals for
calculating  particle  energy  and  a  quadratic  relationship  between  a  characteristic  parameter  of  strong,
Coulomb and gravitational force can be found, indicating a common base for all three forces. 
The model is an electrostatic approximation of an electromagnetic object implying some asymmetry in its
terms, e.g. the electromagnetic units used.
This is a preliminary working paper intended to provide food for thought.

1.2 Unit System

The unit system used in this work is SI with the exception of electromagnetic units that are required to be
based on their relation to c0, in the simplest case using a symmetric split of electric and magnetic constant, ε
and μ, such as given in Planck units. In this work SI units are kept with the modification:

c0
2  = (ε0 μ0)-1 (2)

being replaced by

c0
2  = (εc μc)-1 (3)

with 
εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 
i.e. the numerical values for c0, 1/εc, 1/μc are identical, the units of εc, μc are expanded by [Jm] for the
convenience of this model. 
In the following the abbreviation b0 is used for the Coulomb term b0 = e2/(4π ε0) = ec

2 /(4πεc) = 2,307E-28
[Jm] which is identical in both unit systems, thus all calculations concerning particle energy are not affected
except for the definition of τe, equ. (32).
From b0  follows for the square of the elementary charge:  ec

2 = 9,67E-36 [J2]. 

2 Energy levels of elementary particles
2.1 Calculation of energy - point charge
Particle energy is expected to be equally divided into electric and magnetic part, W n = 2Wn,el = 2Wn,mag 

5. To
calculate energy the integral over the electrical field E of a point charge is used as a first approximation.
However, it can not be expected that the expression derived from Coulomb's law for two interacting particles
can be used unaltered and it will be demonstrated in chpt 2.2 that a factor 4π is needed  6 as modification for
Wn to yield a half integral angular momentum, giving:

Wpc,n = 4 π∫
0

∞

ε0 E(r)2 d3 r = 4 π∫
0

∞
e2

4 πε0 r2 dr = 4 π b0∫
0

∞

r−2 dr            (4)

5 Alternatively Wn/2 may be interpreted as  Wn/2 = Wpot = Wkin of a harmonic vibration. Terms of Wn/2 will be used in 
chpt. 2.2, 4.1, etc.
6 The parameters σ, τ, introduced below may be adapted to allow for the factor 4π to be omitted in (4). However not all 
relationships given in the following may be recovered with such a parameter set.
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The field E is modified with a function 7

Ψ(r) = exp(-{(σ τ b0
2 r - 3) + [(σ τ b0

2 r - 3)2 – 4 τ b0
2 r - 3]0.5} /2) (5)

The first term, exp(- σ τ b0
2 r -3), avoids ultraviolet divergence of E(r) for r  ̶ > 0, the part in square brackets

provides an integration limit, rl, where the root term equals zero 8. rl of particle n can be given by:

rl,n = (σ2
 τn b0

2/4)1/3 (6)

providing a boundary condition for the problem. 
Coefficient σ is a constant (σ = 1.756E+8[-]) related to constant angular momentum J (see below), τ is a
parameter representing particle energy, τn ~ Wn

-3. The coefficient τn+1 of a particle can always be expressed by
a term multiplying the coefficient of its predecessor n (defined in this work by W n < Wn+1) with a parameter
ατ,n+1:  τn+1  = τn  ατ,n+1. In general  for  the  coefficient  of  particle  n  a  partial  product  is  formed relative to  a
reference particle, chosen here to be the electron, τe: 

τn = τe Πk=0
n α τ , k =  τe Πτ,n (7)

τ e  = 
(2/3)3 α9

ec ε c

= 1.676E+6 [m/J2]      9
(8)

In all integrals over Ψ(r) given below equ. (9) may be used as approximation for (5) up to r = rl with relative
error <<  0.01:

Ψn (r < rl) ≈ exp(- σ τn b0
2 r - 3

 )  = exp(- βn/2 r - 3
 ) (9)

where  βn = 2 σ  τn b0
2 is used for brevity. The factor 2 takes into account that Ψ(r) appears squared in all

integrals. 
The integrals over the approximation of Ψ(r) according to equ. (9) are closely related:

∫
0

r l

Ψ (r)2 r−(m+1)dr = Γ(m/3,  β/rl
3)  β- m/3 /3 (10)

with m = {...;-1;0;1;2;...}. The term Γ(m/3, β/rl
3) denotes the upper incomplete gamma function, given by the

Euler integral of the second kind:

Γ(m/3,  β/rl
3) = ∫

β /r l
3

∞

tm/3  −1 e−t dt (11)

It  follows  from the  boundary condition (6)  that  the  integration  limit,  β/rl
3,  has  to  be a  constant  for  all

particles:

βn/rl,n
3 = 2στnb0

2/ rl,n
3 = 8/σ (12)

For m ≥ 1 the term Γ(m/3, β/rl
3) may be approximated by Γ(m/3) 10, for m ≤ 0 the integrals (10), (11) depend

critically on the integration limit and have to be integrated numerically. 
The integral for m = 1 is needed to calculate Wpc,n. Inserting (9) and (10) in equ. (4) will turn out:

Wpc,n = 4 π ε0∫
0

∞

E(r)2 Ψ n (r)
2 d3 r = 4 π b0∫

0

r l , n

Ψ n(r)
2 r−2 dr = 4π b0 Γ1/3 βn

-1/3 /3 (13)

Equation (13) is the source of  τn ~ Wn
-3. From (7) and (13) follows:

7 Phase of wave function ignored on this approximation level, Ψ(r) appears only squared in all equations.
8 In chapter 7.1 some additional reasoning for the form of (5) will be given. 
9 see 2.5
10 The complete Γ-function Γ(m) will be abbreviated to Γm. Most relations use Γ1/3 and |Γ-1/3|. The sign of the latter 
arises from the relation between  Γ-functions, the relevant integrals, (10), (11), give the positive value.
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τn/τe = Πk=0
n ατ ,k =   Πτ,n = Πk=0

n αW , k
−3  (14)

with αW,k being the coefficients for the general case of a partial product ΠW,n for particle energies 11. Through
equ. (6) the relations  τn ~ rl,n

3 and Wn ~ rl,n
-1 hold.

Figure 1: Example for particle energy Wn calc (r) (normalized) vs lg(r[m]) according to equ. (13); rm,n: see (15);
rW/2 => radius at which integrals of (13) attain half their final value; r l see (6);

 rm,n = │Γ-1/3│ βn
1/3 /3  ≈ rmax,n (15)

2.2 Angular momentum

The factor 4π added in equ. (4) may be derived by applying a semi-classical approach for angular momentum
J, using 

J  = r 2 x p(r1)  = r W n (r)/c0 (16)

with Wkin,n = 1/2 Wn and |r2| = |r1|  (for e and µ). This gives the integral:

|J| = ∫
0

r l , n

J n(r)dr = 4 π
b0

c0

 ∫
0

rl ,n

Ψ n (r)
2 r−1 dr (17)

From (10), (11) follows for m = 0:

∫
0

r l , n

Ψ (r)2 r−1 dr = 1/3∫
8 /σ

∞

t-1 e-t dt = 5.442 ≈ α-1/8π 12 (18)

yielding the constant α-1/8π. Inserting (18) in (17) provides a half integer angular momentum, |J| = 1/2:

 |J| = 4 π
b0

c0

 
α -1

8π
= 1/2 [ħ] (19)

Analogous to the postulate for neutral particles to be composed of volume elements of opposite charge,
particles with J = 0, J ≥ 1 are supposed to be composed of a combination of half integer contributions of
angular momentum J = ± 1/2, adding up accordingly, implying appropriate multiples for the ratio of |r2| / |r1|
in (16) 13.

2.3 Calculation of energy -  photon

For m = -1 equations (10), (11) give a relation between radii and Euler-integral: 

11 Not used in the following. However, coefficients in Ψ, ατ, should not be confused with those in energy terms, αW .
12 Exact value = 0.9981 α-1/8π
13 E.g. in case of the proton a contribution of J = 3 |1/2] is needed, i.e. 3 contributions of J = |1/2] each, one with 
opposite sign resulting in total spin of J = 1/2. For this formally  |r2| = 3 |r1| in (16) has to hold, see also 3.1.
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rx,n  = ∫
0

rx , n

Ψ n(r)2 dr  = βn
1/3

/3 ∫
β/r x , n

3

∞

t -4/3 e-t dt (20)

Using the value of the Compton wavelength, λC, in the term for the energy of a photon gives hc0/λC. With
equ. (20) λC can be given by:

λC,n = ∫
0

λC , n

Ψ n(r)
2 dr  = βn

1/3
/3 ∫

β/ λC, n
3

∞

t-4/3 e-t dt  ≈ βn
1/3/3  18π│Γ-1/3│    (21)

According to (13) particle energy is proportional to βn
-1/3 and  λC,n ~ βn

1/3 has to hold, requiring the lower
integration limit of the Euler integral and the factor ≈ 18π to be a constant for all particles. Energy  of a
photon can be expressed by:

WPhot,n = hc0/λC,n  =
hc0

∫
λC , n

Ψ n(r )2dr

=
3hc0

18 π|Γ−1/3|βn
1/3 (22)

2.4 Relation of integrals for Wpc,n  and WPhot,n  with fine-structure constant α

The energy of a particle has to be the same in both photon and point charge description. From (13) and (22)
follows:

Wpc,n = WPhot,n = 4πb0 Γ1/3 βn
-1/3 /3 =

3hc 0

18 π|Γ−1/3|βn
1/3 (23)

which may be rearranged to emphasize the relationship of the gamma functions (Γ1/3 =  2.679; |Γ-1/3| =  4.062)
with α, 4π Γ1/3 |Γ-1/3| = 0.998 α-1, giving (note: h => ħ):

 4π Γ1/3 |Γ-1/3|  ≈
9hc0

18 π b0

=
ħ c0

b0

= α-1        14 15 (24)

Factor ka = 0.998 will be used in equations below to indicate the deviation from the exact value.  

