
European Journal of Control 78 (2024) 101019

A
0
s

Contents lists available at ScienceDirect

European Journal of Control

journal homepage: www.sciencedirect.com/journal/european-journal-of-control

Revisiting reachability-driven explicit MPC for embedded control
Juraj Holaza, Peter Bakaráč, Juraj Oravec ∗

Institute of Information Engineering, Automation, and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in
Bratislava, Radlinskeho 9, Bratislava, SK812-37, Slovak Republic

A R T I C L E I N F O

Recommended by T. Parisini

Keywords:
Model predictive control
Complexity reduction
Reachability sets
Parametric optimization
Binary encoding

A B S T R A C T

The real-time implementation of the explicit MPC suffers from the evaluation of the, potentially large, lookup
table. The paper revisits the original approach and presents an efficient reachability-sets-driven-based explicit
MPC method addressing this issue by splitting the look-up table into the set of the ‘‘relevant’’ subsets.
Simultaneously, effective binary encoding is introduced to minimize the runtimes and the memory footprint.
Further acceleration is achieved by introducing the ‘‘smart’’ order of the considered critical regions. Then, the
significant real-time complexity reduction is ensured by online pruning and traversing the sorted lookup table
associated with the optimal control law evaluation. Technically, the number of critical regions to be explored
is reduced and the order is redefined to accelerate the point location problem and minimize the computational
effort. While the optimality of the control law is still preserved, the cost that we need to pay for the accelerated
point location problem lies in an additional offline computation effort and a minor increase in memory
requirements of the underlying controller. The benefits of the proposed method are demonstrated using an
extensive case study. The complexity reduction strategy was investigated on two fast-dynamic benchmark
systems and the computational burden was analyzed by implementing the designed controllers on an embedded
hardware.
1. Introduction

Model predictive control (MPC) represents an advanced control
strategy that enjoys worldwide success in both academia and indus-
try (Mayne, 2014; Morato, Normey-Rico, & Sename, 2020; Qin &
Badgwell, 2003). This popularity stems from its robustness and versatil-
ity in embedding all essential physical, economical, and environmental
restrictions of the system directly into the optimization problem while
still maximizing profit via performing predictions of the controlled sys-
tem evolution within a finite time horizon (Borrelli, 2017). One of the
main drawbacks of the MPC policy is the computational complexity of
the underlying optimization problem. Specifically, in order to maintain
stability, optimality, and constraint satisfaction, the MPC optimization
problem has to be solved at each sample instant. This criterion can be
quickly jeopardized, especially for systems with rapid sampling periods
or when aiming to implement MPC policy on low-level hardware with
strictly limited computation resources (McInerney, Constantinides, &
Kerrigan, 2018).

Explicit Model Predictive Control (EMPC) methodology introduces
parametric programming to offline pre-calculate the entire MPC opti-
mization problem, i.e., a mapping between all feasible initial conditions
and associated optimal control actions is being constructed (Bemporad,
Morari, Dua, & Pistikopoulos, 2002). It was shown that for a wide range

∗ Corresponding author.
E-mail addresses: juraj.holaza@stuba.sk (J. Holaza), peter.bakarac@stuba.sk (P. Bakaráč), juraj.oravec@stuba.sk (J. Oravec).

of MPC formulations, the explicit solution takes the form of a piece-wise
affine (PWA) control law defined over a polytopic support (Borrelli,
2017). Subsequently, online computation of optimal control actions is
then restricted only to a mere function evaluation that can be carried
out on an arbitrary control hardware without the necessity of employ-
ing any optimization solver, i.e., leading to a library-free code. This
makes EMPC a suitable candidate for a straightforward, fast, and easily
certifiable real-time optimal control strategy (Oberdieck, Diangelakis,
Nascu, Papathanasiou, Sun, Avraamidou, & Pistikopoulos, 2016).

It is known that EMPC has its shortcomings. Firstly, the offline con-
struction of the PWA control law is quite computationally exhausting,
and even though effective approaches were developed (Borrelli, Baotić,
Pekar, & Stewart, 2010; Gupta, Bhartiya, & Nataraj, 2011; Herceg,
Jones, Kvasnica, & Morari, 2015; Mitze, Kvasnica, & Mönnigmann,
2023; Oberdieck, Diangelakis, & Pistikopoulos, 2017), the applicability
of EMPC methodology is still restricted only to small or moderate-
size problems. Secondly, the complexity of the resulting explicit PWA
control law, usually expressed in the number of critical regions defin-
ing the polytopic support of the PWA function, grows exponentially
with the problem size. To keep the memory footprint of an explicit
solution still trackable, various memory reduction techniques were
proposed. Generally, they can be split into methods that maintain
vailable online 17 May 2024
947-3580/© 2024 European Control Association. Published by Elsevier Ltd. All r
imilar technologies.

https://doi.org/10.1016/j.ejcon.2024.101019
Received 15 December 2023; Received in revised form 19 March 2024; Accepted 1
ights are reserved, including those for text and data mining, AI training, and

1 May 2024

https://www.sciencedirect.com/journal/european-journal-of-control
https://www.sciencedirect.com/journal/european-journal-of-control
mailto:juraj.holaza@stuba.sk
mailto:peter.bakarac@stuba.sk
mailto:juraj.oravec@stuba.sk
https://doi.org/10.1016/j.ejcon.2024.101019
https://doi.org/10.1016/j.ejcon.2024.101019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2024.101019&domain=pdf

European Journal of Control 78 (2024) 101019J. Holaza et al.
optimality (Geyer, Torrisi, & Morari, 2008; Holaza, 2012; Kvasnica &
Fikar, 2010, 2012; Mitze et al., 2023) or those that impose a sub-
optimality (Bakaráč, Holaza, Klaučo, Kalúz, Löfberg, & Kvasnica, 2018;
Holaza, Takács, Kvasnica, Di Cairano, 2015a; Jones & Morari, 2010;
Kvasnica, Löfberg, & Fikar, 2011), which is usually being minimized.
The third drawback of EMPC policies is the online (real-time) evalua-
tion that is usually restricted to identifying the optimal affine piece, of
the PWA function, defined over a critical region containing the current
state measurement. This set-membership task is also referred to as the
point location problem and it is of paramount importance to mitigate its
runtime to meet the hardware computation limitations and secondly
to minimize the energy consumption of the control operation in case
of the battery supplied control units, such as unmanned aerial vehicles
(UAVs)/drones, etc. Yan, Zhang, Chen, and Shi (2023). The goal of this
paper is to address this third issue.

The point location problem is an important task that attracted a
lot of attention from numerous researchers and one can find various
advanced acceleration techniques in the literature. The most common
approach is the sequential search algorithm that traverses through criti-
cal regions of the polytopic support until a critical region containing
the current state is found. Then, the associated affine piece of the
control law is evaluated to obtain the optimal control action that is
applied to the controlled system. This approach was improved by,
e.g., building binary trees (Bayat, Johansen, & Jalali, 2012; Fuchs,
Jones, & Morari, 2010; Johansen & Grancharova, 2003; Tøndel, Jo-
hansen, & Bemporad, 2003; Zhang & Xiu, 2018), graph traversal meth-
ods (Herceg, Mariéthoz, & Morari, 2013; Jafargholi, Peyrl, Zanarini,
Herceg, & Mariethoz, 2014; Wang, Jones, & Maciejowski, 2007), eval-
uating a value function (Baotić, Borrelli, Bemporad, & Morari, 2008;
Borrelli, Baotić, Bemporad, & Morari, 2001; Nguyen, 2015), creating
a bounded box for each critical region (Bemporad, Filippi, & Tor-
risi, 2004; Christophersen, Kvasnica, Jones, & Morari, 2007), parallel
computation (Oravec, Jiang, Houska, & Kvasnica, 2017), lattice piece-
wise affine representation (Wen, Ma, & Ydstie, 2009; Xu, 2021), hash
tables (Bayat, Johansen, & Jalali, 2011; Changizi, Salahshoor, & Siahi,
2023; Zhang, Xiu, Xie, & Hu, 2016), utilizing a low precision arith-
metic (Suardi, Longo, Kerrigan, & Constantinides, 2016), and, last
but not least, via sorting indices of critical regions (Holaza, Oravec,
Kvasnica, Dyrska, Mönnigmann, & Fikar, 2020). Needless to say, the
point location problem is generally proportional to the number of
regions of the PWA control law. Hence, all aforementioned memory
reduction techniques can be also used to significantly improve the
online evaluation time of explicit MPC policies (even on top of online
acceleration techniques).

From the applicability point of view, all point location problem
approaches have their advantages and limitations. Generally, the se-
quential search algorithm is the slowest method in the worst-case
scenario, but this method can be efficiently applied to any explicit
controller. On the other hand, binary search tree schemes (Bayat et al.,
2012; Fuchs et al., 2010; Johansen & Grancharova, 2003; Tøndel
et al., 2003; Zhang & Xiu, 2018) represent one of the fastest and most
memory-efficient approaches. However, deriving well-balanced trees
for higher-dimensional controllers is usually a hardly tractable task.
Next, the value function evaluation methods (Baotić et al., 2008; Bor-
relli et al., 2001; Nguyen, 2015) exhibit a memory-efficient structure
with a fixed online evaluation time, as the same number of piece-
wise affine (PWA) functions need to be considered at each sample
instant. On the contrary, online computation of the sorted sequential
search algorithm in Holaza et al. (2020) converges with time to explo-
ration only a single region, hence the computational effort is minimal
around steady operation. It should be emphasized that some methods
can be used in conjunction with other approaches to unlock even
further efficiency. For example, the sequential search can be enhanced
with the region sorting (Holaza et al., 2020), bounded box evalua-
tion (Christophersen et al., 2007), and two-level structure (Zhang et al.,
2

2016) techniques simultaneously. Likewise, the hash table (Bayat et al.,
2011) and the binary search tree (Tøndel et al., 2003) were merged
in Zhang and Xiu (2018) to ease the offline computation burden, and
still one can employ (Changizi et al., 2023), for example, for further
complexity reduction. Needless to say, all methods differ in how they
trade the online evaluation effort of the explicit controller with offline
computation, memory requirements, and, finally, optimality of the
control actions. These methods can be efficient for certain problems but
prohibitive for others, i.e., these methods can be compatible with other
approaches, or they can have a specific structure that does not allow
the application of other techniques. therefore, it is based on the specific
expert knowledge, or the advanced engineer heuristics, to properly
choose the appropriate point location approaches that suit the specific
hardware/plant needs. The main goal of this paper is to show that
the widely-used sequential search algorithm can also be accelerated by
exploiting the reachability analyses and that the resulting method can
be built on top of other previously mentioned techniques.

Reachability analysis (Borrelli, 2017; Mayne, Seron, & Raković,
2005) represents a powerful tool that is utilized in various techniques,
e.g., to verify properties of an MPC policies (Bemporad, Torrisi, &
Morari, 2000; Holaza, Takács, Kvasnica, & Di Cairano, 2015b). In Kvas-
nica, Bakaráč, and Klaučo (2019), less complex EMPC feedback laws
are designed using the reachability analysis by initial reduction of the
admissible set of the initial conditions of the system states. Even though
the construction of exact reachable sets is generally computationally
intensive for higher dimensions (Bird, Jain, Pangborn, & Koeln, 2022;
Stursberg & Krogh, 2003) a workaround can be found by employing
their approximate counterparts (Althoff, Frehse, & Girard, 2021; Be-
mporad et al., 2004), which are easier to construct, but lead to more
conservative results. Reachability, in the context of the point location
problem, was introduced in Spjøtvold, Raković, Tøndel, and Johansen
(2006) where a list of indices of all reachable regions was computed
for each region within the polyhedral domain. It was pointed out that
this method can dramatically reduce the online computation of optimal
control actions as the point location problem needs to explore only a
small subset of possible candidates. The increasing computation burden
of reachable sets was addressed in Sui, Feng, and Hovd (2008). Specif-
ically, it was shown here that the construction of an exact reachable
set can be reduced to perform only the reachability of a point and
determine its application boundary. By employing this method one
can easily reduce the offline computation burden, hence increasing the
applicability of the reachability technique for a wider range of systems.
The problem, however, is that due to the conservative selection of
both the reachable point and its application domain, the final list of
possible candidates tends to be larger compared to the list given by
the exact approach. Motivated by these results, we aim to propose a
novel technique that can be used on top of any of these two mentioned
methods and can even further accelerate the point location problem
and decrease the memory footprint of the constructed reachable list.

