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Things the group does…
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Method development for microscopy image analysis: 
Vision: from images to insight and clinical relevance in collaboration with life scientists

Segmentation and tracking tasks
● High content microscopy for clinical decision making
● EM tomography for synaptic biology
● Volume EM for tissue and whole organism analysis

Representation learning for 
microscopy and multi-modal data

Protein structure analysis in cryo ET 
and optical microscopy



Segment Anything



Segment Anything
Pretrained model for interactive segmentation from Meta.AI
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https://arxiv.org/abs/2304.02643 

SAM: Interactive segmentation

https://arxiv.org/abs/2304.02643


Segment Anything
Pretrained model for interactive segmentation from Meta.AI
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SAM: Interactive segmentation

4 different sizes:
● VIT-B (Base)
● VIT-L (Large)
● VIT-H (Huge)
● VIT-T (Tiny)*

https://arxiv.org/abs/2304.02643 
* MobileSAM: 
https://arxiv.org/abs/2306.14289 

https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2306.14289


Segment Anything: What’s special?
● Interactive segmentation: segment arbitrary objects from annotations 

○ “prompts”: points and/or box and/or mask
○ more prompts improve the predictions

● Versatile: can be integrated within pipelines that provide prompts
○ From user inputs, object detectors, nucleus seeds, …
○ Model is fully open-source!
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Segment Anything: What’s special?
● Interactive segmentation: segment arbitrary objects from annotations 

○ “prompts”: points and/or box and/or mask
○ more prompts improve the predictions

● Versatile: can be integrated within pipelines that provide prompts
○ From user inputs, object detectors, nucleus seeds, …
○ Model is fully open-source!

● How?
○ Large dataset with diverse images and objects
○ Iterative training loop
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Segment Anything: Training iteration
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Given image and ground-truth mask
● Compute image embeddings,

sample positive point or box
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Given image and ground-truth mask
● Compute image embeddings, sample positive point or box



Segment Anything: Training iteration
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Given image and ground-truth mask
● Compute image embeddings, sample positive point or box
● Run prediction, compute loss for object and IOU estimate

Mask 
Loss



Segment Anything: Training iteration
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Given image and ground-truth mask
● Compute image embeddings, sample positive point or box
● Run prediction, compute loss for object and IOU estimate
● Sample point prompts where prediction is wrong, rerun prediction with all prompts + mask

Mask
Loss

…
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Segment Anything: Training iteration
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Given image and ground-truth mask
● Compute image embeddings, sample positive point or box
● Run prediction, compute loss for object and IOU estimate
● Sample point prompts where prediction is wrong, rerun prediction with all prompts + mask
● Repeat
● Average losses, update weights

…



Segment Anything: Capabilities

15

https://segment-anything.com/ 

Segmentation from user inputs (prompts)

https://segment-anything.com/


Segment Anything: Capabilities
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https://segment-anything.com/ 

Segmentation from user inputs (prompts) Automatic Mask Generation (AMG)

https://segment-anything.com/


Segment Anything for 
Microscopy
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Our aims & contributions
● How well does SAM work for microscopy data? Which model size is best?

● Can we improve it (by finetuning) on microscopy data?

● Build a napari-based tool for interactive and automatic segmentation and tracking.

Collaboration between my group and DFKI; + several open source contributions.
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Archit, …, Pape, bioRxiv (2023)
https://doi.org/10.1101/2023.08.21.554208  

Anwai
Archit 

https://doi.org/10.1101/2023.08.21.554208
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SAM authors test the model on 
nucleus segmentation and find good 
performance.

Model was predominantly trained on 
natural images!

https://doi.org/10.1101/2023.08.21.554208


Our aims & contributions
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Archit, …, Pape, bioRxiv (2023)
https://doi.org/10.1101/2023.08.21.554208  

Anwai
Archit 

We are in revision; will submit revised version this week!

Results are from revision experiments and not in preprint yet.

https://doi.org/10.1101/2023.08.21.554208


Finetuning SAM
Our contributions:

● Re-implement iterative training
○ Original code not published
○ Complex procedure
○ Use to finetune SAM components
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Finetuning SAM + improve instance seg
Our contributions:

● Re-implement iterative training
○ Original code not published
○ Complex procedure
○ Use to finetune SAM components

● Add decoder for instance segmentation (AIS)
○ Predicts foreground
○ Regresses distances to boundary + centroid
○ Input for watershed
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Finetuning for light microscopy
● Training data: cell and nucleus segmentation (published datasets)

○ Cells in Phase-contrast (LiveCELL)
○ Cells in Tissue (TissueNet)
○ Cells and Nuclei in Fluorescence (Neurips Cell Seg, DSB)
○ Cells in LightSheet (PlantSeg-Roots)
○ Bacteria in labelfree imaging (DeepBacs)

● Evaluate on test-split of training datasets (“in domain”)
and unseen datasets (“out of domain”):
○ Nuclei and cells in confocal, cells in immunofluorescence, nuclei in histopathology, …

● Compare interactive and automatic instance segmentation
○ Compare to CellPose baseline for automatic segmentation
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Interactive Segmentation:
In domain                          &       Out-of-domain



Results: In Domain
Results for LIVECell Dataset 
(In Domain; Test Split)

Evaluation:

● Interactive Segmentation:
○ Derive prompts from ground-truth, 

improve iteratively

● Instance segmentation:
○ Compare with CellPose

● Both: compute segmentation 
accuracy (compared to ground-truth)
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ViT Base

ViT Large



Automatic Segmentation
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VIT-B-LM
AIS: 9 sec

VIT-B
AMG: 75 sec

Instance segmentation on LIVECell Dataset

Runtimes on laptop (CPU); 
including embedding computation (dominates for AIS)



Results: Out of domain
Results for out of-domain datasets.

