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Abstract—This paper presents an approximated Robust Prin-
cipal Component Analysis (ARPCA) framework for recovery of a
set of linearly correlated images. Our algorithm seeks an optimal
solution for decomposing a batch of realistic unaligned and cor-
rupted images as the sum of a low-rank and a sparse corruption
matrix, while simultaneously aligning the images according to
the optimal image transformations. This extremely challenging
optimization problem has been reduced to solving a number of
convex programs, that minimize the sum of Frobenius norm and
the /;-norm of the mentioned matrices, with guaranteed faster
convergence than the state-of-the-art algorithms. The efficacy of
the proposed method is verified with extensive experiments with
real and synthetic data.

Keywords—Image alignment, robust principal component anal-
ysis, low-rank, sparse, video stabilization.

I. INTRODUCTION

In recent years, the popularity of image and video sharing
websites such as Facebook, Instagram, YouTube, etc. has led to
a dramatically large amount of data becoming available online.
Applications such as face, digit, and object recognition is a
problem domain in computer vision where low-dimensional
linear models have received a great deal of attention. The
available substantial data can be very challenging (if not
impossible) to process with computer vision algorithms, if the
difficulties such as significant illumination variation, occlusion,
misalignment, deformities, and noise are not dealt with using a
proper method. The most challenging task is aligning a set of
images of an object to a fixed canonical template, simultane-
ously with removing occlusions, corruptions, and specularities
to obtain an accurate representation of the object of interest
based on similarity, for robust recognition or classification.

A great deal of progress has been made in batch image
alignment, the most notable of which is [1], where the authors
used a similar convex relaxation program in which the trans-
formed images of an object from a set of unaligned images
were decomposed as the sum of images from a low-rank
approximation, and sparse large errors. Their algorithm was
successful in cases of rigid and parametric classes of trans-
formations, given the amount of misalignment and corruption
was within a limited bound, and image sizes were not too
big. While their method demonstrated robustness to corruption
and occlusion, it uses a very expensive optimization program,
based on a Lagrangian multipliers iterative linearization, whose
performance is slow in applications where real-time or very
fast performance is sought. Another work [2], minimizes a
rank surrogate, however lacks robustness to corruption and
occlusion. In addition, the canonical frame that their algorithm

978-1-4673-8353-0/15/$31.00 ©2015 IEEE 49

could handle was a small image of 49 x 49 pixels with only
a small Euclidean transformation and limited corruption.

In this paper, a new algorithm is introduced for recovery
of linearly correlated images and video frames (or signals),
despite occlusions, corruptions, and large misalignment. Our
method builds on recent advances in rank minimization and
formulates the problem of batch image alignment as the
solution of a subproblem in the sequence of convex programs.
The solution of these convex programs have been shown to
be efficient in our preceding work [3]. Our algorithm can
handle batches of high resolution (up to HD quality) images
in several minutes. We verify the efficacy and accuracy of our
algorithm as well as its superiority to similar methods, with
extensive experiments on unconstrained real images with wide
range of corruption and misalignment. These results suggest
the potential of our algorithm as a general tool for video
stabilization, compression, and object tracking.

II. APPROXIMATED RPCA FRAMEWORK

Suppose we are given n unaligned images or video frames
Iy,...,I, € R®*" of an object. We produce a matrix A =
[A1,...,A,] € R™*™ by concatenating all elements of I in
row-order as columns of A. The matrix A should then be low-
rank — since its columns are linearly correlated — with a low-
rank component L, and the large errors can be expressed as
the sum of a sparse matrix S and a Gaussian noise matrix G,
while the parametric transformations 7 can model the potential
global misalignment.

Aor=L+S+G (1)
Aj o 7 denotes the j-th frame after transformation param-
eterized by the vector 7; € R” where p is the number of
parameters fully describing the global motion model. Therefore
p = 4 corresponds to similarity, p = 6 to affine, and p = 8 to
projective transformation. It was shown that for the problem
of recovering low-rank matrices from sparse errors, as long
as the rank of the matrix A to be recovered is not too high
and the number of the errors is not too large, minimizing
the natural convex surrogate for rank(A) + A||S|o (with A
soft-thresholding parameter) can exactly recover A [4]. In
this paper, we use a different convex relaxation that replaces
rank(-) with the Frobenius norm: ||A||r = VY, . A%, and
the fo-norm [|S||o with the ¢1-norm: [[S]|, = 3=, ; 1S:;{ in an
approximated noisy case. Applying this relaxation to (1) yields
a new optimization problem, such that Ao7 ~ L + S
argmin ||[Ao7T — L — S| r+ M|S|h 2)
ra;]éfi“s—gk