In this paper, we revisit the original work (Spjøtvold et al., 2006)
that exploits information from the reachability analysis to reduce the
complexity of the point location problem. While the proposed results
are arguably not unexpected, to the best authors’ knowledge, the
presented results, formulated remarks, and detailed analysis are lacking
in the existing literature. Specifically, for each critical region of the
polytopic support, one can offline determine indices of all one-step
forward reachable regions and store them in a list. First, compared
to the original work (Spjøtvold et al., 2006), this paper formulates
several rigorous theoretical contributions and provides much deeper
insight into the proposed acceleration method. Next, we directly extend
the results of Spjøtvold et al. (2006) by pushing the original idea
towards its memory-efficient implementation and evaluation on the
embedded hardware using the binary representation of the list. Finally,
we introduce significant acceleration by the novel sorted list, while
preserving the optimality of the closed-loop control. We point out that
as the sorted list is constructed offline, this additional acceleration layer

does not negatively affect either the average online runtimes or the

European Journal of Control 78 (2024) 101019J. Holaza et al.

t

D
e
o
A
n

2

i

𝑥

w
i
s
s

𝑥

w

A

t

p
a

w
c
s
1

worst-case evaluation. Using the experimentally collected data based
on the laboratory implementation on the embedded hardware, we show
that such a sorted list accelerates the online evaluation by interesting
factors.

The rest of the paper has the following structure. Section 2 for-
mulates the problem of real-time evaluation of optimal control action.
Section 3 introduces the reachability sets-driven method speeding up
the real-time evaluation of optimal control action (Section 3.1) and its
robustification subject to the impact of the disturbances (Section 3.2).
Implementation details are discussed in Section 4. Section 5 presents
the further novel acceleration method based on the reachability anal-
ysis. The benefits of the proposed methods are analyzed in Section 6
using an illustrative benchmark (Section 6.1) and two benchmark
systems with fast-dynamics (Sections 6.2 and 6.3), followed by the main
conclusions summarized in Section 7.

Notation

Throughout the paper, we use a conventional notation. Denote R𝑛

and R𝑛×𝑚 the set of real-valued 𝑛-dimensional vectors and 𝑛×𝑚 matrices,
respectively.
Denote N𝑛, N𝑛

+, and N𝑛
++ the sets of arbitrary, non-negative, and positive

integer-valued 𝑛-dimensional vectors, respectively.
For vector 𝑥 ∈ R𝑛x , square matrix 𝑄 ∈ R𝑛x×𝑛x , and 𝑝 ∈ {1, 2,∞},
he considered 𝑝-norms have, respectively, the form: ‖𝑥𝑘‖1𝑄 ≜

∑

|𝑄𝑥|,
‖𝑥𝑘‖2𝑄 ≜ 𝑥⊤𝑄𝑥, ‖𝑥‖∞𝑄 ≜ max |𝑄𝑥|, where |𝑄𝑥| ∈ R𝑛x is a vector.

enote | ⋅ | to be a cardinality of vector 𝑤 ∈ R𝑛, i.e., the number of its
lements 𝑛, diag(⋅) to be a diagonal matrix, and 𝟏𝑛 to represent a vector
f ones of size 𝑛.

polytope is a closed and bounded convex set defined by a finite
umber of half-spaces.

. Problem statement

Assume a state-space representation of a discretized linear time-
nvariant (LTI) system in the form

(𝑡 + 𝑇s) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), (1)

here 𝑡 ∈ R is the time variable, 𝑇s is the sampling time, 𝑥(𝑡) ∈ R𝑛x

s the state vector, 𝑢(𝑡) ∈ R𝑛u is the input vector, 𝐴 ∈ R𝑛x×𝑛x is system
tate matrix, 𝐵 ∈ R𝑛x×𝑛u is input matrix. Assume that the system (1) is
ubjected to

(𝑡) ∈  , 𝑢(𝑡) ∈  , (2)

here  ⊆ R𝑛x and  ⊆ R𝑛u .

ssumption 2.1. Assume, the matrix pair (𝐴,𝐵) is stabilizable and  ,
are non-empty compact full-dimensional polyhedral sets containing

he origin in their strict interiors.

To control the system in (1) asymptotically to the origin, while
roviding recursive feasibility of the constraints in (2), one constructs
constrained finite-time optimal control (CFTOC) problem as

min
𝑢(𝑘), 𝑥(𝑘+1),
𝑘=0,…,𝑁−1

‖𝑥𝑁‖

𝑝
𝑄N

+
𝑁−1
∑

𝑘=0

(

‖𝑥𝑘‖
𝑝
𝑄x

+ ‖𝑢𝑘‖
𝑝
𝑄u

)

(3a)

s.t. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (3b)

𝑥(𝑘) ∈  , 𝑢(𝑘) ∈  , (3c)

𝑥(𝑁) ∈ N, (3d)

𝑥(0) = 𝑥(𝑡), (3e)

here 𝑝 ∈ {1, 2,∞} in (3a) denotes 1-, 2-, or ∞-norm of the minimized
ost function. The CFTOC problem with model, state, and input con-
traints in (3b)−(3c) are enforced for all prediction steps 𝑘 = 0,… , 𝑁 −
3

. Denote 𝑁 ∈ N++ as the prediction horizon, 𝑄N ≻ 0, 𝑄u ≻ 0, and
Algorithm 1 Sequential search point location problem.
1: Inputs: 𝑥(𝑡), list of indices , feedback law 𝜅(𝑥(𝑡))
2: Output: the optimal control action 𝑢⋆(𝑡)
3: for 𝑖 ∈  do
4: if 𝑥(𝑡) ∈ 𝑖 then
5: 𝑖⋆ ← 𝑖
6: break
7: end if
8: end for
9: Execute 𝑢⋆(𝑡) ← 𝜅(𝑥(𝑡)) for 𝑖⋆ per (4)

𝑄x ⪰ 0 to be weighting matrices of appropriate dimensions. Moreover,
for the set of feasible initial conditions  , define the terminal set N ⊆
 ⊆  ⊂ R𝑛x as a polytopic positive invariant set containing the origin
in its strict interior. If 𝑝 = 2 in (3a), then the CFTOC problem (3) is
formulated in the form of quadratic programming (QP), otherwise, for
𝑝 ∈ {1,∞} in (3a), then CFTOC problem (3) is formulated in the form
of linear programming (LP). The resulting CFTOC problem is solved in
each control step for a particular feasible state measurement (estimate)
𝑥(𝑡) ∈  , via various state-of-the-art solvers, yielding a sequence of
optimal control inputs 𝑈⋆ = [𝑢⋆(0)⊤,… , 𝑢⋆(𝑁 − 1)⊤]⊤. By applying the
receding horizon policy, only the first input of this sequence 𝑢(𝑡) = 𝑢⋆(0)
is applied to the system at the given time step 𝑡.

Lemma 2.1 (Borrelli, Bemporad, & Morari, 2017). Parametric solution
to (3) is a continuous piecewise affine (PWA) function 𝑢⋆(0) = 𝜅(𝑥(𝑡))
mapping vector of initial states 𝑥(𝑡) onto the vector of optimal control action
𝜅 ∶  ↦ R𝑛u . This function is given as

𝜅(𝑥(𝑡)) ≜ 𝐹𝑖𝑥(𝑡) + 𝑔𝑖 if 𝑥(𝑡) ∈ 𝑖, (4)

with 𝐹𝑖 ∈ R𝑛u×𝑛x , 𝑔𝑖 ∈ R𝑛u , ∀𝑖 ∈ {1, 2,… ,𝑀}.
The polytopic partition  satisfies following properties:

(a) ∪𝑀
𝑖=1𝑖 =  ,

(b)  = {𝑥(𝑡) ∣ ∃𝑢 ∶ (3c) holds},
(c) int(𝑖) ∩ int(𝑗) = ∅, ∀𝑖 ≠ 𝑗,

where int(𝑖) denotes interior of the 𝑖th critical region.

The real-time evaluation of 𝜅(𝑥(𝑡)) in (4) is done in two steps. Firstly,
we need to determine an index 𝑖⋆ ∈  = {1,… ,𝑀} for which 𝑥(𝑡) ∈ 𝑖⋆

holds. Without loss of generality, we determine 𝑖⋆ considering the
commonly used sequential search algorithm to demonstrate the main
idea of the paper, see Algorithm 1. Note, the algorithms for binary
search trees can be adopted in an analogous way.

In the second step, we compute the affine expression 𝜅(𝑥(𝑡)) =
𝐹𝑖⋆𝑥(𝑡) + 𝑔𝑖⋆ as in (4). Since the second step involves only the evalu-
ation of a simple affine expression, the main time-demanding effort is
required in the first step, especially for large 𝑀 ≫ 103 and/or high
dimension of the parametric space 𝑛x.

Therefore, this paper investigates the possibilities to accelerate the
point location problem in the Algorithm 1, i.e., to decrease the number
of explored critical regions, by providing a reduced, possibly sorted,
and efficiently stored list of indices.

3. Reachability sets driven explicit MPC

Even with an explicit formulation (4) in hand, i.e., a set of affine
expressions defined over a feasible polytopic partition  containing
𝑀 critical regions 𝑖, the online evaluation can be still troublesome.
Specifically, in the worst-case, the sequential search Algorithm 1 tra-
verses through the list of all possible indices  = {1,… ,𝑀} until
the active index 𝑖⋆ ≤ 𝑀 is found for which 𝑥(𝑡) ∈ 𝑖⋆ . Note, the
point location problem is significantly accelerated if the total number of
considered critical regions 𝑀 is reduced or if the index  is rearranged.

European Journal of Control 78 (2024) 101019J. Holaza et al.

a
e
a
r
𝑖
f
a

R
t
b
M
b
S
C

3

s
e
r

R

a
a
i

i
t
M
t
f

d
s

𝑥

N
r
F
𝑥
t

R

A
s

D
{
o
s

s
t
i
a
R

f

i
S
𝑗
r

1
1
1
1


b
a
i



In this paper, we aim to target the second option, i.e., the basic idea is
to replace the  with a new list of indices ̃ that exploits information of

reachability analysis. This section revisits the original work (Spjøtvold
t al., 2006) and formulates several rigorous theoretical contributions
nd provides deeper insight into the acceleration method based on the
eachability analysis. It will be shown that ̃ accelerates the search for
⋆ by an interesting factor,1 however at the cost of an increased memory
ootprint. This drawback is further addressed in Section 4, where an
pproach on how to efficiently store the structure of ̃ is presented.

emark 3.1 (Application Range). The proposed method is not limited to
he MPC formulation in (3) as the control law in (4) can be formulated
y using a wide variety of MPC configurations including robust/tube
PCs; a reference tracking problem, trajectory preview in (3a); hy-

rid/PWA system model in (3b); slew-rate constraints in (3c), etc.
ee Borrelli et al. (2017), and references therein, for the particular
FTOC problem formulations.

.1. Reachability analysis of MPC control laws

In this section, we show how the reachability analysis enables a
ignificant reduction of the point location problem associated with the
xecution of (4). For a given LTI system in (1), the one-step forward
eachable set of  is defined as in Borrelli et al. (2017, Def. 10.4.):

each() = {𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) |∃𝑥(𝑡) ∈  ,∃𝑢(𝑡) ∈  }. (5)

Technically, the reachability set represents all states from  that
re mapped into the set Reach() under the map of system in (1) by
pplying any feasible control input from  . If Assumption 2.1 holds,
.e., if  and  are polytopes, then also the Reach() is a polytope.