Equation (24) uses three approximations:
1) Γ1/3 is used in place of the incomplete Γ-function Γ(1/3, β/ rl

3 ) = 0.9960 Γ1/3 
2) the approximation for α-1 /(8π) in equ. (18) requires a correction factor of 0.9981 for 4π in the equation for
WCoul,n if the experimental value of α is used.
3) For the integration limit βn /rx,n

3 << 0 the result of the Euler integral in (20) is approximated by

∫
β n/ rx ,n

3

∞

t−4 /3 e−t dt ≈ 3 (βn /rx,n
3)-1/3

(25)

yielding 3 λC,n / (βn
1/3 Γ1/3) = 56.87 = 1.0057 (18π) as approximation for 18π.

All three factors add up to change the remaining inequality of (24) from 0.9980 to 0.9978. Calculation errors,
approximation residuals  as well  as possible higher order correction terms  of e.g.  QED type have to  be
considered to contribute to the remaining discrepancy. 

2.5 Relation of σ and τ with α

According to equation (20) rl,n may be given by :

rl,n = ∫
0

r l,n

Ψ n(r)2 dr = βn
1/3

/3∫
8/σ

∞

t-4/3 e-t dt  ≈ 1.5 α-1│Γ-1/3| βn
1/3 /3 (26)

14 Γ1/3 |Γ-1/3| = 30.5 2π 
15 With the unit system of 1.1 follows: 4π Γ1/3 |Γ-1/3| ≈ ħc0 4 π εc /ec

2 => ħc0 ε c=Γ 1/3|Γ−1 /3|ec
2 => ħ[J2] ≈ Γ1/3 |Γ-1/3| e2[J2]
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The term ≈ 1.5 α-1 is within the accuracy of the calculations 16 identically to Wµ/We = 206.8 = 1.509 α-1, the
latter coefficient will be used in all calculations if not indicated otherwise. Thus the coefficient σ is related to
factor ≈ 1.509 α-1 by equ. (12) and (26) to be:

σ = 8 rl,n
3 / βn  = (1.509 α-1│Γ-1/3│2/3)3 = (ks α-1│Γ-1/3│)3 = 1.756E+8[-]        17 (27)

Coefficients 1.509 α-1 and σ are part of the terms setting the integration limits in equ. (18), determining the 
value of J=1/2.
Since the term 1.509 α-1 from (1) is approximately equal to the factor in rl, ≈ 1.5 α-1, these terms will cancel
in the expression for rl,µ  (note: Wn ~ 1/rl,n) : 

rl,e  ≈ 1.5 α-1│Γ-1/3│βe
1/3 /3 (28)

rl,µ  ≈ 1.5-1 α+1 [1.5 α-1│Γ-1/3│βe
1/3/3 ] = │Γ-1/3│βe

1/3/3  = rm,e = 1.5 α-1│Γ-1/3│βµ
1/3/3 (29)

Relation (29), though empirically, requires ατ,µ to be  ατ,µ ≈ (α/1.5)3.

The coefficient τe = (2/3)3 α9 ec
-1 εc

-1 has been introduced ad hoc in (8). It may be calculated from a relation
between two terms used in 5.2:

ρ1  = 
4 π b0 Γ1/ 3

|Γ−1/3| βe
2/3  ≈ 

W e

rm ,e

 = 1.919[J/m] .     (30)

and 

σ εc = 0.5859 [J/m] = 0.3055 ρ1 = ρ1' (31)

Using  the expression  (27)  to  replace σ and (30)  for  ρ1 in  (31)  and solving  for  τe gives  a  complicated
expression that can be neatly simplified to give the right term in (32)

τ e ,calc  = [(2
3)

6
1

ec
2 εc

2
 
0.30553321

(4 π )
4 Γ 1/3

3

223 1.50915 Γ−1/3
18

 α15]
0.5

 = 1.004(2
3)

3
α 9

ec εc

 = 1.004 τ e (32)

in which the factor (2/3)3 can be traced back to equ. (27). The term ατ,e = α9 is the expected extension of the
partial product term for the electron, see 2.6. 

2.6 Quantization with powers of 1/3n over α

In  general  a  relation  between  coefficients  such  as  given  by equ.  (7)  is  arbitrary.  The  special  form of
expression (1) may be derived from the ratio of the integrals used in (13) and (22) for the point charge and
photon representation of energy.

Q(ψn) = 
∫
r l , n

Ψ n(r)2 r−2 dr

∫
λC, n

Ψ n(r)
2 dr

=
Γ1/3

18 π  |Γ−1/3|βn
2/3 ~

ατ ,0
1/3 ατ ,1

1/3 ..... α τ ,n
1/3

α τ ,0 α τ ,1 .... α τ , n

        n = {0;1;2;..} (33)

The term given by (33) is related to the boundary condition (12) (see 7.3.2) and via (13) and (22) to the
square of particle energy Wn

2 ~ τn
-2/3. The last expression of (33) is obtained by expanding the product Πτ,n

- 2/3

included in βn
- 2/3 with Πτ,n

1/3 From this term it is obvious that a relation αn+1 = αn
1/3 such as given by equation

(1) yields a distinct solution for Q(ψn), Q(ψn) being a function of coefficient αn and α0 only. By comparison
with experimental data ατ,0 may be identified as ατ,0 = ατ,e= α9  and Q(Ψn) can in general be given by:

Q(ψn) ~
α3 α 1 α1/3 ....α ^(3 /3n)

α9 α 3 α1 ....α ^(9 /3n)
= α ^(3/3n)/α 9          n = {0;1;2;..} (34)

16 Calculating factor ≈ 1.5 numerically via the Euler integral of (26) with a value of σ ~ 1.509 gives 1.501,  numerical 
fits of particle energy give values in a range of ~ 1.515 .
17 Factor ks = 1.509 * 2/3 = 1.006 used as abbreviation in the following.
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where all intermediate particle coefficients cancel out. 18

The corresponding term for particle energies will be given by:

W n  = (4 π b0 hc0 Q(ψn))
0.5  = ((4 π b0)

2

2α
Q(ψn))

0.5

 = ( (4 π b0)
2 Γ 1/3

2

9  [α 4π  |Γ−1/3|Γ 1/3]β n
2/3)

0.5

 = 

 = 4 π b0

Γ1/ 3

3
3 π2/3

ka
0.5 σ1/3 ( εc

ec
) α ^(1.5/3n)/α 4.5                                  n = {0;1;2;..}

(35)

The term α^(1.5/3n)/α4.5 is the partial product of equ. (1) times α-3 as coefficient for We. The coefficients of
the partial product for Πτ,n of (7) are given by (34) as their 3rd root:

τn = τe 0.291 Πk=0
n α ^(3/3 k) ≈

0.29
ec εc

 Πk=0
n α ^(9 /3  k

) = 
0.29
ec ε c

 Πn                          n = {0;1;2;..} (36)

with Πn used as abbreviation. Details of factor 0.291 = 1.509- 3 are discussed in 2.8. 

2.7 Extension to non-spherical symmetry

Up to here only spherical symmetry and Ψ(r) is considered, introduced through equ. (4), (13). For non-
spherically symmetric states an appropriate angular term, yl

m, will be introduced:

yl
m = ∫∫Ψ (φ, ϑ )

2sin (ϑ )dφ dϑ  / 4 π (37)

Assuming a term corresponding to the spherical harmonic Y1
0 to be a sufficient approximation for the next

angular term, gives y1
0 = 1/3  19. Assuming Wn ~ 1/rn ~ 1/Vn

1/3 (V = volume) may be applicable for non-
spherically symmetric states will give  W1

0/W0
0 = 31/3 =1.44   20.  

