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Introduction

Glioblastoma multiforme (GBM) present with a range of growth
phenotypes [1], from predominantly invasive tumors without not-
able “mass-effect” to strongly displacing lesions that induce high
mechanical stresses resulting in healthy-tissue deformation, midline
shift or herniation. Biomechanical forces shape the tumor micro-
environment by compression of blood and lymphatic vessels, redu-
cing blood perfusion and generating hypoxia [2].
We expect these forces to be important for tumor evolution, for the
formation of distinct growth phenotypes and tumor shape.
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Figure 1: GBM growth phenotypes with varying degrees of mass-effect.

With the aim to quantitatively characterize different growth phen-
otypes, to better understand the role of mechanical forces in their
formation and to study possible implications for treatment, we star-
ted developing a framework for GBM growth simulation:
Its underlying mathematical model accounts for the biomechanical
stresses induced in the tissue and thus allows simulation of GBM’s
invasive growth characteristics as well as themass-effect caused by
the growing tumor.

A previous version of the framework [3] yielded realistic estimates of
the mechanical impact of a growing tumor on intra-cranial pressure.
However, it was limited to isotropic growth assumptions and failed to
reproduce the asymmetric tumor shapes found in patient images.

Here we present an extended version of this model that accounts for
the anisotropic orientation of axons in white matter using informa-
tion from Diffusion-Tensor-Imaging (DTI). This structural anisotropy
is known to affect the preferred directionality of tumor cellmigration
and the mechanical behavior of the tissue.

Parametric Simulation Study

Study Workflow

▶ Tumor growth simulation for
• multiple seed locations derived from tumor segmentations,
• invasive (large D /ρ) and nodular (small D /ρ) growing tumors,
• isotropic and anisotropic model versions.

▶Comparison of simulated to actual tumor at imaged volume.
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Figure 2: Parametric simulation study of tumor evolution, varying seed positions
and RD parameters, with and without accounting for tissue anisotropy.

Parameter Assumptions

Literature-derived parameter values
▶ Isotropic, no account of tissue structure:
D /ρ ρ DG DW

[1/d] [mm2/d] [mm2/d]

low 0.082 0.020 0.101
high 0.037 0.040 0.200
(a) Reaction-Diffusion parameters ρ,
D , derived from clinical study
data [4–7], by D /ρ category.

Tissue E ν
[kPa]

W/G Matter 3.0 0.45
Tumour 6.0 0.45
CSF (Ventricles) 1.0 0.30
CSF (other) 1.0 0.49
(b)Mechanical tissue properties [8].

Table 1: Parameter choices for isotropic model.
▶Anisotropic, (transverse isotropic) White Matter structure:
• Grey Matter parameters as in isotropic case.
• Higher motility along fibres: D

∥
W = D iso

W , D ⊥
W = 0.01 · D iso

W

• Stiffer (tensile) along fibres: E
∥
W = 3 · E⊥

W (details in [9])

Maximum volumetric growth of 15%: λ = 0.15 [10].
Boundary conditions constrain surface flux & nodes.
Atlas of normal human brain anatomy (SRI24) [11], MR & MR-DTI.
Image data of high-grade glioma patients from BraTS 2013.
Implementation via Finite Element Method (FEM). Calculations were

performed on UBELIX, the HPC cluster at the University of Bern.

Simulated Tumor Evolution &Mechanical Impact
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Figure 3: Simulated tumor evolution. Threshold for solid tumor c > 0.8.
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(a) Tumor-induced pressure.
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(b)Midline deformation.
Figure 4: Simulated mechanical impact of growing tumor.
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(a) Tumor asymmetry.
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(b) Tumor shape.
Figure 5: Comparison of tumor shape: simulated vs. observed in BRATS data set.

Mathematical Model

Cell proliferation and invasion are modeled as reaction-diffusion
process; the simulation of themechanic interaction relies on a linear-
elastic material model. Both are coupled by relating local tumor cell
concentration to the generation of strains in the tissue. The model
accounts for multiple brain regions and incorporates information of
structural tissue anisotropy.
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Figure 6:Mechanically-coupled Reaction-Diffusion Model: Structure & Inputs.

Summary & Discussion

The mathematical model captures invasive growth characteristics of
GBM and the biomechanical stresses caused by tumor growth. Sim-
ulations yield realistic tumor volumes and estimates of mechanical
impact. Simulated tumor shapes are more symmetric than the cor-
responding real lesions. Accounting for brain tissue structure re-
duces symmetry of simulated lesions on average, however, not to
the level observed in GBM patient data.
▶Model & Study Limitations:

• Parametrisation and growth domain not personalized.
• No account of vasculature and growth promoting/inhibiting
factors in tumor micro-environment.

• Assumption of linear-elastic mechanical material model.

Outlook

Further model testing and development in animal study. Model per-
sonalization to enable patient-specific characterization of distinct
“invasive” and “displacive” growth phenotypes.

Further Information

Glioma mass-effect Simulator www.glims.ch
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