Consider that at the time step (𝑡+𝑇s) we need to evaluate 𝜅(𝑥(𝑡+𝑇s))
n (4), hence to search for the active index 𝑖⋆(𝑡+𝑇s) per Algorithm 1 and
o calculate the associated affine expression 𝐹𝑖⋆(𝑡+𝑇s)𝑥(𝑡 + 𝑇s) + 𝑔𝑖⋆(𝑡+𝑇s).
oreover, assume that we have stored the active index at the previous

ime frame, i.e., 𝑖⋆(𝑡), for which 𝑥(𝑡) ∈ 𝑖⋆(𝑡) was satisfied, and the
eedback law 𝑢⋆(𝑡) = 𝐹𝑖⋆(𝑡)𝑥(𝑡) + 𝑔𝑖⋆(𝑡) was applied to the system.

By plugging the optimal control law 𝑢⋆(𝑡) into the nominal model
ynamics 𝐴𝑥(𝑡)+𝐵𝑢⋆(𝑡) we obtain an autonomous representation of the
ystem into the form:

(𝑡 + 𝑇s) = (𝐴 + 𝐵𝐹𝑖⋆(𝑡))𝑥(𝑡) + 𝐵𝑔𝑖⋆(𝑡). (6)

ext, we know that our initial state conditions are restricted only to the
egion 𝑖⋆(𝑡), we have that 𝑥(𝑡) ∈  can be replaced by 𝑥(𝑡) ∈ 𝑖⋆(𝑡).
inally, as the control law 𝑢⋆(𝑡) was computed such that 𝑢⋆(𝑡) ∈  if
(𝑡) ∈ 𝑖⋆(𝑡), then the input constraint 𝑢(𝑡) ∈  can be omitted. With
his information in hand, we can restate the reachability set in (5) as

each() = {(𝐴 + 𝐵𝐹𝑖⋆(𝑡))𝑥(𝑡) + 𝐵𝑔𝑖⋆(𝑡) |∃𝑥(𝑡) ∈ 𝑖⋆(𝑡)}. (7)

s a consequence, the construction of reachable sets is formulated as a
imple affine mapping of a polytope 𝑖⋆(𝑡).

efinition 3.1 (List of Reachable Regions). Let ̃𝑖 ⊆  ⊂ N𝑀
++, ∀𝑖 ∈

1, 2,… ,𝑀} be a list of positive integers corresponding to the indices
f the critical regions 𝑗 reachable from the critical region 𝑖 as in (5),
uch that Reach(𝑖) ⊆ ∪𝑗∈̃𝑖

𝑗 holds.

The set of reachable critical regions ̃𝑖, ∀𝑖 = {1, 2,… ,𝑀} are con-
tructed by the reachability analysis of an explicit MPC policy according
o Algorithm 2. Specifically, consider an explicit feedback policy 𝜅(⋅) as
n (4) that is defined over a polytopic partition  = ∪𝑀

𝑖=1𝑖. Let us now
ssume a fixed critical region 𝑖 for which we compute a reachable set
each(𝑖) per (5). This way we have found a set of all states where

1 The acceleration rate is problem-dependent and its estimation is under
urther research.
4

A

the 𝜅(⋅) will drive the system (1) within one sample period 𝑇s. Now
we aim to determine which critical regions of 𝜅(⋅) have a non-empty
intersection with the set Reach(𝑖). To do this, we need to traverse
through the entire partition of 𝜅(⋅) and find non-empty intersections of
the reachable set and all critical regions 𝑗 with 𝑗 ∈ {1,… ,𝑀}.

Information if the intersection Reach(𝑖) ∩𝑗 is (not) an empty set
s stored in the list ̃𝑖, at its 𝑘th position, i.e., assigned into ̃𝑖,𝑘, see
tep 9 in Algorithm 2. As the consequence, the presence of some index
∈ {1, 2,… ,𝑀} in the list ̃𝑖 confirms that the critical region 𝑗 is

eachable from 𝑖 within one sample step 𝑇s, under the map (1), and
by using a control action from  . On the other hand, if some index
𝑙 ∈ {1, 2,… ,𝑀} is not included in the list ̃𝑖, then 𝑙 is not reachable
from 𝑖 per (5). Finally, by iterating through all critical regions 𝑖
with 𝑖 ∈ {1,… ,𝑀} we construct the set of 𝑀 lists ̃𝑖 that concludes
our reachability analysis.

Algorithm 2 Reachability analysis of 𝜅(⋅) (Spjøtvold et al., 2006).

1: Inputs: polyhedral partition  = ∪𝑀
𝑖=1𝑖 of 𝜅(⋅), list of indices 

2: Output: 𝑀 lists of reachable critical regions ̃𝑖, ∀𝑖 = {1, 2,… ,𝑀}
3: for 𝑖 ∈  do
4: define 𝑘 ← 1
5: define ̃𝑖 ← ∅
6: compute Reach(𝑖) per (7)
7: for 𝑗 ∈ {1,… ,𝑀} do
8: if Reach(𝑖) ∩𝑗 ≠ ∅ then
9: update ̃𝑖,𝑘 ← 𝑗
0: update 𝑘 ← 𝑘 + 1
1: end if
2: end for
3: end for

Remark 3.2 (Lower Dimensional Intersections). From the implementation
point of view of the Algorithm 2, the degeneracy of a polytope has to be
addressed. Generally, Reach(𝑖) ∩ 𝑗 can return a lower dimensional
polytope that represents e.g. a facet or a vertex of 𝑗 . To stress this
issue, let us consider Reach(𝑖) = 𝑘. The Algorithm 2 would include
to the respective set ̃𝑖 not only the index 𝑘, but also all indices of its
neighboring regions. This is caused by the definition of explicit MPC
policy in (4) as each region of  is a polytope, i.e., a closed set. Needless
to say, these lower-dimensional intersected polytopes can be omitted
without loss of generality.

Remark 3.3 (Lower Dimensional Reachable Sets). If the reachable set
Reach(𝑖) is a degenerate lower dimensional polytope, then we have
to consider all intersected polytopes, i.e. even the degenerate ones.
The argument behind this is straightforward. If Reach(𝑖) is a lower
dimensional polytope then also the intersection with the polytopic
partition  returns only a set of lower dimensional polytopes. Since
these intersected polytopes are not included in other full-dimensional
polytopes we need to store them.

Lemma 3.4 (Stability and Recursive Feasibility). Given system in (1),
CFTOC problem in (3) leading to the optimal control law in (4), 𝑥(𝑡−𝑇s) ∈

𝑖, and ̃𝑖 according Definition 3.1. Replacing the full set of indices 
y the rearranged set of indices ̃𝑖 into evaluating optimal control law
ccording to Algorithm 1 preserves the recursive feasibility w.r.t. constraints
n (2). Moreover, if the solution of the CFTOC problem in (3) ensures the
asymptotic stability of the system in (1) for the set of indices , then the
asymptotic stability is preserved for the rearranged set of indices ̃ as well.

Proof. First, we prove the recursive feasibility. It follows from (5) that
for any 𝑖 ⊂  and 𝑥(𝑡− 𝑇s) ∈ 𝑖 leads to (𝐴𝑥(𝑡) +𝐵𝑢(𝑡)) ∈ Reach(𝑖) ⊆

. Then, by Definition 3.1, ̃𝑖 ⊆  is such that ∪𝑗∈̃𝑖
𝑗 ⊇ Reach(𝑖).
s the consequence, (𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)) ∈ Reach(𝑖) ⇒ (𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)) ∈

European Journal of Control 78 (2024) 101019J. Holaza et al.

o
a

C
q
i
o
𝜅

P
e
b

l
t
m
o
t

a
w

A
b
𝑀
v
i

𝑀

t
r
n
c

i

C



h
n
f

P
o
s
t
A
𝑖
r
c

R
a
A
c

{
3
l
t
p
s
o
i

1

w
t

∪𝑗∈̃𝑖
𝑗 for any 𝑥(𝑡) ∈  , and for ∀𝑢(𝑡) ∈  . Next, the proof of the

asymptotic stability straightforwardly follows from the formulation of
CFTOC in (3). If the feasible stabilizable solution of (3) exists for any
𝑥(𝑡) ∈  then the asymptotic stability is preserved for all upcoming
states (𝐴𝑥(𝑡)+𝐵𝑢(𝑡)) as the consequence of the recursive feasibility. □

Under a mild assumption that the PWA control law is continu-
us (see Lemma 2.1), we would like to emphasize that the proposed
cceleration method does not lead to any performance loss.

orollary 3.4.1 (Preserved Optimality of the Control Law). As the conse-
uence of Lemma 3.4, the method proposed in Algorithm 3 returns the same
ndex 𝑖 of the PWA function in (4) as Algorithm 1. Hence, the evaluation
f this specific affine control law returns the same optimal control action
(𝑥(𝑡)) in (4) of CFTOC problem in (3).

roof. The proof of Corollary 3.4.1 straightforward follows from the
quivalence of the solutions of the point location problem evaluated
y Algorithms 1, 3, see Spjøtvold et al. (2006). □

Moreover, as the same optimal control action is found, the closed-
oop profiles are also the same by design. The only difference between
he trajectories can occur due to the presence of the random measure-
ent noise. As a consequence, the performance criteria (e.g., the sum-

f-squared criteria) may differ, but without a reasonable connection to
he performance of the point location problem.

In what follows, we aim to discuss the average and the worst-case
cceleration of the point location problem shown in the Algorithm 1
hen the list of indices is being swapped  ← ̃𝑖.

ssumption 3.1. Assume  ∈ N𝑀
++,  = {1,… ,𝑀}, and let ̃𝑖 ∈ N𝐿𝑖

++
e evaluated according to Definition 3.1 for ∀𝑖 = {1, 2,… ,𝑀}. Let
∈ N++ and 𝐿𝑖 ∈ N++, for ∀𝑖 = {1, 2,… ,𝑀} be the cardinalities of

ectors  ∈ N𝑀
++ and ̃𝑖 ∈ N𝐿𝑖

++, respectively. Assume that the following
nequality holds

> 𝐿𝑖, ∀𝑖 = {1, 2,… ,𝑀}. (8)

Although Assumption 3.1 seems to be prohibitive, to the best au-
hors’ knowledge, there were no observed such formulations of the
elevant CFTOC problems that do not satisfy Assumption 3.1. If (8) does
ot hold for any 𝑖 ∈ {1, 2,… ,𝑀}, i.e., in the special case when each
ritical region 𝑗 is reachable from every critical region 𝑖 for ∀𝑖 =
{1, 2,… ,𝑀}, then the proposed acceleration technique is completely
neffective.

orollary 3.4.2 (Worst-case Runtime). Given LTI system in (1), CFTOC
in (3) leading to the optimal control law in (4), 𝑥(𝑡 − 𝑇s) ∈ 𝑖, and
𝑖̃ according Definition 3.1. Given the full set of indices  and the 𝑀
rearranged sets of indices ̃𝑖 according to Definition 3.1. If Assumption 3.1
olds, then replacing  by ̃ in Algorithm 1 reduces the worst-case runtime
ecessary to evaluate optimal control action 𝑢⋆0 for all control steps, except
or the initialization of the closed-loop control.

roof. If Assumption 3.1 holds, then 𝑀 and 𝐿𝑖 are the cardinalities
f  and ̃𝑖 for ∀𝑖 ∈ {1, 2,… ,𝑀}, respectively. It follows from As-
umption 3.1 that 𝑐 > 𝑐𝑖 holds for ∀𝑖 ∈ {1, 2,… ,𝑀}. Therefore,
he maximum (i.e., the worst-case) number of iterations that needs
lgorithm 1 to execute Step 3 for 𝑖 ∈  is always greater than for
∈ ̃. As a consequence, the reduced number of iterations directly

educes the total number of the evaluated flops leading to the reduced
orresponding runtime that concludes the proof. □

emark 3.5 (Average Runtime). By Corollary 3.4.2, the average runtime
ssociated with solving the point location problem for 𝑥(𝑡) ∈  in
lgorithm 1 is also reduced due to the reduced number of explored
5

ritical regions 𝑖 in each control step.
As the consequence of Lemma 3.4 considered for ̃𝑖, for ∀𝑖 =
1, 2,… ,𝑀}, the Algorithm 1 is adopted into the form of Algorithm

(Spjøtvold et al., 2006). Note, if Assumption 3.1 holds, the only
imitation to reduce the worst-case runtime is the necessity to initialize
he first iteration of the point location problem w.r.t. the full explicit
artition  , i.e., the so-called warm-start problem of 𝑥(𝑡) ∈  = ∪𝑀

𝑖=1𝑖,
ee Step 3 in Algorithm 3. On the other hand, each subsequent iteration
perates with the reduced set of indices ̃𝑖⋆ that contains only 𝐿𝑖 < 𝑀
ndices of reachable critical regions.