Relation (36) will turn into:

τn = yl
m  0.29

ec ε c

 Πn              (38)

A change in angular momentum is expected for this transition which is actually observed with ΔJ = ± 1
except for the pair µ/π with Δ J = 1/2.
Extending the model to energies below the electron with a coefficient of α3 in equ. (1): Wν /We  = 1.509 α3

gives a state with energy 0.3eV which is in a range expected for a neutrino [9]. 
Results for particles assigned to y0

0,  y1
0 are presented in table 1.

2.8 Accuracy of energy calculation

The values calculated for  y0
0  agree within ± 0.01 with experimental  data.  There  are three major  causes

preventing a significant improvement of accuracy. 
1) Especially in the case of particle families 21 effects on top of the relations given in this work have to play a
role to explain different energy levels of differently charged particles. This limits accuracy and the possibility
to precisely identify candidates for calculated energies (e.g. both ρ0 and ω0 are given for 1.44 α-1α-1/3 in tab. 1).
If possible, particles chosen for y0

0 in table 1 are of charge ± 1. In cases such as Σ with three energy levels,
the intermediate energy level is chosen. For the y1

0 series particles of the same charge as their y0
0 equivalent

are preferred in table 1. 

18 Q(ψn+1) /Q(ψn) = ατ,n+1
1/3 /ατ,n+1

   => Q(ψn) ~ ατ,n+1
 

19 Note: the wave function over the E-field will not be normalized to 1.
20 An equivalent to the ratio of two terms (33) [ Q(Ψn+1)/Q(Ψn) ~ Wn+1

2/ Wn
2 ]2 can be expressed by simple geometric 

terms, using a characteristic radius, e.g. rl. The volume integral in (33) has to be replaced by the inverse relative to the 
reference n, ∫r,l,nd3r /  ∫r,l,n+1d3r = Vn/Vn+1 reflecting the fact that energy increases with decreasing volume. The 1-D integral
of (33) originating from calculating λC has to be replaced by Vn+1

1/3/Vn
1/3. This gives in the general case: 

(Wn+1/ Wn)4 ~ Vn
4/3/Vn+1

4/3.
21 Particle families, defined here as possessing the same exponent n in (38) but being different in charge or other 
properties, show a typical spread in energies of 3-4MeV and no dependence on total particle energy.
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Table 1: Particles up to tauon energy 22; values for y0
0, y1

0; col. 3: energy values from literature [8] except *:
calculated from model; “uds” in col. 3 indicates particles covered by the quark model, linear combination
states excluded; leptons indicated as O;

2)  Some  uncertainty exists  concerning  the  factor  1.5x  and its  inverse  ~2/3  as  well  as  their  3 rd powers
appearing  in  many equations.  In  (32)  the  coefficient  of  the  electron  τe is  proportional  to  (2/3)3 which
corresponds to 3/2 in the energy expression. The experimental ratio of µ and e energy features almost the
same factor, 1.509, which accordingly has to show up in the partial product (1) while this factor is absent 23

in the additional components of the partial product. According to (26) this factor is related to the integration
limit rl which affects the precise value of the angular moment. Both values 1.5 and 1.509 are close to the
ratio of |Γ-1/3| / Γ1/3 = 1.516  24. It is not possible to distinguish clearly between these terms. The factor 1.509
of the energy ratio µ/e gives a good compromise and is used in all calculations of energy except for the
electron coefficient of (32) which is left to be 2/3. This is considered to be accurate to 1.509 +/- 0.09 i.e.
resulting in a relative error of+/- 0.006.
3) The accuracy of the calculations is already in the order of magnitude of expectable QED corrections.
Since these originate from the interaction of particles with the vacuum they are not included in the equations
of this model. Thus it is not advisable to use a factor from a fit to the experimental energy of the electron
which would result in a value of 1.5135 25.
As for comparing accuracy of the energy calculation with results from the standard model, the quark model
provides no authoritative data set to do so. Calculations of simplicity comparable to the model presented
here, using constituent quarks, yield approximately the same accuracy for the proton and heavier particles,
yet  accuracy decreases  dramatically for  lighter  particles.  However,  the  prevailing QCD calculations  for
particle mass use the mass of current quarks as input parameter. For u,d,s quarks, relevant in the energy
range dealt with here, this mass is only vaguely defined, e.g. in the case of the u, Wu = 1.8 - 2.8 MeV [10].

22 up to Σ'0 all resonance states given in [8] as **** included; Exponent of -3/2, 27/2 for Δ and tau is equal to the limit 
of the partial products in (1) and (36); rl calculated with equ. (6);
23 or cancelled by 2/3
24 There exists an additional relation with factor Γ2/3 of the integral ∫Ψ(r)2 r dr :  |Γ2/3| = 3/2  Γ1/3

25 The deviation of the calculated value of We (based on 1.509) from the exact value corresponds to ~ ga
2 (ga = 

anomalous g-factor of the electron).
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uds
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2 775.26 1.011 1.014 1 5.8 uds
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equ(13)
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ν  α+3

e+-  α9

µ+-  α-1  α9α3

π+-  1.44 α-1  α9α3/3

η 0  α-1α-1/3  α9α3α1

ρ0  1.44 (α-1α-1/3)  α9α3α1 /3
ω0  1.44 (α-1α-1/3)  α9α3α1 /3

p+-  α-1α-1/3α-1/9  α9α3α1α1/3

 α-1α-1/3α-1/9  α9α3α1α1/3

η'

Φ0

Λ0  α-1α-1/3α-1/9α-1/27  α9α3α1α1/3α1/9

Σ0  α-1α-1/3α-1/9α-1/27α-1/81  α9α3α1α1/3α1/9α1/27

 α-3/2  α27/2

Ξ

Σ*0  1.44 (α-1α-1/3α-1/9)  α9α3α1α1/3 /3
Ω-  1.44 (α-1α-1/3α-1/9α-1/27)  α9α3α1α1/3α1/9 /3

 1.44 (α-1α-1/3α-1/9α-1/27α-1/81)  α9α3α1α1/3α1/9α1/27 /3
tau+-  1.44 (α-3/2)  α27/2 /3



3 Other properties

3.1 Magnetic moment 26

Within this model particles are treated as electromagnetic objects principally enabling a direct calculation of
the magnetic moment M from the electromagnetic fields.
The magnetic moment Me of the electron is given as product of the anomalous g-factor, ga = 1,00116, Dirac-
g-factor, gD = 2, and the Bohr magneton, µB = e ħ/(2me), times the quantum number for angular momentum 
J = 1/2: 

Me  = ga gDµB /2  = ga

2e c0
2

2W e

 ħ
2

 = ga 9.274E-24 [Am2] (39)

The  factor  ga arises  from the interaction  of  the  electron with  virtual  photons as  calculated  in  quantum
electrodynamics  and should not  be part  of  a  calculation of  the  magnetic moment  from the field of  the
electron itself. Within this model the factor 2 of gD originates from the fact that particle energy is supposed to
be equally divided into contributions of the electric and magnetic field,  Wel =  Wmag = Wn/2 and only the
magnetic field, i.e. Wmag contributes to the magnetic moment.
Inserting the term for particle energy of (13) in (39) gives: 

Me

ga

 = 
eħ c0

2

2W e

 = 
eħ c0

2

2
 

3 βe
1 /3

4 π b0 Γ 1 /3

 = 
e c0 β e

1/3

2
 (|Γ−1 /3|

3
 

3
|Γ−1 /3|) 

3 [ħc0 4 π ε ]

Γ 1/3 4 π [e2
]

 = 
e c0 β e

1 /3

2
|Γ−1 /3|

3
 [ 9 [α−1

]

4 π Γ 1/3|Γ−1/3|] (40)

The  term on  the  right  is  expanded  by |Γ-1/3|/3  and  4π  and  turned  into  a  form that  will  be  needed  for
comparison with a calculation starting directly from the fields as explained in the following. 
The relation of the values of E and B in an electromagnetic wave is given by B = E/c 0. With factor 4π of (4)
this gives for the value of Mn  :

Mn  ≈ 
4 π
2 μ

∫
0

r l

B(r)Ψ n(r)
2 d3 r  = 

4 πεc0

2
∫
0

r l

E(r )Ψ n(r)
2d3 r  = 

4 π  ec0 β 'n
1/3

2
|Γ−1 /3|

3
(41)

The term βn is replaced by βn' = Wn,exp3/(Γ1/3  4πbo), recalculated from experimental energy values to avoid
transferring errors from the energy calculation (in the order of ≤ 0.01). Magnetic moments calculated with
this approximation are given in table 2.

Table 2: Absolute values calculated for magnetic moment with (41) compared to literature [8]

Equation  (41)  neglects  contributions  to  B(r)  from  other  parts  of  the  standing  wave  and  requires  an
appropriate integration of those. The term in brackets of (40) contains integral terms over Ψ(r)2 that might
provide suitable contributions since

9α−1

4 π Γ 1 /3|Γ−1/3|
 = 

3 β e
1/3

Γ1 /3

 
3

β e
1/3

|Γ−1/3|
 
2α−1

8 π
 = 

2∫
rl

Ψ (r )
2r−1dr

∫
r l

Ψ (r)2 r−2 dr∫
rl

Ψ (r)2 dr

(42)

holds.  Some more assumption about  symmetry (in the presence of a magnetic field) is  required.  In the
simplest case the electron may be modelled by contributions to the field via current loops with B(r) = μ0 I/
(2r2) as illustrated in fig.2 27. The radius r2 of the loops increases proportional to distance from the origin, r1 

28.