The authors in [5] showed that for convex, Lambertian
objects, images taken under distant illumination lie near an
approximately nine-dimensional linear subspace known as
the harmonic plane. However, with face images which are
neither perfectly convex nor Lambertian, this low-rank model
is violated, due to cast shadows, specularities, occlusions, and
misalignment. These errors are large in magnitude, but sparse
in the spatial domain. Given a sufficient number n > rank(A)
of those images, the extremely efficient and computationally
inexpensive approximated Robust Principal Component Anal-
ysis in (2) will be able to remove those errors, as well as
align all those images in the same canonical template. To solve
this problem we use an alternating strategy minimizing the
function for three parameters L, .S, and 7 one at a time until
convergence; for a fixed A the iterative process below will
have a monotonically decreasing value, converging to a local
minimum:

' =argmin |[AoT — L't — STH3 3)
L' = argmin ||[Ao7! — L — S 1% 4)
rank(L)<k
St =argmin|[Aor! — L' — S|% + \|S| )
s

The main remaining difficulty in solving (2) is the non-
linearity of the constraint A o 7 &~ L + S, which arises as a
result of the dependence of A o 7 on the transformations 7.
We use the linearization method described in [3], where an
incremental refinement is used. The i-th geometric transfor-
mation is comprised of a parameter vector 7;, ¢ = 1,...,n
where different spatial transformations can be considered. We
use the 2D parametric transforms to model the translation,
rotation, and planar deformation in the low-rank subspace. We
obtain an initial approximation for the parameters 7; using a
feature matching, indirect method with SIFT features [6] where
the images are aligned to the middle image. This method is
more robust and much faster compared to direct methods used
in [1] with larger image sizes and more extreme parametric
transformations and large camera parallax, displacement, and
motion blur. Finally, in (3) we use the multi-resolution incre-
mental refinement described in [7], to estimate these motion
parameters. To calculate the rank-k£ matrix that is the nearest
estimate of the matrix Ao7?—S~1in (4), SVD gives a closed-
form solution as: L' = 25:1 o;U; VT, with the coefficients
o; the singular values, and the vectors U; and V; the singular
vectors of the matrix A o7t — S*~1. Finally in (5) the matrix
St is updated using the parameter \ acting as a regulating
parameter, where the elements of the matrix A o 7t < )\ are
considered zero.

III. EXPERIMENTS

In this section, we demonstrate the efficacy of our method
in a variety of image recovery tasks. We verify the correctness
of our method with controlled and uncontrolled examples, and
show that it outperforms state-of-the-art methods in recovery
of corrupted data while simultaneously compensating for any
misalignment. Our realistic examples are taken from the chal-
lenging Labeled Faces in the Wild (LFW) database [8]. Experi-
ments on video data and handwritten digits further indicate the
generality of our method for various applications. Moreover,
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Figure 2: Robust alignment by sparse and low-rank decompo-
sition in LFW dataset [8]. Contrast has been normalized in (d)
for better visualization. Figures (e), (f), (g), and (h) correspond
to the average of (a), (b), (c), and (d) respectively.

(d) Sparse specularities S + G

our algorithm can handle more complicated deformations and
transformations such as planar homographies as shown in one
of the tests, which indicates wide range of applications in video
stabilization and compression.

A. Speed and scalability of our method

For this example, on a 3.40GHz (single core) Intel Core i7-
4770 machine with 32GB of RAM our Matlab implementation
requires 11.07 seconds to recover and align 100 perturbed and
corrupted synthetic images of size 49 x49, whereas [1] requires
41.44 seconds. Moreover, our algorithm is able to handle
large image sizes (up to HD quality), which demonstrates
impressive computational efficiency as a direct result of using
our approximated RPCA optimization framework.