Algorithm 3 Reachability sets driven sequential search (Spjøtvold
et al., 2006).
1: Inputs: 𝑥(𝑡), list of indices , 𝑀 lists of indices ̃𝑗 for ∀𝑗 =

{1, 2,… ,𝑀}, feedback law 𝜅(𝑥(𝑡))
2: Output: the optimal control action 𝑢⋆(𝑡)
3: initialize ̃𝑖⋆ ← 
4: for 𝑖 ∈ ̃𝑖⋆ do
5: if 𝑥(𝑡) ∈ 𝑖 then
6: update 𝑖⋆ ← 𝑖
7: break
8: end if
9: end for
0: execute 𝑢⋆(𝑡) ← 𝜅(𝑥(𝑡)) for 𝑖⋆ per (4)

Remark 3.6. In general, the opened-loop sequence of the optimal
control actions computed as the solution of CFTOC in (3) differs from
the sequence implemented in the closed-loop control, due to the pres-
ence of the terminal constraint in (3d) and/or insufficient length of
the prediction horizon 𝑁 . Nevertheless, the proposed approach is not
affected by this discrepancy, as the receding horizon control policy
implements a 1-step update that is equivalent for both sequences. As
a consequence, a map of reachable critical regions ̃𝑖 according to
Definition 3.1 suffice.

3.2. Robustification of reachability analysis

It is well known that the real-time implementation is subjected
to a plant-model mismatch and/or bounded external disturbances/
perturbations. It is a common practice to address this issue by introduc-
ing the additive disturbance into the system model in (1), see Spjøtvold
et al. (2006). This results in forming an uncertain LTI system given by:

𝑥(𝑡 + 𝑇s) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑑(𝑡), (9)

here 𝐸 ∈ R𝑛x×𝑛d is disturbance matrix and 𝑑 ∈  ⊂ R𝑛d is
he disturbance vector for a given non-empty polytope  containing

origin in its strict interior. If the impact of the uncertain parameters
is non-negligible, then the robust explicit MPC methods should be
called, e.g., (Bemporad, Borrelli, & Morari, 2003), etc. Although the
robust MPC design introduces some conservativeness into the control
law, the industrial implementation may benefit from both, guaranteed
performance subject to the disturbances, and reduced complexity of the
explicit partition (multiparametric solution), see Ramirez and Camacho
(2006). It is a well-known consequence, that the robust explicit MPC
design increases the complexity of the construction, as there is an
increased number of constraints to be considered, but, on the other
hand, the final solution has less critical regions as the consequence of
the reduced degree of freedom enforced by considering the impact of
disturbances. The design of the uncertainty set  follows the same rules
as the robust MPC design, i.e., the controller has robustness guarantees
if only if the maximum disturbance is within the considered set .

In the context of the point location problem, we can include the
impact of uncertainness, restricted via the set , by considering the
robust one-step forward a reachable set of  defined as (Borrelli et al.,
2017, Def. 10.17):

European Journal of Control 78 (2024) 101019J. Holaza et al.

f
a
R

t

Reach( ,) = {𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑑(𝑡) |∃𝑥(𝑡) ∈  ,

∃𝑢(𝑡) ∈  ,∃𝑑(𝑡) ∈ }.
(10)

Thus, Reach( ,) denotes the set of all states that the system (9)
can reach within one time step 𝑇s when starting from  , applying any
possible control actions from  , and taking into account all possible
additive disturbances from . If all sets  ,  , and  are polytopes, then
also the final one-step forward reachable set Reach() is a polytope.

With the same arguments, as we have used to derive the specific
ormulation of the nominal reachable sets (7), we can also restate (10)
s
each( ,) = {(𝐴 + 𝐵𝐹𝑖⋆(𝑡))𝑥(𝑡) + 𝐸𝑑(𝑡) + 𝐵𝑔𝑖⋆(𝑡) | 𝑥(𝑡) ∈ 𝑖⋆(𝑡),

∃𝑑(𝑡) ∈ }.
(11)

what also boils down to the affine map of the polytope 𝑖⋆(𝑡) above
which the Minkowski sum operation is applied due to the additive
disturbances 𝑑(𝑡) ∈ .

Remark 3.7 (Parametric Uncertainty). Note that the resulting one-
step reachable set does not need to be always convex, e.g., when a
parametric uncertainty is introduced in (9). This problem can be then
addressed by a convex approximation, see Kvasnica, Takács, Holaza,
and Ingole (2015).

Next, an internal robustification layer of the proposed method is
introduced by replacing the original non-robust set of indices ̃𝑖, for
∀𝑖 = {1, 2,… ,𝑀} by its robustified alternative ̄𝑖, for ∀𝑖 = {1, 2,… ,𝑀}
constructed w.r.t. the robust reachable sets per (10).

Definition 3.2 (List of Robust Reachable Regions). Let ̄𝑖 ⊆  ⊂ N𝑀
++,

∀𝑖 ∈ {1, 2… ,𝑀} be a list of positive integers corresponding to the
indices of the critical regions 𝑗 robustly reachable from the critical
region 𝑖 as in (10), such that Reach(𝑖,) ⊆ ∪𝑗∈̄𝑗 holds.

Note, the robustified 𝑀 sets of indices ̄𝑖, for ∀𝑖 ∈ {1, 2,… ,𝑀} is
evaluated by Algorithm 2 for given  by replacing the original Step 5
with the following Step:

5 ∶ compute Reach(𝑖,) per (11)

Then, the Algorithm 3 is simply adopted to the robustified reachability
analysis by replacing the input set of indices ̃𝑖 ← ̄𝑖, for ∀𝑖 =
{1, 2,… ,𝑀} (Spjøtvold et al., 2006).

We would like to point out that even the unexpected disturbance
does not lead to the failure of the proposed point location problem
acceleration method—because, if the reachability set does not include
the current system states then the rest of the partition is systematically
explored.

4. Binary encoding of the reachability analysis

In the previous Section 3, we have discussed how to construct
integer-valued lists of reachable regions ̃ and ̄ per (5) and (10),
respectively. In this section, we propose an alternative option for how
one can encode the reachability analysis into a compact and memory-
efficient binary matrix 𝑇 . Obviously, this equivalent reformulation
leads to the same properties of the original control approach, such as
the closed-loop system stability, constraint satisfaction, and recursive
feasibility.

Consider a square binary matrix 𝑇 ∈ {0, 1}𝑀×𝑀 of a fixed size 𝑀 ,
where its columns denote critical regions 𝑗 for 𝑗 ∈ {1,… ,𝑀} that
are reachable from the critical region 𝑖. Analogously, 𝑖 ∈ {1,… ,𝑀}
denotes the row of the matrix 𝑇 . The construction procedure of this
binary reachability matrix 𝑇 is summarized in Algorithm 4.

Information if the intersection Reach(𝑖) ∩𝑗 is (not) an empty set
is stored in the binary matrix 𝑇 such that 𝑇𝑖,𝑗 ∈ {0, 1}, see Step 8 in the
Algorithm 4. To be concrete, 𝑇𝑖,𝑗 = 1 denotes that the critical region 𝑗
is reachable from  within one sample step 𝑇 , under the map (1), and
6

𝑖 s d
Algorithm 4 Binary encoded reachability analysis.

1: Inputs: polyhedral partition  = ∪𝑀
𝑖=1𝑖 of 𝜅(⋅), list of indices 

2: Output: list of reachable critical regions 𝑇 ∈ {0, 1}𝑀×𝑀

3: define 𝑇 ← 0𝑀×𝑀
4: for 𝑖 ∈  do
5: compute Reach(𝑖) per (5)
6: for 𝑗 ∈ {1,… ,𝑀} do
7: if Reach(𝑖) ∩𝑗 ≠ ∅ then
8: 𝑇𝑖,𝑗 ← 1
9: end if

10: end for
11: end for

by using a control action from  . And the other way around, 𝑇𝑖,𝑗 = 0
denotes that 𝑗 is not reachable from 𝑖 per (5). Finally, by iterating
through all critical regions 𝑖 with 𝑖 ∈ {1,… ,𝑀} we construct the
binary matrix 𝑇 ∈ {0, 1}𝑀×𝑀 that concludes our reachability analysis.

Implementation of 𝑇 into the Algorithm 3 is straightforward. At the
beginning of each iteration, i.e., in Step 4 of Algorithm 3, we need to
substitute ̃𝑖 by the 𝑖⋆-th row of 𝑇 as follows

̃𝑖⋆ ← 𝑇𝑖⋆ if 𝑥(𝑡 − 𝑇s) ∈ 𝑖⋆ , (12)

where 𝑖⋆ is the index of critical region 𝑖⋆ active at the previous time
instance 𝑡 − 𝑇s.

From the real-time evaluation point of view, 𝑇𝑖⋆ is a binary vector
that has to be translated into an appropriate format or additional bit-
shifting functions need to be used. On the other hand, implementation
of ̃𝑖 (or ̄𝑖) requires no additional manipulations or functions as it
directly uses the list of indices to point all reachable critical regions,
see Step 4 in Algorithm 3.

Generally, compared to the reachability matrix 𝑇 , the list of in-
dices ̃𝑖 needs to store much fewer variables, i.e., vector of indices
of reachable critical regions. The problem is that ̃ is encoded as an
integer-valued vector the size of which is dictated by the complexity
of explicit MPC, i.e., the number of constructed critical regions 𝑀 . By
assuming 𝛼-bit unsigned integer format and if 𝑀 < (2𝛼 − 1) holds,
then the worst-case memory footprint of ̃𝑖 is (𝛼𝑀2)-bits. On the other
hand, the binary values occupy significantly less memory compared
to the storage of the vectors of integers. The memory footprint of the
binary matrix 𝑇 is hence only 𝑀2-bits.2 We recall, that the number
of constructed critical regions 𝑀 can be reduced by some well-known
simplification technique, e.g., optimal region merging, clipping, etc.,
see Kvasnica, Holaza, Takács, and Ingole (2015). Needless to say, the
same memory comparison also holds for the list ̄𝑖 that is encoded as
̃𝑖.

Remark 4.1 (Conversion of Lists). We have that 𝑇 contains the same
information as ̃𝑖, ∀𝑖 ∈ {1, 2,… ,𝑀}. The only difference is in the form
of how these reachability analyses are encoded. It can be shown that
̃𝑖 can be easily transformed into 𝑇 and vice versa. The same applies
to the robustified list of indices ̄𝑖 constructed for the uncertain LTI
system in (9).

Remark 4.2 (Implementation Redundancy). Notice that the robust reach-
able set (10) considers bounded external disturbances/perturbations
from , where these bounds are given as a tuning parameter. If an
unexpected disturbance 𝑑(𝑡) ∉  is introduced to the system then the
modified point location Algorithm 1, i.e., being updated by (12), does
not guarantee to compute the 𝑢⋆(𝑡). Even though it is an issue of an

2 It is assumed that we have access to each individual bit. If this is not true,
hen we need to assume a rounded-up multiplication of the smallest available
ata format.