26 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter use          
e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
27 Relation between r1 and r2  equivalent to that of angular momentum discussed in 2.2.
28 |r1| = |r2| for e, µ
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1.29E-23 -9.28E-24 1.392
6.25E-26 -4.49E-26 1.392
7.04E-27 1.41E-26 0.499

n 7.04E-27 -9.66E-27 0.728
5.92E-27 -3.10E-27 1.912

|M|_Calc [Am2] M_Lit [Am2] |M|_Calc/|M|_Lit
e+-

µ+-

p+-

Λ0



The current I is not constant but a function of r2 ~ r1 and e(r), I = e(r)c0/(2πr2). These 3 factors might be
attributed to integrals over Ψ(r)2: 
1.) Integral ∫Ψ(r)2r.-1dr may be assigned to the integral over contributions of B(r) ~ I/(2r2).  
2.) The radius dependence of I = e c0 /(2πr2) might be given by ∫Ψ(r)2 2π dr in the denominator.
3.) e as identified as e = ε∫E(r)dA is not a constant but a function of radius:  e(r) = ε∫E(r)Ψ(r)2 dA and has to
be integrated accordingly. Since (41) contains such a term, this leaves the remaining term ∫Ψ(r)2  r-2dr in the
denominator  of  (42)  to  represent  a  correction  due to  the  contributions  given  above being  expressed as
integrated values, e.g. ∫e(r)Ψ(r)2 dr in place of e.

The term for electron and muon would be:

Me ,µ  = 
4 πec0 β 'e ,µ

1 /3

2

Γ−1 /3

3

2∫
rl

Ψ (r)2 r−1 dr /2

∫
r l

Ψ (r)2r−2dr  2 π∫
r l

Ψ (r)2 dr

 = 
4 πec0 β ' e, µ

1 /3

2

Γ−1 /3

3
α−1

8 π
3

2π  Γ−1/3

3
Γ1 /3

 = 

 = [ 4 π  e c0 β 'e , µ
1 /3

2
Γ−1 /3

3 ]  [α−1

4 π
3

Γ−1 /3

3
Γ 1 /3]  { 1

4 π }

(43)

The term in the first bracket corresponds to (41) while the term of the second bracket gives the correction
factor of (40). The term in curled brackets  of  (43)  is  supposed to be a particle specific structure factor
representing geometry and in case of e and µ stands for the distribution of the E-vector over a sphere.
Equation (40) will be recovered by cancelling the first and last 4π terms which is not done since it is the two
terms  in  square  brackets  that  will  remain  constant  when proceeding  with  proton  and neutron  magnetic
moment. 

Figure 2:  Field of a particle modelled -only for illustration purpose- as consisting of circular threads of
current of value I =ec0/(2πr2) forming a cone with tip at the origin.

 In case of the proton this structure factor has to be replaced by 1/2 (2/3)2 to yield the exact value of Mp . Part
of this may be explained within this simple model.  Assuming the mesons to consist of two cones  29 as
depicted in fig. 2 with cancelling angular momentum, the proton should be modelled with three such cones
which in the most symmetric case might form a planar orientation of 120° angles covering the φ-plane, fig.3,

Figure  3:  Illustration  for  orientation  of  the  proton  J  and  M components;  direction  of  arrow indicating
direction of rotation with respect to center;

thus resulting in a multiplication of the factor 1/4π of the structure factor by 2π. |r 2| = 3 |r1| has to hold for the
proton (see note 13) giving a factor 1/32 via the requirements 1.) and 2.) above. Number and orientation of  J

29 “Cone” does not refer to a separate entity but depicts local maxima in the probability density.
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= 1/2 contributions have not been accounted for yet. A contribution as illustrated in fig. 3 would account for
a factor 2, i.e. in summary a term 4π/9 would result, cancelling the last two terms in brackets of  (43) and
recovering term (41) which is a factor 2 off the experimental value. Including the missing factor 2 in the
structure factor term would give Mp as:

M p  = [4 π  e c0 β' p
1/3

2
Γ−1 /3

3 ] [ α−1

4 π
3

Γ−1/3

3
Γ 1/3 ]  {1

2
 (2

3)
2

} (44)

For the neutron the situation is expected to be more complicated 30. Without further speculation it might be
noted, that raising the exponential of 2/3 in (44) to 3 fits the value for Mn quite well. Table 3 gives magnetic
moments calculated with according structure factor (curled bracket) of (43)f indicated:

Table 3:  Absolute values calculated for magnetic moment with (43)f compared to literature [8]; Values of e,
µ are corrected for ga.31

3.2 Particle decay / mean lifetime

To check if the model yields any information about mean lifetimes (MLT) the particles attributed to y 0
0 and

y1
0 are arranged according to their α-exponent index n and indicated for different types of particle families in

fig. 4. There seems to be a tendency for charged particles to be significantly more stable than neutral ones
and for y1

0- lifetimes to be lower than y0
0- lifetimes.  32

Figure 4: Mean lifetime for y0
0 (blue) and y1

0 (red) particles; charged only (+,-), neutral only (0), charged and
neutral particle families with near identical MLT (+,-,0).

30 Within this model, nearly identical energy requires nearly identical extent of electromagnetic fields. C3-symmetry 
does not fit to a neutral particle in a static model, suggesting to assume some kind of switching of E-vector orientation 
and thus charge in time, requiring far more complicated schemes than for the proton.
31 For both e and µ ga of the electron is used; 
32 In [7] a dependence of MLT on α is given, however, there seems not to be a direct relation to the  α-coefficients of 
this work.
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Table 4: Values for mean lifetime [8] used in figure 4

4 Differential equation

4.1 Radial part

The approximation Ψ(r<rl) of equation (  9  ) provides a solution to a differential equation of type

−
r

6σ τ b0

d2Ψ (r)

dr2
 +  

b0

2 r3

dΨ (r)
dr

 − 
b0

r 4
Ψ (r)  = 0  33 (45)

However the correct discriminant form of Ψ(r) of equ. (  5  ) would be provided by a slightly different equation
(revised by 6 in 2nd, 2 in 1st and σ in 0th order term) :

−
r

σ τ b0

d2 Ψ (r)

dr2
 +  

b0

r3

dΨ (r)
dr

 −  
b0

σ r4 Ψ (r)
 =  0  (46)

To proceed from the heuristic mathematical approach of equation (45) to one based more on physics the
second order term is expected to represent  a quantum mechanical  term for kinetic energy including the
impulse operator. Based on (13) mass may be replaced by the term We /(2 c0

2)  34 giving 

W kin=(2ħ2 c0
2  

2  W e
) d2 Ψ (r)

dr2 (47)

To recover the r-dependence of (45) the following procedures are used as approximation

1.) We => |Γ-1/3| Γ1/3 4π b0 /(9 r) which is an approximation for r ≈ rm  
35

;

2.) Using the first derivative of Ψ(r), [3 σ τ b0
2
 r-4] (and [3 σ τ b0

2
 r-3]) to modify the 0th (and 1st order term), i.e.

effectively turning them into the next higher derivative, allows for canceling the 2 nd order term. Since this
term is almost identical to the expression for the supposed term of the strong force, the last term in equ. (53)
below, the latter term including 4π/4 is preferred 36, i.e. [π σ τ b0

2
 r-4] and [π σ τ b0

2
 r-3] will be chosen for the

33 [N15.1]  dψ(r)/dr = 3 σ τ  b0
2 r -4 Ψ(r)

[N15.2]  d2ψ(k)/dk2 = 9 (σ τ  b0
2)2 r -8 Ψ(r)  - 12 σ τ  b0

2  r -5 Ψ(r) + 6 σ τ  b0
2 r -5 Ψ(r) (polar coordinates)

