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Characters of difficult optimization

de Chambrier et al. (2015; doi: 10.3897/zookeys.500.9360).
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Species selection and DNA data

▶ Our matrix of 28S rRNA (510 terminals) and MT-CO1 (253 terminals) contained a total of 537
terminals.

▶ 58 terminals were sequenced for the first time to generate 85 new sequences (56 for 28S and 29
for MT-CO1).

▶ This matrix represents 222 parasite species from 194 host species.

▶ Our outgroup (87 terminals) comprises Acanthobothrium (18 species), Clistobothrium (1; our
root), Matticestus (2), Pachybothrium (1), and Potamotrygonocestus (2).

▶ Our ingroup (450 terminals) contains 63 genera of proteocephalids.
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Phylogenetics workflow
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Host and biogeographical data

Ten different features (5,040 data points):

▶ Host taxonomy:
▶ class (5)
▶ order (29)
▶ family (66)
▶ genus (120)
▶ species (176)

▶ Environment and habitat:
▶ terrestrial or aquatic (2)
▶ freshwater, brackish, or saltwater (3)

▶ Locality:
▶ zoogeographical region (10)
▶ continent (7)
▶ country or river basin (42)
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What are machine learning and random forests?

Modified from Fig. 1 from Jakhar & Kaur (2020; DOI:
10.1111/ced.14029).
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Our random forest experiment
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The effect of clade perturbation over accuracy
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Perturbation

R-squared = 0.91, P-value = 9.44e-53
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Example application of random forests

a)

c)b)

Fig. 3 from Cutler et al. (2012; DOI:

10.1007/978-1-4419-9326-7 5).

Prostate cancer data comes from a prostate cancer

study (Stamey et al. 1989; Hastie et al. 2009).

a) Tree diagram.

b) A perspective plot of the fitted regression

surface.

c) Partitioning of the predictor space.

Response variable: level of prostate-specific antigen (lpsa). Predictor variables: log cancer volume (lcavol),

log prostate weight (lweight), age, log of the amount of benign prostatic hyperplasia (lbph), seminal vesicle

invasion (svi), log of capsular penetration (lcp), Gleason score (gleason), and percentage of Gleason scores 4 or

5 (pgg45).



A closer view into our random forests
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