European Journal of Control 78 (2024) 101019J. Holaza et al.

n

incorrectly selected , the Algorithm 1 can be forced to find the 𝑢⋆(𝑡).
The solution is twofold. If the binary matrix 𝑇 is used, then we can set
complementary values of the original binary vector,i.e.,  ← 𝟏𝑀 − 𝑇𝑖⋆ ,
and restart the Algorithm 1. We recall that the 𝟏𝑀 denotes the vector
of ones of size 𝑀 . On the other hand, if ̃𝑖 is used, we need to call a set
difference  ← {1,… ,𝑀}∕𝑇𝑖⋆ and restart the Algorithm 1. The same
statement holds also for the list ̄𝑖.

5. Acceleration of the real-time evaluation using the sorted list

In previous sections, we have shown that one can use reachability
analysis to create lists of indices ̃𝑖, or ̄𝑖, to accelerate the point
location problem via decreasing and specifying regions that need to be
explored. Moreover, it was proposed that without loss of generality, we
can encode these lists into the memory-efficient binary-valued matrices
𝑇 . Next, in this section, we aim to propose an additional layer, which
can further make the real-time evaluation of explicit MPC policies
faster. Specifically, as shown in Holaza et al. (2020), the online evalua-
tion of optimal control actions can be accelerated with an appropriate
ordering of indices. Even though this method is also fully compatible
with our approach, we suggest an effective alternative methodology
to sort indices in each list of ̃𝑖, or ̄𝑖, for ∀𝑖 = {1, 2,… ,𝑀}, which
is easily adoptable by all of our reachability analysis algorithms. We
point out that introducing the evaluation of the sorted list preserved
the properties of the original control approach, such as the closed-loop
system stability, constraint satisfaction, and recursive feasibility. The
main benefit of the proposed acceleration layer is that this method
does not introduce any real-time burden into the evaluation of optimal
control action, as the sorting procedure is evaluated fully offline.

Assume a function 𝑉𝑖,𝑗 ∶  ↦ R mapping a set of states  into
a scalar value. Technically, 𝑉𝑖,𝑗 takes the intersection between the 𝑖th
reachable set and the 𝑗th critical region of  and associate this polytope
with its volume, i.e., we have that

𝑉𝑖,𝑗 = Volume(Reach(𝑖) ∩𝑗). (13)

We aim to sort indices of each list ̃𝑖 such that

̂𝑖 = {̂𝑖,1, ̂𝑖,2,… , ̂𝑖,𝐿𝑖
}, (14)

where 𝐿𝑖 ≤ 𝑀 is the number of reachable critical regions3 from 𝑖 and
𝑉𝑖,𝑙 ≥ 𝑉𝑖,𝑙+1, ∀𝑙 ∈ {1, 2,… , 𝐿𝑖} holds. The rationale behind this sorting
is that the probability of 𝑥(𝑡) ∈ 𝑖 being mapped into 𝑥(𝑡 + 𝑇s) ∈ 𝑗
grows proportionately with their intersection volume 𝑉𝑖,𝑗 . Therefore,
the vector ̂𝑖 is ordered in descending order to the volumes 𝑉𝑖,𝑗 .

Note, the same approach holds for the robustified counterpart ̄
according to Definition 3.2.

Remark 5.1 (Sorting of the Binary Indices). Sorting of indices can
be applied also to the binary matrix 𝑇 via employing permutation
matrices. The cost of this acceleration is, however, in increased memory
requirements. As each row of 𝑇 would need one permutation matrix,
the final memory footprint would raise from 𝑀2-bits to (𝑀2+𝑀3)-bits.

6. Numerical analysis

First, we demonstrate in detail the main benefits of the proposed
acceleration techniques using the illustrative numerical example. Next,
we implement this method on the embedded platforms and validate the
control strategy using the challenging unstable, and higher-dimensional
benchmark systems with fast dynamics—the ball on-plate device and
the inverted pendulum device.

6.1. Illustrative example

To illustrate in detail the proposed acceleration approach from Sec-
tion 3, together with its efficient binary encoding from Section 4,

3 The number of reachable critical regions is denoted by the number of
on-empty interactions Reach() ∩ ≠ ∅, ∀𝑗 = 1,… ,𝑀 .
7

𝑖 𝑗 1
and sorted list according Section 5, we investigate the well-known
benchmark LTI system as in (1) with matrices

𝐴 =
[

0.5403 −0.8415
0.8415 0.5403

]

, 𝐵 =
[

−0.4597
0.8415

]

, (15)

that represents an oscillatory system ball on a rope, where the state
vector 𝑥 denotes the position and speed of the ball, respectively, and
the input action 𝑢 is force added to the ball. We formulated the
CFTOC optimization problem as in (3) with prediction model (3b) given
in (15). State and input constraints were set to |𝑥| ⪯ [10, ∞]⊤ and
|𝑢| ⪯ 1, respectively. Weighting matrices were chosen as 𝑄x = 𝐼 and
𝑄u = 1, where 𝐼 is the identity matrix of appropriate dimensions.
The prediction horizon was set to 𝑁 = 3 and both terminal set N
in (3d) and terminal penalty ‖𝑥𝑘‖2𝑄x

were omitted. By solving the
CFTOC problem in (3) parametrically, via the MPT3 toolbox (Herceg,
Kvasnica, Jones, & Morari, 2013), we obtained explicit feedback law
𝜅(𝑥(𝑡)) as in (4) defined over 𝑀 = 13 regions in 4.95 seconds.4 The
corresponding polyhedral partition  is shown in Fig. 1, where the
index of each critical region is depicted per unsorted list . The closed-
loop evaluation of this controller can be carried out by using the
sequential search method described in the Algorithm 1. In what follows,
we aim to accelerate this algorithm by replacing  with a new list of
indices.

Firstly, we have constructed the list of reachable critical regions ̃
per Algorithm 2, which took 1.46 s. We recall that ̃ denotes the list of
𝑖 = 1,… ,𝑀 vectors where each of this vector ̃𝑖 contains indices of all
critical regions that are reachable when starting from the 𝑖th region 𝑖
and under the map (1) with matrices (15). To illustrate this list, let us
select the ̃2 that has the form of sorted sequence of integers:

̃2 = {2, 4, 5, 9, 10, 11}, (16)

and the corresponding 2-nd row of the binary matrix 𝑇 has the form
of:

𝑇2 = [0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0], (17)

i.e., having the non-zero entries at the corresponding positions of
reachable regions. Based on this result, we declare that if the state
vector starts within the second critical region, i.e., 𝑥(𝑡) ∈ 2, denoted
as the blue polytope in Fig. 1, then the controlled system in (15) with
the explicit feedback law 𝜅(𝑥(𝑡)) will map the consecutive state vector
𝑥(𝑡 + 𝑇s) onto the reachable set Reach(2), depicted as the dashed
polytope in Fig. 1. As all non-empty intersections of Reach(2) with 
are known, we have that only regions with indices in (16) (or in (17))
have to be considered for allocation of the optimal control action
𝜅(𝑥(𝑡 + 𝑇s)). Hence, for the discrete time (𝑡 + 𝑇s), we call  ← ̃2 in the
Step 4 of the Algorithm 3. This minimizes the total number of explored
critical regions from 𝑀 = 13 to 6 which decreases the online execution
time of the 𝜅(𝑥(𝑡 + 𝑇s)).

Moreover, we have analyzed the further acceleration layer pre-
sented in Section 5. As can be seen in Figure 1, the intersection of
Reach(2) with the feasible partition  yields polytopes of different
volumes. Each non-empty intersection is shown in Fig. 1 with a dedi-
cated color. By computing volumes of these intersections per (13) we
can easily sort indices in (16) leading us to the reordered list (14) of
form

̂2 = {10, 5, 4, 11, 2, 9}. (18)

The main motivation to use the sorted list (18), instead of the original
list in (16), is that generally there are more states 𝑥(𝑡 + 𝑇s) ∈ 10 than
in any other critical region listed in (16). Thus, the highest change that
the Algorithm 1 will determine 𝜅(𝑥(𝑡+ 𝑇s)) is exactly by exploring 10.

4 AMD Ryzen 7 PRO 5850U with 16 GB DDR4 RAM and running Windows
1 Pro, MATLAB R2022b, YALMIP R20210331, MPT v3.2.1.

European Journal of Control 78 (2024) 101019J. Holaza et al.
Fig. 1. Polytopic partition of CFTOC problem from Section 6.1. All critical regions are indexed by the original list . The dashed critical region denotes the reachable set computed
by (5) when considering the set of initial states given by the blue critical region 2. All non-empty intersections of the reachable set with each critical region of the partition  ,
performed at the fifth step of the Algorithm (2), are shown with a unique color.
With the same argument, this is the reason why the list in (18) is sorted
in ascending order.

To determine the efficiency of the proposed method, we have per-
formed numerical simulations. Specifically, the closed-loop was com-
posed of the designed explicit MPC 𝜅(⋅) and the model in (15). We
have chosen 𝑀 initial conditions as random state vectors from each
critical region of the partition  . The number of simulation steps was
set to 𝑁sim = 30. Three test cases were considered that differed only
in the applied list of indices in the point location Algorithm 1. In the
first case, we used the original list of indices . In the second one, we
have exploited the binary encoded list 𝑇 , generated by the Algorithm
4. Finally, in the last third case, we employed the same strategy as in
the previous case with the exception that the sorted list of indices ̂
was used. We recall that the first simulation step of the Algorithm 1
always uses  to determine the active index 𝑖⋆. Afterwards, this list is
substituted by 𝑇𝑖⋆ , or ̂𝑖⋆ , respectively.

We point out that the sequential search Algorithm 1 traverses
through regions to determine the active index 𝑖⋆ where 𝑥(𝑡) ∈ ⋆

𝑖 .
Each region of  is defined as a polytope that is represented by a
finite number of intersected half-spaces. Hence, to determine 𝑖⋆ we
need to explore a finite number of half-spaces, of a fixed size. This
provides us with a reasonable indicator of computational resources that
are required to evaluate the optimal control law of 𝜅(𝑥(𝑡)). Therefore,
as the performance indicator we have chosen the minimal, average,
and maximal number of explored half-spaces needed to determine the
control law 𝜅(𝑥(𝑡)) for 𝑡 = 1,… , 𝑁̄sim and for all 𝑀 = 13 initial
conditions. For the sake of a fair comparison, we have considered
only simulation steps 𝑁̄sim ≤ 𝑁sim that were required to converge the
‘‘terminal region’’, i.e., the critical region that contains the origin.5

The results are shown in Table 1. Here, for ease of presentation,
we have considered simulation results with the original list  as the
reference, and for all other utilized lists we show the respective ratio,
i.e., the number of explored half-spaces obtained with  divided by the

5 The reason for this setup was that the parametric solver, used to compute
the explicit solution (4) does not necessarily set the critical region as the first
position of the index list . As our proposed method tackles this issue, it would
greatly benefit if we kept the 𝑁̄ = 𝑁 .
8

sim sim
Table 1
Acceleration factors of explored half-spaces (using the reachability
analysis per (5)).

List of indices min avg max

 (default) 1.00 1.00 1.00
𝑇 (binary, Section 4) 1.48 1.73 1.94
̂ (sorted, Section 5) 1.56 2.09 2.83

associated number needed with 𝑇 or ̂, respectively. In other words,
the number 1.00 represents the reference value where no accelera-
tion/deceleration was achieved. Any larger number than 1 represents
a proportional acceleration, and any smaller number than 1 denotes
the deceleration.6 The Table 1 shows that by using the binary encoded
reachability list of indices 𝑇 , we needed to evaluate only 1 013 half-
spaces, compared to the 1 758 required for the original list of indices
, what represents improved efficiency by a factor of 1.73. By using
the sorted reachability list of indices ̂ we have accelerated the point
location problem even more to 2.09 on average. It should be noted that
these improvements were achieved w.r.t. extended memory require-
ments needed to store index lists7 𝑇 or ̂. In our case, the memory
footprint of the receding horizon control law of 𝜅(⋅) was 1.48 kB, and
the memory requirement for the binary list 𝑇 was 0.1 kB, and for the
ordered real-valued list ̂ equal to 0.29 kB. This represents a memory
increase of 6.8 % and 19.6 %, respectively. To conclude, the real-time
evaluation burden was accelerated on average up to 109% at a cost of
increased memory demands ≈ 20%.