[N15.1] -[N15.2] inserted in (34) gives: 
[N15.3] r (6 σ τ  b0)-1 {-9 (σ τ  b0

2)2 r -8
 + 6 σ τ  b0

2 r -5} + 3/2 σ τ  b0
3 r -7  - b0 r-4 = 0  

[N15.4] -3/2  σ τ  b0
3 r -7 + b0  r -4+ 3/2 σ τ  b0

3
 r -7 - b0 r-4  = 0

34 Using Wpot,n = Wkin,n = Wn/2
35 βn in (13) replaced via term of (15)
36 factor 2 of β not included
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MLT [s] log(MLT) n(alpha)

e ∞ 0

µ 2.20E-06 -5,7 1

5.00E-19 -18,3 2

p ∞ 3

n 8.80E+02 2,9 3

2.60E-10 -9,6 4

7.40E-20 -19,1 5

8.00E-11 -10,1 5

Δ 5.60E-24 -23,3 ∞

2.60E-08 -7,6 1

8.50E-17 -16,1 1

ρ+-0 4.50E-24 -23,3 2

ω0 7.80E-23 -22,1 2

1.80E-23 -22,7 3

8.20E-11 -10,1 4

N(1720) 1.70E-23 -22,8 5

2.90E-13 -12,5 ∞

η 

Λ0

Σ0

Σ+-

π+-

π0

Σ*0+-

Ω-

tau+-



terms of the differential equation. 
3.) Inserting σ in the denominator of the last term in accordance with (46);
4.) Since στ,  technically στe, has to match the resulting expression, τe will have to be redefined as τe'.
This gives:

−( 9ħ2 c0
2 r

|Γ−1/3|Γ 1/3 4 π b0
)d2 Ψ (r)

dr2
 +  

π b0(σ τe ' b0
2)

r3

dΨ (r)
dr

 −  
π b0(σ τe ' b0

2)

σ  r4
Ψ (r)  =  0 (48)

as differential equation. Equation (5) will turn into:

Ψ (r)=exp−((( π|Γ−1 /3|Γ1/3 4 π σ τe ' b0
4

9ħ2 c0
2  r 4 )+[(π|Γ−1/3|Γ 1/3 4 π σ τ e ' b0

4

9ħ2 c 0
2  r4 )

2

−
4 π|Γ−1/3|Γ1/3 4 π τe ' b0

4

9ħ2 c 0
2  r 5 ]

0.5

) r
2) (49)

which may be rewritten, using  (24), as

Ψ (r) =  exp−(((π k a α σ τe ' b0
2

9r3 )  +  [(π k a α σ τ e ' b0
2

9 r3 )
2

 − 
4 π k a α τ e ' b0

2

9r3 ]
0.5

)1
2) (50)

According to (50) τe' has to be defined as:

τe' = τ e
9

π k a α
= τe 393.4 = 6.594E+8 [m/J2] (51)

The conversion of τe' into τe depends on the assumptions given above, expected to be valid to approximately
one order of magnitude.

4.2 Complete solution / angular part
For the type of differential  equation (45)ff a separation of variables will  in general not be possible, the
spherical harmonics such as Y1

0 will not be a solution for the differential equation of type (45). However, any
wave function corresponding to a rough equivalent of an atomic p-orbital will have to feature a coefficient
from the integration over φ, ϑ close to 3 and be accessible to the reasoning in 2.7. 
Applying the same qualitative reasoning to d-orbital equivalents would result in a factor of 51/3 as energy
ratio relative to spherical symmetric terms, giving the start of an additional partial product series to be at 
51/3 W(η) = 937MeV = 0.978 W(η').

5 Particle-particle interaction

5.1 Relationship between particle energy and strong, Coulomb potential energy
The series expansion of Γ(1/3,βn/r3) in the equation for calculating particle energy (13)  gives [11]:

Γ (1/3,  β n/(r3))  ≈ Γ 1/3  - 3( βn

r3 )
1/3

+ 3
4 (

βn

r 3 )
4 /3

 = Γ 1/3  - 3
βn

1/3

r
 + 3

4

βn
4/ 3

r4 (52)

and for Wn(r) :

W n(r)  ≈ W n  - 4 π b0

3 βn
1/3

3 βn
1/3 r

 + 4 π b0
3
4

βn
4/3

3 βn
1/3r4

 = W n  - 
4 π b0

r
 + 4 π b0

βn

4r 4 (53)

The 2nd term in (53) drops the particle specific factor βn and gives the electrostatic energy of two elementary
charges at distance r multiplied by the factor 4π introduced in (4). The 3rd term is closely related to the terms
of  the  differential  equation  given  in  4.1.  The  0th order  term in the  differential  equation is  supposed to
represent a potential energy which, though being composed of coefficients originating from electrodynamics,
does not represent an electrodynamic or gravitational term but a term which has a high dependence on r and
is obviously responsible for the localized character of an electromagnetic object. In 5.4 some arguments are
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given that demonstrate a relationship of the properties of the wave functions used in this model with the
“strong force” of the standard model. It may be assumed that the 3rd term of (53) represents this strong force.
Equation (52)f is a series expansion for r  ̶ > 0.  In the next chapter it will be tried to derive an expression for
FG, starting from the term with the lowest r-dependence, i.e. the Coulomb term. The resulting term for F G will
not be part of a series expansion for Γ(1/3,βn/r3)  ̶ > ∞. The incomplete gamma function seems to be useful to
describe short range interaction. It has to be tested to what extent the approximations of this function are
appropriate for long range interaction and if related functions provide better results. A close relationship of
strong and Coulomb interaction with gravitational interaction is supported by the results of 5.2.2.

5.2 Gravitation

In the following it will be tried to express gravitational attraction in terms of parameters of this model, i.e.
essentially as function of elementary charge and electric constant. For this task coefficients to provide correct
units are needed, involving basically a combination of [J] and [m] units. The model provides several suitable
coefficients establishing a unit set of acceptable consistence 37. Coefficients of various sources might vary, in
particular contributions to the conversion of τe and τe' of chpt. 4.1 resulting in one order of magnitude or
more. However, this has to be judged in respect of the 42 orders of magnitude that separate electric and
gravitational forces in the case of the electron. The examples below are based on the expressions for energy
calculation. The necessary coefficients for unit correction are chosen with as few assumptions and input
parameters as possible. 
In general the derivation of the expression for gravitational force is speculative in some of the terms used, yet
the equations applied are quite conservative with no need for any unconventional physics.

5.2.1 Relation of Ψ(r > rl) with gravitational force
The extension of (53) wil be used in the form:

W n(r)  ≈ 4 π b0 Γ 1/3 βn
−1/3

/3  - 4 π b0

3 βn
1/3

3 βn
1/3 r

 = W n[1  - 
3 βn

1/3

Γ 1/3  r ] (54)

The r-dependent part contains Wn = mnc0
2 and 3βn

1/3/Γ1/3.  
Using (54),  in the following a term equivalent  to Newton's  law, FG = G mmmn will  be derived for two
electrons, mm = mn = me.  In this simplified electrostatic approach We = mec0

2 will be replaced by We = me'εc
-2

38 39, 3βe
1/3/Γ1/3 will be considered to be part of G1/2, this gives with the 2nd term of (54) squared:

FG ,ee  ~ −
9 εc

4  W e
2 β e

2/ 3

Γ 1/3
2  r2 (55)

The term βe
2/3 will be replaced via the relation (30) by 

βe
2/3  =  

4 π b0 Γ1/3

ρ1|Γ−1/ 3|
(56)

giving for FG: 

FG ,ee  ~ −
9 εc

4  W e
2

r2

4 π b0

ρ1 Γ 1/3|Γ−1/3|
(57)

The units are not correct yet.  It  seems reasonable to include the coefficient responsible for the absolute
energy scale of particles, i.e. τe explicitly in this equation. Including both τe' and ρ1 squared in the equation
gives the final result with correct units :

37 Compare ρ0, ρ1, of 5.2. with ρ2 of 7.3.2.
38 units of m' would have to be adjusted appropriately, not relevant for the following;
39 The need to use the 4th power of εc is the reason to drop ρ0 of the earlier versions of this work.
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FG ,ee=−b0  
36 π τ e '

2 εc
4  W e

2

ρ1
2 Γ 1/3|Γ−1/3| r2

 =−b0

36 π  τe '2 ε c
4

ρ1
2 Γ 1/3|Γ−1/3| r2

(4 π b0)
2(∫

0

r l , e

Ψ e(r)2r -2 dr)
2

= 4.24 FG,ee,exp
40 (58)

The alternate gravitation constant, γ0, corrected by factor 4.24 is given by 

γ0  = 
36 π  τe '2

4.24 ρ1
2  Γ 1/3|Γ−1/3|

= 2.893E+17 [m4/J6] (59)

which is  essentially a function of the electron energy,  γ = f(τe,  ρ1) = f(b0,  We),  implying the electron to
represent a reference state. For interaction between other particles We  may be replaced in (58)ff according to
equ. (1). or the integrals over Ψn(r)2 r-2.
In the derivation  for  FG of  equation  (58)  an asymmetry is introduced by using (56) and the minor factors
included in it are somewhat arbitrary. Using the related simpler ansatz for γ, 

γ1' =  [τe' /σ]2 = ( 8α 11

3π k ak s
3|Γ−1/3|

3 ec εc
)

2

= 3.7542  [m2/J4] (60)

gives a result for FG,ee,calc of almost the same accuracy as given by (58) with less assumptions as well as less 
justification for this term:

FG,nn,calc  =
b0

r2  γ1'  [ec
2  ∫

0

r
l , n

Ψ n (r)
2 r-2 dr ]