Same evaluation procedure as before.
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ViT Base ViT Large



Results: Out of domain
Results for out of-domain datasets.

Same evaluation procedure as before.
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ViT Base ViT Large

Conclusions:
● Finetuning improves models!

● Best model: vit_l
○ If runtime matters: vit_b / vit_t

● Comparison to CellPose (automatic seg.):
○ Similar performance on most out of 

domain datasets (cyto2 model)



Finetuning for electron microscopy
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● Training data: Mitochondria and nucleus segmentation in electron microscopy
○ Most training data from MitoNet (https://doi.org/10.1016/j.cels.2022.12.006).

● Compare default and finetuned model.
○ Compare automated segmentation with MitoNet.

● Evaluate on test-split of training datasets (“in domain”)
and unseen datasets (“out of domain”)
○ Application to EM mitochondria from non-training data.

https://doi.org/10.1016/j.cels.2022.12.006
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Interactive Segmentation:
In domain                          &       Out-of-domain



Results: In & out-of domain
Evaluation: Same approach as for LM

● In domain (top row)
● Out of domain (rest)
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ViT Large



Results: In & out-of domain
Evaluation: Same approach as for LM

● In domain (top row)
● Out of domain (rest)
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ViT Large

Conclusions:
● Finetuning improves, best model is vit_l 
● Similar performance to MitoNet on 

most datasets (AIS)

● Improves segmentation for some other 
organelles (cilia, microvilli), but 
worsens it for cellular compartments
○ Bigger diversity in EM!



Mitochondria
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VIT-B-EM
AIS: 10 sec

VIT-B
AMG: 80 sec

Instance segmentation on Lucchi Dataset

Runtimes on laptop (CPU); 
including embedding computation (dominates for AIS)



Finetuning as a user
Improve models further for your data?

● How much data is needed?

● Which computational resources are 
required?
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Finetuning as a user
Improve models further for your data?

● How much data is needed?

● Which computational resources are 
required?
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● Few images with annotations are 
sufficient!

● Finetuning is possible on CPU (but 
takes quite long); reasonable time 
on a GPU.



Application in practice
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New microscopy 
data

Automatic 
Segmentation 

SAM (pretrained
for modality)



Application in practice
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New microscopy 
data

Automatic 
Segmentation 

SAM (pretrained
for modality)

Result not 
good enough?

Interactive 
correction
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for modality)
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Compared to CellPose “Human-in-the loop”
● Support for more modalities (EM!)
● Interactive correction speeds up annotation significantly!
● BUT: Training model takes longer (esp. on CPU)



microSAM:
Napari Integration
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microSAM: SAM for napari
● napari plugins that enable interactive and automatic:

○ 2D Segmentation
○ 3D Segmentation
○ Tracking (2D + time)
○ Finetuning on own data

● Core functionality:
○ Default + finetuned models 
○ Multidimensional segmentation / tracking 

(interactive and automatic)
○ Tiled prediction for large images

42
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Code and documentation available at:
https://github.com/computational-cell-analytics/micro-sam 

New release (v0.5):
● Latest microscopy models,

compatible with BioImage.IO modelzoo.
● Updated and extended UI,

napari plugin integration.
● Will be announced later this or early next week

(it’s done, but we need to test it and
 update documentation).

https://github.com/computational-cell-analytics/micro-sam


Plan Live Demos
● Starting the tool, explain components

● 2D Segmentation on LiveCELL
○ Compare default and finetuned model (vit_b, show auto segmentation for vit_b)

● 2D Segmentation with tiling (with vit_t)

● 3D Segmentation on Lucchi
○ Use precomputed embeds and amg

● Finetuning (on the Lucchi data we have annotated)
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Next Steps & Outlook
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Next steps
● Create v1.0 release: same as v0.5 with additional:

○ Full BioImage.IO integration to enable cross-compatibility.
■ Microscopy Image Browser, QuPath, BioEngine, …

● Integration of efficient training procedures for finetuning (LoRA)
○ To enable better training on CPU and small GPUs

● Provide better and more models:
○ EM Organelle Generalist Model

■ Training on OpenOrganelle and other organelle segmentation datasets.

○ Histopathology Model
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Feedback and contributions on 
the tool are very welcome!

Check out our repository for all the details:
https://github.com/computational-cell-analytics/micro-sam

https://github.com/computational-cell-analytics/micro-sam


Outlook: 
Universal microscopy segmentation and tracking
● Incorporate 3D (2D + time) segmentation in SAM-like model

○ Advantage Transformer: same model for 2d and 3d is possible!

● Vision Mamba: Investigate newer (more efficient) architectures
○ Our recent (preliminary!) work: https://arxiv.org/abs/2404.07705 

● Semantic awareness (e.g. differentiate organelles in EM, one model for microscopy)

● Zero-shot adaptation (improve segmentation from examples)
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https://arxiv.org/abs/2404.07705
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