For convenience, the same case study was performed also consid-
ering the robust reachability analysis per (10), where the bounded
disturbance of |𝑑(𝑡)| ≤ 0.01 was assumed. The computation of this list
took 1.61 s. We obtained the list of indices ̄, where the second row of
this list was defined as

̄2 = {2, 4, 5, 10, 13} (19)

6 In another word, the factor of, e.g., 1.56 represents a 56 % acceleration as
1.56-times less operations were needed to compute the optimal control action.

7 For simplicity, we are omitting discussions on additional operations
needed to carry out the implementation of the binary encoded 𝑇 , i.e., the
transformation of a binary vector to a real-valued one.

European Journal of Control 78 (2024) 101019J. Holaza et al.

B
p
d
s
d
s
r
a


6

e
o
d
s

𝐴

w
b
t
a
−
s

m
t
R
t
t
a
f
o

(
c
t

i

u
e

m

t

i
(
a
a

a
c
a
t
t
s
(
L

w
c
f
a
e
T
m
M
t
b

b
T
r
e
t
s
e
a
i
E
p
o
t

6

Table 2
Acceleration factors of explored half-spaces (using the reachability
analysis per (10)).

List of indices min avg max

 (default) 1.00 1.00 1.00
𝑇 (binary, Section 4) 1.30 1.82 2.23
̂ (sorted, Section 5) 1.21 2.03 2.83

and its sorted version as

̂2 = {10, 5, 2, 4, 13}. (20)

y comparing the robustified list (19) with its respective counter-
art (16) we can observe that a different set of regions is now reachable
ue to the introduced disturbances. Moreover, notice that the sorted
et (20) altered the order of indices that are contained also in (18)
ue to the changed volumes of respective intersections (13). The same
imulation analysis was performed as in the previous nominal case. The
esults are shown in Table 2, where we can notice relatively similar
ccelerations as depicted in Table 1. Finally, the memory footprint of
̄ was 0.21 kB and its binary encoded version ̂ was 0.10 kB.

.2. Demonstrative 2D example

To analyze the acceleration factors using the implementation on the
mbedded hardware platforms, we consider a well-known benchmark
f ball on beam unstable system with fast-dynamic.8 The linearized
iscrete-time LTI system in (1) in the discrete-time domain using the
ampling time 10−3 s has the following matrices:

=
[

1 0.01
0 1

]

, 𝐵 =
[

−0.4
−70.1

]

× 10−3, (21)

here two system states represent the position and the speed of the
all on the plate in its 𝑥-axis coordinate. The control input represents
he force added to the servos adjusting the tilt angle of the beam. We
ssume that two system states are subjected to the physical constraints:
0.2 ≤ 𝑥1 ≤ 0.01, −0.1 ≤ 𝑥2 ≤ 0.1, while the control action is under the
ymmetric physical constraints: |𝑢| ≤ 0.0524.

The explicit MPC design problem in (3) was designed for weighting
atrices in (3a) were selected as 𝑄x = diag(100, 10), 𝑄u = 1. The

erminal penalty 𝑄N was chosen as the solution of the discrete-time
iccati equation and the terminal set N was omitted.9 The length of

he prediction horizon was set to 𝑁 = 20 samples. By utilizing the MPT3
oolbox (Herceg, Kvasnica, Jones, & Morari, 2013), we have obtained
parametric solution as in (4) in 16.30 s and the associated memory

ootprint was 51.32 kB. The resulting feedback law 𝜅(⋅) was defined
ver 𝑀 = 426 critical regions that were ordered by a default list .

The runtimes of both, the conventional explicit MPC controller
Algorithm 1) and the proposed reachability-sets-driven explicit MPC
ontroller (Algorithm 3) with the sorted listed constructed according
o Section 5, were analyzed, respectively. We note that the sorted list
̂ was constructed in 45.83 s and its memory footprint was 4.29 kB,
.e., an increase of 8.36 % of the controller’s memory.10

The acceleration level was determined based on the numerical sim-
lations, where the discretized version of (22) was controlled by the
xplicit MPC policy 𝜅(⋅). As a representative set of initial conditions,

8 Benchmark data were adopted from: https://github.com/ferreau/
pcBenchmarking.
9 The terminal set was not included in the optimization problem, due to

he dynamics of (22) it converged only to a single point — origin.
10 For comparison, using MPT3, we have also built a memory-optimized

binary search tree of depth 12 and 1 072 nodes. Its construction took 978.47 s
and its memory footprint was 41.88 kB. Hence, for this specific case, the binary
search tree has a more favorable memory demand as it requires 24.71 % less
9

storage than our proposed approach. a
Table 3
Runtimes and acceleration factors evaluated for ball on beam benchmark
implemented on the embedded platform ESP32 in 10−6 s.

List of indices min avg max

 (default) 68 563 3 432
̂ (sorted, Section 5) 57 86 188

Acceleration factor 1.19 6.54 18.26

Table 4
Runtimes and acceleration factors evaluated for ball on beam benchmark
implemented on the embedded platform ESP32-S3 in 10−6 s.

List of indices min avg max

 (default) 57 456 2 918
̂ (sorted, Section 5) 52 70 132

Acceleration factor 1.10 6.51 22.11

we have used a set of 50 randomly generated points, i.e., 50 feasible
nitial conditions 𝑥0 such that 𝑥0 are not included in the terminal
unconstrained) set. We recall that, to provide a fair comparison, the
cceleration performance is considered only until the terminal regions
re reached.

To make the runtime results fully comparable, both investigated
lgorithms were implemented in the C code. Then, the proposed ac-
eleration method was implemented on the embedded hardware to
nalyze the real-time runtimes. Specifically, the explicit MPC con-
rollers were implemented on two embedded hardware platforms: (i)
he widely-used ESP32 DevKit V4 equipped with a 32-bit microproces-
or with a clock frequency of 240 MHz and 4 MB of flash memory and
ii) the new generation ESP32-S3 equipped with a Dual 32 bit Xtensa
X7 cores running up to 240 MHz and 16 MB of the flash memory.

First, the measured runtimes for ESP32 are summarized in Table 3,
here minimum, average, and maximum runtimes are evaluated in mi-

roseconds, respectively. Table 3 shows also the computed acceleration
actors for each of the analyzed cases. As can be seen, the proposed
cceleration method significantly reduced the real-time runtimes on the
mbedded platform, as the runtime decreased by factor 6 on average.
he minimum runtimes (best-case), evaluated as the mean values of the
inimum runtimes of 50 closed-loop trajectories, are also minimized.
oreover, the worst-case runtimes, evaluated as the mean values of

he maximum runtimes of 50 closed-loop trajectories, were decreased
y the order of magnitude.

Next, the measured runtimes for ESP32-S3 are summarized in Ta-
le 4 for the same set of 50 initial conditions to make the results in
able 3 comparable. In Table 4, the minimum, average, and maximum
untimes are again evaluated in microseconds. Table 4 shows also the
valuated acceleration factors for each of the analyzed cases. Analogous
o the results presented in Table 3, the proposed acceleration method
ignificantly reduced the real-time runtimes on the new generation
mbedded platform, as the runtime also decreased by factor 6 on
verage. As expected, the absolute values of runtimes are lower when
mplementing the control algorithms on the new generation platform
SP32-S3, while the relative values of the acceleration factors of the
roposed method remain preserved, cf. Table 4. To conclude, as can be
bserved from data in Tables 3, 4, both, the minimum runtimes and
he worst-case runtimes, were significantly reduced.

.3. Demonstrative 4D example

Finally, let us consider a four-dimensional fast-dynamic system of

n inverted pendulum on a cart (Bakaráč, Valiauga, & Kvasnica, 2018).

https://github.com/ferreau/mpcBenchmarking
https://github.com/ferreau/mpcBenchmarking

European Journal of Control 78 (2024) 101019J. Holaza et al.

w
i
v
t
c
t
d
p
d
h
w
p
e
o
o
J
i
c

s
l
y
r
v
t
s
p

u
e
a
T
t
i
t
r
f

t
a
e
b
w
r
r
e
o
d
(
a
a
2
w

b

t

a
r
a
A
t
d
r

a
o
s
t
s
p
c

Linearizing dynamics of this system around its upright stable position
yields the following LTI model:

⎡

⎢

⎢

⎢

⎢

⎣

𝜌̇
𝜌̈
𝜙̇
𝜙̈

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
36.77 −1 0 0
0 0 0 1
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝜌
𝜌̇
𝜙
𝜙̇

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

0
3.75
0
1

⎤

⎥

⎥

⎥

⎥

⎦

𝑢, (22)

here 𝜌, 𝜌̇, 𝜙, and 𝜙̇ denotes the position of the cart, the cart’s veloc-
ty, the pendulum’s angle from the upright position, and the angular
elocity, respectively. The control input 𝑢 represents the force added
o the card. We assume that these states are subjected to the physical
onstraints |𝜌| ≤ 𝜋∕12, |𝜌̇| ≤ 20, |𝜙| ≤ 0.25, and |𝜙̇| ≤ 2, while
he control action is constricted by |𝑢| ≤ 10. The system in (22) was
iscretized with sampling period 𝑇s = 0.08 seconds and used as the
rediction model in (3b). The MPC optimization problem in (3) was
esigned with squared Euler’s norm 𝑝 = 2, length of the prediction
orizon was set to 𝑁 = 3 samples, and weighting matrices in (3a)
ere selected as 𝑄x = diag(104, 100, 102, 100), 𝑄u = 10−3. The terminal
enalty 𝑄N was chosen as the solution of the discrete-time Riccati
quation and the terminal set N was omitted.11 The final CFTOC
ptimization problem had the form of a QP with four states and three
ptimized variables. By utilizing the MPT3 toolbox (Herceg, Kvasnica,
ones, & Morari, 2013), we have obtained a parametric solution as (4)
n 15.11 s, where the feedback law 𝜅(⋅) was defined over 𝑀 = 229
ritical regions that were ordered by a default list .

The reachability analysis was performed as per Algorithm 2 by con-
idering robust reachable sets (10) with |𝑑(𝑡)| ≤ 0.01. The constructed
ist of reachable regions ̃ was then sorted as described in Section 5
ielding ̂, and then converted into the binary matrix as per Section 4
eturning the set (binary matrix) 𝑇 . From the computation point of
iew, construction of the list ̃ took 830.70 s, the sorting 0.01 s, and
he conversion into ̂ consumed 0.06 s of the offline time. These two
ets were then used to accelerate the sequential search point location
roblem of real-time evaluation of the optimal control action.

The acceleration level was determined based on the numerical sim-
lations, where the discretized version of (22) was controlled by the
xplicit MPC policy 𝜅(⋅). As a set of initial conditions, we have used
random point from each region of 𝜅(⋅), i.e., 229 initial conditions.

he number of simulation steps was set to 103 which was sufficient
o converge to the terminal region, i.e., the critical region contain-
ng the origin. We remind you that, to provide a fair comparison,
he acceleration performance is considered only until the terminal
egions are reached. Moreover, we disregard the computation needed
or conversion from the binary encoding when using the list 𝑇 .

The generated results are shown in Table 5. Here we can observe
hat the sequential search, exploiting the binary reachable list 𝑇 , was
ccelerated on average by a factor of 2.60, while the minimal accel-
ration was 1.00 and the maximal one was 3.27. On the other hand,
y using the sorted list ̂, we recognized even further acceleration
ith average, minimal, and maximal factors of 0.81, 8.93, and 19.19,

espectively. Notice that the minimal acceleration is lower than the
eference value 1 which implies that our proposed method has decel-
rated computation of the point location problem. This phenomenon
ccurred only a few times due to the performed region sorting and it is
ependent on selected initial conditions. Notice that when the binary
unsorted) list 𝑇 was used, no deceleration was detected. Moreover, the
dditional memory footprint of binary reachable lists 𝑇 was 8.95 kB,
nd for the ̂ it was 1.79 kB. This represents an increase of 10 % and
%, respectively, w.r.t. the memory requirement of the EMPC policy,
hich was determined at 90.55 kB.