2

 = 4.4 FG,nn,exp      41 (61)

In the following the constant, γ1 = γ1' /4.4 will be used.
The error of the calculations compared to FG,exp is well within the uncertainties of the assumptions made
above. Inserting the expression for τe' (32), (51) in (60)f gives a result where all electromagnetic terms except
for b0 cancel:

FG ,ee

2.0982
 =−b0(9 τ e  εc

π k a α σ
 
4 π b0 Γ1/ 3

3(2σ τ e b0)
1/3 )

2

 = −b0(8 α11

3 π ka k s
3|Γ−1/3|

3 ec ε c
2

e c
2 εc π2/3 Γ 1/3 εc

k s|Γ−1/3|α2 ec
)

2

= 

=−b0( 8 π2 /3 Γ 1/3  α9

3π k a ks
4|Γ−1/3|

4 )
2

     42
(62)

5.2.2 Comparison of particle interaction terms
Comparing electrostatic and gravitational force between two identical particles n gives:  

Fn-n   = FCn-n   + FGn-n   =
1

4 πεcr
2[ec

2  − γ1(ec
2
)
3(∫

0

r l ,n

Ψ n (r)
2 r-2 dr)

2

] (63)

which may be rearranged (with units indicated accordingly) as

Fn-n   = ({ ec
2

4 πεc
}[Jm]  - { 1

4 πεc
(∫

0

r l , n

Ψ n(r)2 r−2 dr)
2

}[ 1
Jm

]   {γ1 (ec
2)3}[Jm]2)  r−2  (64)

with the following values (electron):  
Fe-e   = {1/(4π) 2,90E-27}[Jm] r -2-{1,90E+34}[1/(Jm)] {5,4E-53}2 [Jm]2 r -2.

40 The term b0 is supposed to be unsigned. Since neutral particles are supposed to be composed of charged volume
elements of equal size and opposite sign a more detailed mechanism to describe this type of interaction might be
possible. 
41 Factor 4.378 FG,nn,exp = 2.0922 if the numerical result of the integral over Ψ(r)2 is used, 4.402 FG,nn,exp = 2.0982 FG,nn,exp if 
coefficients of (62) are used; compare note 25;
42 Better numerical results can be obtained easily by altering a few terms, e.g. using factor 2 of β (note 36) gives: 1.052 

FG,ee,exp, dropping the term π2/3 and ks in (62) gives: FG ,ee =−b0  [(8 /3 Γ 1/3  α9) /(k a π|Γ−1/3|
4)]

2

= 1.002 FG,ee,exp.
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Coefficient ρ1' =  σ εc = 0.5859 [J/m] of (31) and the following coefficients will be used to compare strong-,
Coulomb- and gravitational potential energy terms in dimensionless parameters:

ρ0  = τ e ' /σ = 3.754 [m/J2]  (= γ1' 0.5) (65)

ρ2  = ρ0
2 ρ1

3 '  = τ e '2 σ εc
3 = 2.834 [1/(Jm)] (66)

To represent the strong interaction the term στeb0 /ρ0 = 1.809 E-14 [Jm] will be used 43. Table 5 compares the
three [Jm] terms for gravitational and electrostatic potential energy (4π excluded) and  στ eb0 /ρ0 in SI units
and converted to dimensionless terms.

Tab. 5 Comparison of potential energy “[Jm]” terms in SI and dimensionless;

The quadratic relationship of the [Jm] terms demonstrated in tab. 5 gives a second indication, in addition to
the series expansion of Γ(1/3,βn/r3) of chpt. 5.1. that terms for strong and Coulomb interaction and energy /
mass / gravitation might be connected. 

5.2.3 Comparison with classical constant of gravitation
The classical constant G = FG/(m1 m2) may be expressed in terms of this model as 

G =  γ c0
4

  εc
4 b0 =  γ  c0

4 εc
3 ec

2 /(4π) = 6.67408 +/- 0.00031 E-11[m5/(Js4)] (67)

5.3 Relation to nonlinear effects
The terms of the model exhibit some resemblance with concepts of nonlinear electromagnetic effects where
the polarization density P is given by 

P  = ε c∑ χ(n) En
(68)

with χ(n) representing the nonlinear susceptibility of n-th order. The lowest nonlinear contribution in centro-
symmetric potentials is of 3rd order, P =  εc χ(3) E3 . The exponential of the function Ψ(r) as given by (9)
contains a related term χ(3)V(r)3, with V(r) being the electric potential:

σ τe b0
2

r
3   =  (23

k s
3|Γ−1/ 3|

3 α6

3
3
(4 π )

2 )  [ ec

ε c  r ]
3

(69)

The term in square brackets of (69) is equivalent to V(r)3 while the term in round brackets, or parts of it,
might  represent  an  equivalent  of  χ(3) 44.  Consequently this  nonlinear  term is  included in several  related
expressions, in particular the 1st order term of the differential equation (45) as well as in the 0th order term
and the 3rd term of the Γ-function extension (53) though with an additional term r-1 each. 

5.4 Short range interaction - strong force
In this model,  on the length scale of particle radius, the wave functions of two particles should start  to

43 The strong force might be reflected in appropriate cosmological parameters (compare [12]). The basic term στeb0 /ρ0  
= 1.81 E-14[m2/J] from the function Ψ can be approximated (using (13)) by the ratio of the square of rm,e  and energy of 
the electron ~ rm,e

2/We = 2,2E-14[m2/J]. Comparing this with estimated values of cosmological parameters of similar unit
such as the square of the radius of the universe divided by its energy, runi

2 /Wuni ~ 2E-23 [m2/J] (ordinary matter) leaves 
plenty of space for an additional expansion of the universe. -  r(univ) ~ 4.5E+7ly [J. R. Gott III, et. al., “ Astro. Jour., 
vol. 624, pp. 463–484, 2005); m(univ) ~1E+53kg [wikipedia7/17];
44 Both in dimensionless units
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Gravitation 5.40E-53 1.53E-52 6.75E-53 2.27

Coulomb 2.90E-27 8.22E-27 Coulomb -

Strong 1.81E-14 5.13E-14 9.07E-14 0.57

Unit SI  
[Jm]

Unit dimension-
less [-]  

Gravitation, Strong value [-] 
relative to CoulombX term

Coulomb 2

Coulomb 0,5



overlap and exert some kind of direct interaction. As demonstrated in table 1, col.9, for hadrons the model
yields particle radius in the range of femtometer, the characteristic scale for strong interaction and it seems
likely to identify strong interaction with the interaction of wave functions. Interaction via overlapping of
wave functions constitutes the basis of chemical bonding and has been examined extensively [5]. In general
wave functions are signed (not to be confused with electrical charge), for particles above the ground state
regions  of  different  sign  exist,  separated  by  nodes.  There  are  two  major  requirements  for  effective
interaction:
1) Comparable size and energy of wave functions,
2) sufficient net overlap: In the overlap region of two interacting wave functions sign should be the same
(bonding)  or  opposite  (antibonding)  in  all  overlapping regions.  If  regions  with same  and opposite  sign
balance to give zero net overlap, no interaction results.
From  condition  1)  and  the  data  of  table  1  it  is  obvious  that  the  wave  functions  of  neutrino  and
electron/positron will not show effective interaction with hadrons due to mismatch of size and energy. In the
case of the tauon the second rule is crucial. According to this model the tauon is at the end of the partial
product series for y1

0 and should consequently exhibit a high, potentially infinite number of nodes, separating
densely spaced volume elements of alternating wave function sign. Though having particle size and energy
in the same order of magnitude as other hadrons, such as the proton, the frequent change of sign of the tauon
wave function will prohibit net overlap and effective interaction.
Overlap of wave functions should provide a possible description of nuclear bonding as well.

6 Other aspects of the model 
6.1 Free particle
Omitting the 0th order term in the differential equations might produce the equation of a free particle. Using
the following version of equ. (45) for the electron gives:

 r
6 σ τe b0

d2 Ψ (r)

dr2 -
b0

2 r 3

dΨ (r)
dr

= 0 (70)

d 2Ψ (r)

dr2
≈

3σ τe b0
2

r4

dΨ (r)
dr

+.... (71)

indicating there could exist a function in the general form of (9) for a photon, maybe describing the decrease
of the electromagnetic fields perpendicular to wave propagation.

 Ψ(r) ≈ exp(−σ τe b0
2

r3 ) + .... (72)

6.2 Elementary charge
6.2.1 Electrical charge
As Ψ(r) approaches 1 for r  ̶ > rl  the Gauss integral ε0  ∫E(r)Ψ(r)2 dA approaches the limit of the elementary
charge e. Since for r  ̶ > 0 the term E(r)Ψ(r)2 goes to zero, there is no 'point charge' at the origin.
At a distance of rm, (see equ. (15)), marking the approximate maximum of W(r), Ψ(r)2 attains a value of
0.667 yielding a calculated charge of 2/3 e and a value of Wn of Wn = Wn/4 45.