B. Removing shadows and specularities from face images

We test our algorithm using a set of controlled images.
Figure 1 shows 100 images of a dummy head that are perturbed
and occluded randomly. The images are all 49 x 49 pixels (our
algorithm can handle much larger image sizes, however for
comparison with similar methods the same image data have
been used). To each image a random Euclidean transform
is applied with angle of rotation uniformly distributed in
[-10°,10°] and z- and y-translations are uniformly dis-
tributed in [—3, 3] pixels, while 6% of the pixels are corrupted.
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(a) Original corrupted images A (b) Aligned images Ao T
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Figure 1: Robust alignment by sparse and low-rank decomposition in Synthetic face data.
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(a) Original handwritten digits A (b) Aligned digits Ao T

(c) Low-rank component L (d) Sparse errors S + G

Figure 3: Robust recovery and alignment by sparse and low-rank decomposition in handwritten digits.

Notice that our method correctly removes the occlusions (Fig-
ure 1-(d)), to produce a rank 3 matrix of well-aligned images
(Figure 1-(c)). RASL [1] can produce the same results but
with the minimized rank 48. The rank 3 matrix best describes
the general appearance of the face image in this case, while
preserving the prominent features for recognition purposes.

Next, we validate our approach using more challenging
images taken from Labeled Faces in the Wild (LFW) [8]
dataset of public figures. These images exhibit significant
variations in pose and facial expression, illumination, and
occlusion; moreover the ground truth (i.e. undistorted, not ro-
tated, not shifted) image is not known. The images are aligned
to a 80 x 60 canonical frame, and Affine transformations are
used to cope with large variability in poses. Figure 2 shows
one example from this dataset. Notice the average face after
alignment is significantly clearer in Figure 2-(f) indicating
improved alignment achieved by our method. This example
demonstrates our method’s ability in correcting errors in real
images, which could be used to improve the performance of
current face recognition systems.

C. Recovery of corrupted and misaligned handwritten digits

Our method can be applied to aligning any general set of
images with strong linear correlation. In this test, we used 100
handwritten digits “3” from the MNIST database in Figure 3.
Our algorithm can obtain comparably good performance on
this example despite the fact that it does not explicitly target
binary image alignment.
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D. Recovery of deformed and corrupted planar surfaces

In this example, our algorithm is applied to images that
differ by planar homographies, to demonstrate how it can be
used with more complicated deformation models. Figure 4
shows 8 images of a building, taken from various viewpoints
by a perspective camera. As seen here, the algorithm correctly
aligns the windows and removes branches occluding them.
This hints a useful application for our method in image
matching, mosaicing, and inpainting.

E. Video stabilization for recovery of object of interest

Video frames taken from the same scene are usually
linearly correlated. In this test, we demonstrate the ability of
our method in aligning frames taken from a video. Figure 5
shows frames from a 140 frame video of Al Gore talking,
obtained by applying a face detector to each frame individually.
Due to imprecision in face detector there is high jitter from
frame to frame. Next, we use affine transformations to obtain a
well-aligned set of frames, and then we demonstrate a low-rank
approximation of the frames as well as the removed shadows,
occlusions, and errors from the images. Notice that the errors
shown in Figure 5-(d) compensate for local motion such as
mouth movements, and eye blinking which are not considered
in the global motion model. For this video of 80 x 60 pixels
with 140 frames our method needs 9.79 seconds while [1]
takes 57.52 seconds to produce visually similar results. These
results suggest the potential of our algorithm as a general tool
for video stabilization, compression, and object tracking.
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(a) Original homography images A (b) Aligned images Ao T

(c) Reconstructed images L

Figure 4: Alignment and recovery of planar homographies.
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(c) Aligned and recovered images L

(d) Removed errors S + G

Figure 5: Video stabilization for recovery of object of interest.

IV. CONCLUSION

In this paper we demonstrated the surprising effectiveness
and efficacy of our approximated RPCA method for batch
image recovery from corruptions and misalignment, and sug-
gested applications such as batch image alignment, recovery
of face images form corrupted data for face recognition, video
stabilization, image mosaicing, inpainting etc. Our proposed
formulation directly impacts the speed of convergence of the
algorithm, making it suited for real-time applications. One of
the most important questions for future work is how to extend
our framework to more general classes of transformations such
as non-rigid and non-parametric that are exhibited in general
video data, while providing the same theoretical guarantees for
the amount of misalignment and corruption it can handle.
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