The main novelty w.r.t. Spjøtvold et al. (2006) can be demonstrated
y results shown in the Table 5. Firstly, the unsorted reachability

11 The terminal set was again not included in the optimization problem, due
o the dynamics of (22) it converged only to a single point — origin.
10
Table 5
Acceleration factors of explored half-spaces for inverted pendulum
benchmark.

List of indices min avg max

 (default) 1.00 1.00 1.00
𝑇 (binary, Section 4) 1.00 2.60 3.27
̂ (sorted, Section 5) 0.81 8.93 19.19

Table 6
Runtimes and acceleration factors evaluated for inverted pendulum
benchmark implemented on the embedded platform ESP32 in 10−6 s.

List of indices min avg max

 (default) 55 1 896 4 213
̂ (sorted, Section 5) 65 126 482

Acceleration factor 0.9 15.1 8.7

list 𝑇 has the same12 acceleration performance as the list suggested
by Spjøtvold et al. (2006). However, its binary encoding allows us to
decrease the memory footprint of the list by 80 %, i.e., from 8.95 kB to
1.79 kB. Secondly, only by sorting the reachability list, the online accel-
eration can be increased by 343 %, i.e., from the factor of 2.6 to 8.93 on
average. Needless to say, these improvements were achieved without
losing any control properties of the original MPC problem (3), and
only at the expense of minor additional offline computation resources,
see (13).13

Finally, the proposed acceleration method was implemented on the
embedded hardware to investigate the real-time runtimes. The runtimes
of both, the conventional explicit MPC controller (Algorithm 1) and the
proposed reachability-sets-driven explicit MPC controller (Algorithm
3) with the sorted listed constructed according to Section 5, were
analyzed, respectively. Analogous to the previous demonstrative case
study in Section 6.2, to make the results fully comparable, both algo-
rithms were implemented in the C code and ran on the microcontroller
platform ESP32 DevKit V4 equipped with a 32-bit microprocessor
with a clock frequency of 240 MHz and 4 MB of flash memory. The
illustrative simulation of the closed-loop control was evaluated for an
initial condition 𝑥0 = [0.1, 0, 0.2, 0]⊤ in (3e). The measured runtimes
re summarized in Table 6, where minimum, average, and maximum
untimes are evaluated in microseconds, respectively. Table 6 shows
lso the computed acceleration factors for each of the analyzed cases.
s can be seen, the proposed acceleration method significantly reduced

he real-time runtimes on the embedded platform, as the runtime
ecreased by a factor of 15 on average. Moreover, also worst-case
untime was decreased by the order of a magnitude.

To summarize the generated results, data from all three case studies
re put together and presented in Table 7. In this table, we can
bserve the scaling behavior of our proposed method and the binary
earch approach concerning the number of critical regions (𝑀) and
he domain dimension. For better clarity, we note that each number is
tored as a double precision variable requiring eight bytes of memory
er number. For instance, the footprint of a binary search tree was
alculated using a well-known approach as 𝑛node(𝑛x + 1 + 2) × 8,

where for each node 𝑛node we stored the separating hyperplane of
dimension (𝑛x + 1), and 2 indices pointing to nodes in the subsequent
level of the tree. For our proposed method, the memory footprint
encompasses requirements for both the original explicit MPC and the
constructed reachable list. From the Table 7, we can observe that
both the offline computation time (‘‘time’’) and memory requirements

12 If we omit the transformation of a binary vector into a real-valued one.
13 For comparison, the memory-optimized binary search tree from MPT3

toolbox was created in 583.85 s. The tree consisted of 8 076 nodes, had a depth
of 19, and its memory footprint was 441.65 kB which represents more than
four times memory increase compared to our proposed approach.

European Journal of Control 78 (2024) 101019J. Holaza et al.
Table 7
Memory and offline computation comparison.

Explicit MPC Binary tree Proposed method

𝑀 Time [s] Size [kB] Time [s] Size [kB] Time [s] Size [kB]

Illustrative example (Section 6.1) 13 4.95 1.48 1.15 0.82 1.61 1.77
Demonstrative 2D example (Section 6.2) 426 16.30 51.32 978.47 41.88 45.83 55.61
Demonstrative 4D example (Section 6.3) 229 15.11 90.55 583.85 441.65 830.7 92.34
w
W

B

B

B

B

B

B

(‘‘size’’) of the reachable list scale almost linearly with the number of
regions. However, as the dimensionality of the problem increases, the
offline computation grows non-linearly. Regarding the binary search
technique, the increased number of regions significantly impacts com-
putation time, while greater dimensional problems can lead to an
unfavorable tree structure with numerous sub-regions, resulting in high
memory consumption. It is essential to emphasize that the results of
these two methods are highly sensitive to specific cases. Therefore,
we encourage readers to investigate multiple point location approaches
and select the one that best suits the targeted process.

Remark 6.1 (Possible Numerical Issues). It is known that constructing
reachable sets is a computationally expensive and numerically sensitive
operation. Therefore, when dealing with higher-dimensional systems
one can encounter numerical issues that will inhibit computation of
the desired reachable set(s). The straightforward way how to approach
this issue is to simply skip the computation of this set leading to a
‘‘gap’’ in the reachable list ̃. This does not represent an issue, see
Remark 4.2, as it will be only at a price of providing no acceleration for
the given region, i.e., the standard sequential search algorithm would
be used. However, a more efficient approach would be to compute an
approximated reachable set.

7. Conclusions

This paper presented a novel acceleration approach for the online
evaluation of explicit MPC policies. It was shown that while the conven-
tional framework of the real-time sequential search considers traversing
through all the critical regions, the number of explored regions can
be mitigated by altering the list of exploring regions. Specifically,
we directly extend the results introduced in Spjøtvold et al. (2006)
to show how to a-priory exploit the reachability analysis to create
compact yet sufficient lists of indices that can be then used during the
online evaluation procedure by carefully choosing the list respective to
the current state of the controlled system. It was discussed that such
staged online Algorithm 3 preserves both recursive satisfaction of the
original constraints as well as the asymptotic stability, i.e., if the MPC
optimization problem guaranteed these properties in the first place.

Two types of reachability analysis were considered. The first one
assumed only the nominal model (5) to create the reachable sets, while
the second one took into account bounded additive disturbances (10).
Both approaches construct lists of indices, generally with different
memory footprints, that need to be stored on a targeted control plat-
form to enable acceleration of the online evaluation of explicit feedback
laws. To address this drawback, we have proposed a memory-efficient
binary encoding. The implementation details, benefits, and limitations
of the binary encoding and its alternative integer-vector-based lists
were discussed in detail.

Further acceleration method, gaining the benefits of the reachability
analysis introduced in Spjøtvold et al. (2006), was proposed. The
volumes of the critical regions intersecting the reachability sets were
evaluated and sorted to maximize the probability of accelerating the
real-time evaluation of the point location problem. We point out, that
this acceleration method does not introduce any real-time burden.
Although the worst-case boundary on the evaluation time was not
reduced, it has been demonstrated that the worst-case runtimes are re-
duced for all control steps except for the initial one. As a consequence,
11

the average runtimes are significantly reduced.
The efficiency of the proposed acceleration method was demon-
strated via extensive case studies. It was shown that, at the cost of the
increased memory footprint, the average point location runtimes could
be significantly reduced. In the case of the considered illustrative nu-
merical example, the memory demands were increased by about 20 %,
and the computational complexity decreased up to 109 % on average.
In the case of the validation using the two-inputs and two-outputs
fast-dynamic system of the ball on beam benchmark, the acceleration
factor on the embedded platforms reach the level of about 7-times real-
time speed-up on average. Finally, in the case of the validation using
the four-dimensional fast-dynamic system of the inverted pendulum
benchmark, the acceleration factor on the embedded platform reaches
the level of about 9-times real-time speed-up on average. The price for
this improved online evaluation was equal to the 10% of the original
explicit MPC policy.

The next research is focused on the explicit extension of the binary
reachability matrix towards the binary search trees, as the binary
matrix 𝑇 could be straightforwardly transformed into the decision rules
indicating the branches/nodes to be explored (or pruned/skipped).

CRediT authorship contribution statement

Juraj Holaza: Conceptualization, Data curation, Investigation, Soft-
are, Supervision, Validation, Visualization, Writing – original draft,
riting – review & editing. Peter Bakaráč: Data curation, Investiga-

tion, Software, Validation, Writing – review & editing. Juraj Oravec:
Conceptualization, Formal analysis, Funding acquisition, Investiga-
tion, Project administration, Supervision, Validation, Writing – original
draft, Writing – review & editing.

Acknowledgments

The authors gratefully acknowledge the contribution of the Scien-
tific Grant Agency of the Slovak Republic under the grants 1/0490/23,
1/0297/22, and the Slovak Research and Development Agency under
the project APVV-20-0261. This research is funded by the European
Union’s Horizon Europe under grant no. 101079342 (Fostering Op-
portunities Towards Slovak Excellence in Advanced Control for Smart
Industries).

References

Althoff, M., Frehse, G., & Girard, A. (2021). Set propagation techniques for reachability
analysis. Annual Review of Control, Robotics, and Autonomous Systems, 4(1).

akaráč, P., Holaza, J., Klaučo, M., Kalúz, M., Löfberg, J., & Kvasnica, M. (2018).
Explicit MPC based on approximate dynamic programming. In European control
conference 2018. Limassol, Cyprus: IEEE.

akaráč, P., Valiauga, P., & Kvasnica, M. (2018). Energy-efficient swing up and explicit
MPC stabilization of an inverted pendulum. In The 6th IFAC conference on nonlinear
model predictive control. Madison, Wisconsin, USA: IFAC.

aotić, M., Borrelli, F., Bemporad, A., & Morari, M. (2008). Efficient on-line compu-
tation of constrained optimal control. SIAM Journal on Control and Optimization,
47(5), 2470–2489.

ayat, F., Johansen, T. A., & Jalali, A. A. (2011). Using hash tables to manage the
time-storage complexity in a point location problem: Application to explicit model
predictive control. Automatica, 47(3), 571–577.

ayat, F., Johansen, T. A., & Jalali, A. A. (2012). Flexible piecewise function evaluation
methods based on truncated binary search trees and lattice representation in
explicit MPC. IEEE Transactions on Control Systems Technology, 20(3), 632–640.

emporad, A., Borrelli, F., & Morari, M. (2003). Min-max control of constrained
uncertain discrete-time linear systems. IEEE Transactions on Automatic Control,

48(9), 1600–1606.

http://refhub.elsevier.com/S0947-3580(24)00079-7/sb1
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb1
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb1
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb2
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb2
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb2
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb2
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb2
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb3
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb3
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb3
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb3
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb3
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb4
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb4
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb4
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb4
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb4
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb5
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb5
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb5
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb5
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb5
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb6
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb6
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb6
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb6
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb6
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb7
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb7
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb7
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb7
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb7

European Journal of Control 78 (2024) 101019J. Holaza et al.

Q

R

S

S

S

S

T

W

W

X

Y

Z

Z

Bemporad, A., Filippi, C., & Torrisi, F. D. (2004). Inner and outer approximation
of polytopes using boxes. Computational Geometry: Theory and Applications, 27(2),
151–178.

Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear
quadratic regulator for constrained systems. Automatica, 38, 3–20.

Bemporad, A., Torrisi, F. D., & Morari, M. (2000). Optimization-based verification and
stability characterization of piecewise affine and hybrid systems. In B. H. Krogh,
& N. Lynch (Eds.), Vol. 1790, International workshop on hybrid systems: computation
and control (pp. 45–58). Pittsburgh, USA: Springer-Verlag.