6.2.2 Magnetic charge
The model outlined above should principally be suited to calculate the energy of particles with magnetic
charge  em,  i.e.  magnetic monopoles.  Using the equations above to calculate energies  of  Dirac magnetic
monopoles [13] is straightforward. Replacing e by the magnetic charge em

em = e /(2α) (73)

45 For the pair e, µ the value of rm  is also distinguished by the relation rl,µ = rm,e , see 2.5.
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turns b0 into bm.  The integral  (18) yields only minor variations even when changing input parameters by
several orders of magnitude. This indicates the product 4πb0 = xbm has to be essentially a constant to provide
half  integer  spin.  The proportionality λC,n ~  βn

1/3 has  to  be  applicable  for  magnetic  monopoles  as  well,
yielding the same factor 18π in  (21).  As a result  equ.  (24) should hold for both electric and magnetic
monopoles. Using the same coefficients τn according to equ. (36)  as for electric monopoles in  equ. (13)
would leave (2α)4/3 = 1/280 as ratio between electric and magnetic particle energies. Assuming τ0,magn ~ 1/em

(see  (32)) would  reduce  this  ratio  to  2α  =  2/137.  Both  versions  place  magnetic  monopole  particles
approximately in the same energy range as their electric counterparts.

7 Discussion

7.1 Basic model 

The  basic  idea  behind  this  work  is  that  elementary  particles  can  be  considered  to  be  a  standing
electromagnetic wave, allowing for angular momentum, with the E-vector pointing towards the origin and B
and Vrot 46 being orthogonal to each other, at least on a local scale. Neutral particles are supposed to exhibit
appropriate nodes and corresponding equal volume elements of opposite polarity. Switching direction of the
fields will result in the corresponding antiparticles.
Whatever the detailed mechanism of this might be, there are two basic problems to overcome:
1. Since energy of the particle as calculated from electrostatics increases infinitely for r  ̶ > 0 a function that
serves as a damping term is needed to prevent this. 47

2. Vrot which is considered to be some kind of wave propagation velocity i.e. speed of light c  in its broadest
sense, has to approach 0 for r   ̶ > 0 . 
The function to be modified in this way is of the form 

Wn(r) ~ b0 r-2=
  e2

4 πεr 2 ~ e2 c0
 r-2 (74)

Thus the function used to modify this, Ψ(r), has to act on terms that contain r, e, c  (or related electromagnetic
parameters). Decreasing the value of c0 obviously is sufficient to meet both requirements. 

The term Ψ(r) of (5) is based on 3 assumptions:

1.) A term of general form Ψ (r) ~ exp(
−β

r y ) is used to avoid UV-divergence of the fields

2.) Ψ(r) has to be the solution of a 2nd order differential equation with 1st order term 

Ψ (r )=exp(−(β /2
r y

+[( β /2
r y )

2

– 4
β /2
σ r y ]

0.5

)/2)
3.) Energy of a particle can be given in a point charge and a photon expression. This gives a correct relation
for the fine-structure constant α, equ. (24) only if the power y of r is given by y = 3, resulting in (5) with βe

given as reference term for the electron. 
The  exponential  term  β can  be  expressed  in electromagnetic  terms  only  and  since  there  are  several
indications to identify effects within the range of the wave function with the strong force, it seems possible to
express this force in electromagnetic terms as well.

7.2 Relation to standard model 

The standard model classifies particles into leptons, considered to be the fundamental "elementary particles"
and hadrons, composed of two (mesons) or three (baryons) quarks. In the model presented the y0

0  and y1
0

groups each include all three particle types. The possibility to calculate particle energies with a single model
using a uniform set of parameters does not support to identify a special set of particles as more “elementary”
than others. However, the classification into the three groups may be reproduced. 

46 tangential velocity, not ω
47 The 1st order term of the differential equation (48) which can be given in the form of a 3rd order nonlinear term (see 
5.3) formally corresponds to the damping term of a damped oscillator equation.
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Mesons constitute a distinct group of particles due to their integer angular momentum which is considered to
be  a  combination  of  half-integer  contributions  in  both  models.  In  the  standard  model  leptons  are
characterized by being essentially point like particles not subject to strong interaction. Neutrinos, electron
and muon are the particles of lowest mass which in itself might provide an explanation for this quality. The
tauon however is outstanding in possessing a mass almost twice that of the proton and major decay channels
involving hadrons. The considerations in chpt. 5.4 about overlap and wave function symmetry might provide
a consistent explanation for all leptons not to be subject to strong interaction with hadrons which in turn
should prohibit  detection of internal structure of these particles. However, this model suggests a smooth
transition in the effects of strong interaction. For the pair muon / pion this seems not to be obvious 48. The
same reasoning as for the tauon would have to apply e.g. for Δ-particles, for which scattering data are not
available. The supporting assumption of the Δ being subject to the strong force based on its short lifetime is
not a general distinctive feature of both particle groups and in this model the presence of the strong force, i.e.
the wave function character of particle states, is considered a constituent element of all particles anyway. The
existence of a tau-neutrino as a special particle is not expected in this model. However, effects causing the
distinction of the leptons from the hadrons might reflect in a distinctive interaction with neutrinos as well. 
Except for the reasoning given for “lepton” particles the description of particles as electromagnetic wave
structured by nodes implies some kind of measurable substructure though it goes without saying that this
substructure does not provide any possibility for a division into smaller entities. 

7.3 Relation to classical quantum mechanics

7.3.1 General

The relation of this model to classical quantum mechanics may be given by interpreting Ψ(r) as probability
amplitude applied to a field instead of a particle. Inverting the usual interpretation it is the wave that acquires
particle character. Ψ(r) will be the solution of a corresponding 2nd order differential equation. The derivation
of this model started from the function Ψ since it is considered easier to develop terms for this function than
to guess a term for the differential equation and in particular the term representing potential energy. 
The differential equation may be given as: 

( ħ2 c 0
2

2W kin
)ΔΨ (r)  −  f (W pot )∇ Ψ (r)  +  W pot Ψ (r)  =  0 (75)

This gives no eigenvalue for energy, since energy as well as other properties has to be calculated by the
integral over Ψ(r)2. This implies that concepts such as orthonormalization may not be applicable on the level
of the differential equation49.
As for the number of parameters needed to calculate energy states, the model resembles the simplicity of ab
initio quantum mechanical models, relying essentially on 4π b0 = e2 /ε and J = 1/2 to yield the expression (1)
50. Parameter τe or more generally βe is needed to transform the relative energy scale of (1) into an absolute
one and may be itself reduced to the elementary form (32) allowing all calculations to be based on ec and εc

as sole input parameters.

7.3.2 Quantization condition

The quantization condition  given in 2.6  is not exclusive. The solution of (34)f relates to the rest mass of
particles  of  sufficiently  high  mean  lifetime  to  be  experimentally  observable  but  does  not  prohibit  the
existence of particles  with any other  mass.  Other  approaches have been tried to  obtain a more definite
derivation for the quantization. 

A particular simple interpretation may be given using (6) and considering that the ratio rl,n / rl,n+1
3 is constant:

rl,n  /rl,n+1
3 = (σ βe Πτ,n /8)1/3) / (σ βe Πτ,n+1 /8) = const (76)

48 With the data of tab.1 the ratio of the energy density w is wµ/wπ ~ 1/4; spatial distribution may add some factor;
49 The equations might be considered to be “normalized” to yield the elementary charge for r > rl.
50 J = 1/2 and the values ~1.5 and σ are closely related. Factor 1.509 from the energy ratio µ/e might be considered an 
additional parameter, yet applies only to this particle pair. 
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To be valid for all n this implies Πτ,n  Πτ,n+1 and Πτ,n
1/3 Πτ,n+1 requiring ατ,n+1 = ατ,n

1/3. Since Wn+1
3
 /Wn  ~

λC,n /λC,n+1
3  ~ rl,n  /rl,n+1

3 this result is a restatement of the relations given above though suggesting that some
geometrical interpretation in r- or k-space might be conceivable.

Some relationships may be obtained from the integral over the boundary condition. Using the boundary
condition (12) in the form σ βn/(8r3) = 1,  multiplying with Ψn(r)2, integrating and using the coefficient ρ3

ρ1'2ρ0 = 1.289[1/m], for cancelling the unit [m], directly yields the partial series of particle coefficients of the
next particle, n+1 51:  

ρ3
σ
8

βn∫
0

∞

Ψ n(r)
2 r−3 dr = ρ3

σ
8

Γ 2/3 βn

3(βn)
2/3 = ρ3 Πn αn+1 = ρ3 Π n+1    (77)

The integral ∫Ψ(r)2r-3 dr of (77) is directly proportional to Q(Ψn), equ. (33), via the term  βn
-2/3. Since the value

of σ is a constant this approach works for all  τn only if the electron provides the starting value τ0.  The
calculation of the particle coefficients may start directly from the value of τ e. In equation (78) τe  is replaced
by the expression (32) giving the first coefficient of the series, ατ,µ= α3.

σ|Γ−1/3|β e
1/ 3

8∗9
 
σ2 τ e ' ε c

2

σ
 = 

21/3|Γ−1/3|ec
4 /3 σ7 /3 τ e

4/3 εc
2

8 π (4 π )2/3 α εc
2/3

  = 
k s

7 Γ−1/ 3
8 α 4

34 π5/3
 ≈ 0.993 α3

(78)

Taking the ratio of the two integrals for the particle energy (note ε0 replaced by εc)

Wpc,n  = 4 π εc∫
0

∞

E (r)2Ψ n(r)2 d3 r = 4π b0 Γ1/3 βn
-1/3 /3 (79)

Wpc,n  = 4 π ec∫
0

∞

E(r)Ψ n(r)2 dr = 4π b0 Γ1/3 βn
-1/3 /3 (80)

gives:

e c

εc

  =  ∫
0

∞

E (r)2 Ψ n(r)2 d3r  / ∫
0

∞

E (r)Ψ n (r )
2 dr (81)

and suggests that solutions for E(r) other than the point charge may be used. 
As indicated above it is the angular momentum that most clearly requires some sort of quantization. The
term ec/εc suggests that it might be replaced by ecc0 ~ I in a term equivalent to (81), maybe providing a more
accessible  approach  to  quantization  via  phase  of  the  wave  function,  an  aspect  which  has  been  totally
neglected on this level of approximation. To model this a mathematical approach using quaternions might be
promising.

7.4 Particles

7.4.1 Ground state

The results, in particular of chpt. 2.5, 3.1 and 5.2 strongly suggest that the electron, the charged particle of
lowest mass, constitutes a kind of reference state. However, an indication against the electron being a ground
state might be that going to lower states seems to be possible, see 7.4.2.

7.4.2 Lower limit

For extending this model to energies below the electron a coefficient of α3 is used in equ. (1): Wν /We = 1.509
α3. This gives a state with energy 0.3eV which is in a range expected for a neutrino  [9]. 
Yet the final lower limit should be reached soon. While rl of the hypothetical neutrino is rl  = 1,5E-5 [m], the
next lower state would be the last one to fit into the universe, with rl ~ 1E+13[m] ~ 0,001 light year.

51 Integrating over both sides of (12) requires an appropriate integration limit for the integral over ψ(r)2dr in order to 
get two matching expressions.
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7.4.3 Upper limit

The partial product of each symmetry group has an upper limit though it is not clear if there is an absolute
upper limit for the sum of all symmetry groups. 7.4.4 discusses other possibilities for higher energy states.

7.4.4 Particle states not in  y0
0 and y1

0

On the present level the y0
0 and y1

0 states of this model cover the 13 particle families of table 1 {e, µ, π, η,
ρ/ω, p/n, Λ, Σ, Δ, Σ*, Ω, N(1720), τ} (excluding  ν). This may be compared with the number of particle
families given by the multipletts of u, d, s quarks in roughly the same energy range which is 13 as well, {π,
Κ, ρ, Κ*, p/n, Φ, Λ, Σ,  Δ, Ξ, Σ*, Ω, Ξ*}(excluding linear combinations). 
Apart  from particles  attributed to  y0

0 and y1
0 symmetry,  assignment  of  more  particle  states  will  be  not

obvious. The following gives some possible approaches.

7.4.4.1 Partial products

Additional  partial  product  series  will  have  to  start  with  higher  exponents  n  in  α^(-1/3n)  giving  smaller
differences in energy while density of experimentally detected states gets higher. There might be a tendency
of particles to exhibit a lower MLT making experimental detection of particles difficult 52. To determine the
factor yl

m requires the complete solution of the differential equation yet to be done. All these factors will
impede the identification of additional partial product series.
One more partial product might be inferred from the fact that  η' or  Φ0 are the first particles available as
starting point (considered to be an equivalent of a 3d state, i.e. following η) while  Δ(2420) with a spin of
11/2, indicating a high number of nodes, might be close to an end point. The difference in energy fits a series,
some candidates for intermediate particles exist. However, in general it is not expected that partial products
can explain all values of particle energies.

7.4.4.2 Linear combinations and particle compounds

The first particle family that does not fit to the partial product series scheme are the kaons at ~ 495MeV.
They might be considered to be an equivalent to linear combination states of classical quantum mechanics.
The  π-states  of  the  y1

0 series  are  expected  to  be  similar  to  p-orbitals  of  the  H-atom,  giving  a  charge
distribution  of  +|+,  -|-  and  +|-.  A linear  combination  of  two  π-states  would  yield  the  basic  symmetry
properties of the 4 kaons as:

   +         -         -          +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -  (+/- = charge)

   +         -         -    -
providing two neutral  kaons of different  structure and parity,  implying a decay with two different  MLT
values. For the charged Kaons, K+, K-,  a configuration for wave function sign equal to the configuration for
charge of KS

o  and KL
o might be possible, giving two variants of P+ and P- parity of otherwise identical

particles and corresponding decay modes not violating parity conservation.
        -          +

K+/-    +      + K+/-     +        -  (+/- = wave function sign)
        -    -

The general formalism of such linear combinations might be different from classical quantum mechanics. At
least the normalization condition would have to be altered or entirely dropped, which might result in a simple
addition of particle energies. This is not the case for two pions adding up to one kaon. However, it has been
noted for a long time that simple multiple-mass relations can be found among particle masses [7], [14]. Easy
identifiable examples of near integer multiples can be found in particular among mesons, e.g. K, K* or η', ηc

and ηb; among baryons e.g. the doubly charged particles stand out.
The latter particles draw attention to another possibility to explain particle resonances. A particle like  Δ++

(from the reaction of p and  π+) is not expected within this model. Replacing elementary charge e in the
equations by 2e would give energies not compatible with other single charged or neutral  Δ particles and a
whole series of doubly charged particles should exist. A particle of charge 2+ in this energy range would be

52  Which might explain missing particles of higher n in the y0
0 and y1

0 series as well.
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rather considered to be a compound of n and two π+, giving an equivalent of the 3He nucleus 53. In general
compounds of strongly interacting particles might be a source for experimentally observed resonances.

8 Summary 

The main results obtained by applying the function Ψ(r) to E(r)will be summarized here in terms of α, ec, εc 
as well as the minor terms ks , ka.  Γ1/3 = Γ+ , |Γ-1/3| = Γ─ . 

● wave function

Ψn(r < rl) = exp(-(2
3 )

3
k s

3 Γ -
3 α 6

(4 π )2
 (ec

ε c
)

3
Π τ ,n

r3 ) (82)

● fine structure constant:

4π Γ1/3|Γ-1/3|  ≈
ħ c0

b0

= α-1 (83)

● particle energy
    absolute:

Wn=
e c

2

εc

 ∫
0

rl ,n

Ψ n (r)
2 r−2 dr = 

π2/3 Γ +

k s Γ-

ec

α2
 

1

Π τ ,n
1/ 3 (84)

   
 relative :

Wn /We  = ( y l
m)−1/3 1,509 Πk=0

n α^(-(1/3)k ) n={0;1;2;..} (85)

● ratio of elementary charge to electron energy:
ec

We , calc

=
α 2

π2/3

k s Γ-

Γ+
(86)

● magnetic moment

Mn  = 
k s

ka

Γ -
2 α2

2π 2/3

 c 0  ec
2

εc

 {structure factorn} [Jm2] (87)

● terms for particle interaction 
r  ̶ > 0

W n(r)  = W n  - 
ec

2

εcr [1 + 2
33

 
ks

3 Γ-
3 α6

(4 π)2
 ( e c

εc r )
3

Π τ ,n] (88)

r  ̶ > ∞

Wpot,nn= b0 r−1(1 + εc
2 γ1[ec

2∫
0

r l , n

Ψ n(r)2 r -2 dr]
2

) = 1
4 π εc r

 [ec
2+( 8  α11

3 π  ka ks
3|Γ−1/3|

3 )
2

( π2/3 Γ +

k s Γ -

ec

α 2

1
Π τ ,n

1/3)
2

] (89)

53 Existing in an excited state.
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Conclusion

Using  the  exponential  function  Ψ(ec,  εc)  as  probability  amplitude  for  the  electric  field  E(r)  gives  the
following results:

- a numerical approximation for the value of the fine-structure constant α,
- a quantization of energy levels given by a partial product of terms α^(-1/3n),
-  magnetic moments, calculated directly from the electromagnetic fields,
- qualitative explanations for particle properties such as the lepton character of the tauon or the decay of 
   kaons,
- a possibility to quantitatively express gravitational force entirely in electromagnetic terms,
- an indication of a common base for strong force, electromagnetism and mass/gravitation, based on a 
  common set of -electromagnetic- coefficients, the expansion of the incomplete gamma function and a 
  possible quadratic relationship between characteristic terms of potential energy.
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