Bird, T. J., Jain, N., Pangborn, H. C., & Koeln, J. P. (2022). Set-based reachability
and the explicit solution of linear MPC using hybrid zonotopes. In 2022 American
control conference (pp. 158–165).

Borrelli, F. (2017). Constrained Optimal Control of Linear and Hybrid Systems. Berlin,
Heidelberg: Springer.

Borrelli, F., Baotić, M., Bemporad, A., & Morari, M. (2001). Efficient on-line
computation of explicit model predictive control.

Borrelli, F., Baotić, M., Pekar, J., & Stewart, G. (2010). On the computation of linear
model predictive control laws. Automatica, 46(6), 1035–1041.

Borrelli, F., Bemporad, A., & Morari, M. (2017). Predictive Control for Linear and Hybrid
Systems. Cambridge University Press.

Changizi, N., Salahshoor, K., & Siahi, M. (2023). Design and implementation of a sub-
optimal explicit mpc using a novel complexity reduction approach based on fuzzy
reshaped active regions. International Journal of Dynamics and Control, 11, 338–353.

Christophersen, F., Kvasnica, Jones, C., & Morari, M. (2007). Efficient evaluation of
piecewise control laws defined over a large number of polyhedra. In Proceedings of
the European control conference.

Fuchs, A., Jones, C., & Morari, M. (2010). Optimized decision trees for point location
in polytopic data sets - application to explicit MPC. In Proceedings of the 2010
American control conference (pp. 5507–5512).

Geyer, T., Torrisi, F. D., & Morari, M. (2008). Optimal complexity reduction of
polyhedral piecewise affine systems. Automatica, 44(7), 1728–1740.

Gupta, A., Bhartiya, S., & Nataraj, P. S. V. (2011). A novel approach to multiparametric
quadratic programming. Automatica, 47(9), 2112–2117.

Herceg, M., Jones, C. N., Kvasnica, M., & Morari, M. (2015). Enumeration-based
approach to solving parametric linear complementarity problems. Automatica, 62,
243–248.

Herceg, M., Kvasnica, M., Jones, C., & Morari, M. (2013). Multi-parametric toolbox 3.0.
In 2013 European control conference (pp. 502–510).

Herceg, M., Mariéthoz, S., & Morari, M. (2013). Evaluation of piecewise affine control
law via graph traversal. In 2013 European control conference (pp. 3083–3088).

Holaza, J. (2012). Complexity Reduction of Explicit Model Predictive Control. Radlinského
9, 812 37 Bratislava: ÚIAM FCHPT STU v Bratislave.

Holaza, J., Oravec, J., Kvasnica, M., Dyrska, R., Mönnigmann, M., & Fikar, M. (2020).
Accelerating explicit model predictive control by constraint sorting. In R. Findeisen,
S. Hirche, K. Janschek, & M. Mönnigmann (Eds.), The 21st IFAC world congress
(virtual), Berlin, Germany (pp. 11520–11525).

Holaza, J., Takács, B., Kvasnica, M., & Di Cairano, S. (2015a). Nearly optimal simple
explicit MPC controllers with stability and feasibility guarantees. Optimal Control
Applications & Methods, 35(6).

Holaza, J., Takács, B., Kvasnica, M., & Di Cairano, S. (2015b). Safety verification of
implicitly defined MPC feedback laws. In European control conference 2015 (pp.
2552–2557). Linz, Austria.

Jafargholi, M., Peyrl, H., Zanarini, A., Herceg, M., & Mariethoz, S. (2014). Accelerating
space traversal methods for explicit model predictive control via space partitioning
trees. In 2014 European control conference (pp. 103–108).

Johansen, T. A., & Grancharova, A. (2003). Approximate explicit constrained linear
model predictive control via orthogonal search tree. IEEE Transactions on Automatic
Control, 48(5), 810–815.

Jones, C. N., & Morari, M. (2010). Polytopic approximation of explicit model predictive
controllers. IEEE Transactions on Automatic Control, 55.

Kvasnica, M., Bakaráč, P., & Klaučo, M. (2019). Complexity reduction in explicit MPC:
A reachability approach. Systems & Control Letters, 124, 19–26.

Kvasnica, M., & Fikar, M. (2010). Performance-lossless complexity reduction in Explicit
MPC. In 49th IEEE conference on decision and control (pp. 5270–5275).

Kvasnica, M., & Fikar, M. (2012). Clipping-based complexity reduction in explicit MPC.
IEEE Transactions on Automatic Control, 57(7), 1878–1883.
12
Kvasnica, M., Holaza, J., Takács, B., & Ingole, D. (2015). Design and verification of
low-complexity explicit MPC controllers in MPT3. In European control conference
2015 (pp. 2600–2605). Linz, Austria.

Kvasnica, M., Löfberg, J., & Fikar, M. (2011). Stabilizing polynomial approximation of
explicit MPC. Automatica, 47(10), 2292–2297.

Kvasnica, M., Takács, B., Holaza, J., & Ingole, D. (2015). Reachability analysis and
control synthesis for uncertain linear systems in MPT. In M. Fikar (Ed.), Vol.
8, Proceedings of the 8th IFAC symposium on robust control design (pp. 302–307).
Bratislava, Slovak Republic: Elsevier.

Mayne, D. Q. (2014). Model predictive control: Recent developments and future
promise. Automatica, 50, 2967–2986.

Mayne, D. Q., Seron, M. M., & Raković, S. V. (2005). Robust model predictive control of
constrained linear systems with bounded disturbances. Automatica, 41(2), 219–224.

McInerney, I., Constantinides, G. A., & Kerrigan, E. C. (2018). A survey of the
implementation of linear model predictive control on FPGAs. IFAC-PapersOnLine,
51(20), 381–387, 6th IFAC Conference on Nonlinear Model Predictive Control
NMPC 2018.

Mitze, R., Kvasnica, M., & Mönnigmann, M. (2023). Exploiting symmetries in active
set enumeration for constrained linear–quadratic optimal control. Automatica, 151,
Article 110900.

Morato, M. M., Normey-Rico, J. E., & Sename, O. (2020). Model predictive control
design for linear parameter varying systems: A survey. Annual Reviews in Control,
49, 64–80.

Nguyen, N. A. (2015). Explicit robust constrained control for linear systems: analysis,
implementation and design based on optimization (Ph.D. thesis), CentraleSupélec,
Université Paris Sud.

Oberdieck, R., Diangelakis, N. A., Nascu, I., Papathanasiou, M. M., Sun, M., Avraami-
dou, S., et al. (2016). On multi-parametric programming and its applications in
process systems engineering. Chemical Engineering Research and Design, 116, 61–82,
Process Systems Engineering - A Celebration in Professor Roger Sargent’s 90th Year.

Oberdieck, R., Diangelakis, N. A., & Pistikopoulos, E. N. (2017). Explicit model
predictive control: A connected-graph approach. Automatica, 76, 103–112.

Oravec, J., Jiang, Y., Houska, B., & Kvasnica, M. (2017). Parallel explicit MPC for
hardware with limited memory. Vol. 20, In The 20th IFAC world congress, Toulouse,
France (pp. 3356–3361).

in, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7), 733–764.

amirez, D., & Camacho, E. (2006). Piecewise affinity of min-max MPC with bounded
additive uncertainties and a quadratic criterion. Automatica, 42(2), 295–302.

pjøtvold, J., Raković, S. V., Tøndel, P., & Johansen, T. A. (2006). Utilizing reachability
analysis in point location problems. In Proceedings of the 45th IEEE conference on
decision and control (pp. 4568–4569).

tursberg, O., & Krogh, B. H. (2003). Efficient representation and computation of
reachable sets for hybrid systems. In O. Maler, & A. Pnueli (Eds.), Hybrid systems:
computation and control (pp. 482–497). Berlin, Heidelberg: Springer.

uardi, A., Longo, S., Kerrigan, E. C., & Constantinides, G. A. (2016). Explicit MPC: Hard
constraint satisfaction under low precision arithmetic. Control Engineering Practice,
47, 60–69.

ui, D., Feng, L., & Hovd, M. (2008). Algorithms for online implementations of explicit
MPC solutions. IFAC Proceedings Volumes, 41(2), 3619–3622, 17th IFAC World
Congress.

øndel, P., Johansen, T., & Bemporad, A. (2003). Evaluation of piecewise affine control
via binary search tree. Automatica, 39(5), 945–950.

ang, Y., Jones, C., & Maciejowski, J. (2007). Efficient point location via subdivision
walking with application to explicit MPC. In 2007 European control conference (pp.
447–453).

en, C., Ma, X., & Ydstie, B. E. (2009). Analytical expression of explicit MPC solution
via lattice piecewise-affine function. Automatica, 45(4), 910–917.

u, J. (2021). Lattice piecewise affine approximation of explicit linear model predictive
control. In 2021 60th IEEE conference on decision and control (pp. 2545–2550).

an, D., Zhang, W., Chen, H., & Shi, J. (2023). Robust control strategy for multi-
UAVs system using MPC combined with Kalman-consensus filter and disturbance
observer. ISA Transactions, 135, 35–51.

hang, J., & Xiu, X. (2018). K-d tree based approach for point location problem
in explicit model predictive control. Journal of the Franklin Institute, 355(13),
5431–5451.

hang, J., Xiu, X., Xie, Z., & Hu, B. (2016). Using a two-level structure to manage
the point location problem in explicit model predictive control. Asian Journal of
Control, 18(3), 1075–1086.

http://refhub.elsevier.com/S0947-3580(24)00079-7/sb8
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb8
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb8
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb8
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb8
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb9
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb9
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb9
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb10
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb11
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb11
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb11
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb11
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb11
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb12
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb12
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb12
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb13
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb13
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb13
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb14
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb14
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb14
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb15
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb15
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb15
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb16
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb16
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb16
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb16
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb16
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb17
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb17
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb17
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb17
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb17
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb18
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb18
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb18
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb18
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb18
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb19
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb19
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb19
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb20
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb20
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb20
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb21
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb21
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb21
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb21
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb21
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb22
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb22
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb22
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb23
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb23
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb23
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb24
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb24
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb24
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb25
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb26
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb26
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb26
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb26
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb26
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb27
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb27
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb27
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb27
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb27
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb28
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb28
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb28
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb28
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb28
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb29
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb29
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb29
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb29
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb29
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb30
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb30
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb30
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb31
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb31
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb31
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb32
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb32
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb32
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb33
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb33
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb33
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb34
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb34
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb34
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb34
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb34
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb35
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb35
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb35
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb36
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb37
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb37
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb37
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb38
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb38
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb38
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb39
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb40
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb40
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb40
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb40
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb40
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb41
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb41
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb41
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb41
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb41
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb42
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb42
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb42
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb42
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb42
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb43
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb44
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb44
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb44
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb45
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb45
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb45
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb45
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb45
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb46
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb46
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb46
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb47
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb47
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb47
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb48
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb48
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb48
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb48
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb48
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb49
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb49
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb49
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb49
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb49
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb50
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb50
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb50
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb50
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb50
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb51
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb51
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb51
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb51
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb51
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb52
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb52
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb52
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb53
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb53
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb53
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb53
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb53
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb54
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb54
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb54
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb55
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb55
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb55
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb56
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb56
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb56
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb56
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb56
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb57
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb57
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb57
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb57
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb57
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb58
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb58
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb58
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb58
http://refhub.elsevier.com/S0947-3580(24)00079-7/sb58

	Revisiting reachability-driven explicit MPC for embedded control
	Introduction
	Notation

	Problem statement
	Reachability sets driven explicit MPC
	Reachability analysis of MPC control laws
	Robustification of reachability analysis

	Binary encoding of the reachability analysis
	Acceleration of the real-time evaluation using the sorted list
	Numerical analysis
	Illustrative example
	Demonstrative 2D example
	Demonstrative 4D example

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	References

