GEORG-AUGUST-UNIVERSITAT 1F
= J |\ GOTTINGEN tfi o

COMPUTATIONAL
CELL ANALYTICS

Segment Anything
for Microscopy

Constantin Pape

Institut fur Informatik, Georg August Universitat Gottingen



https://user.informatik.uni-goettingen.de/~pape41/

Things the group does...

Method development for microscopy image analysis:
Vision: from images to insight and clinical relevance in collaboration with life scientists
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S eg m e n t A nyt h i n g https://arxiv.org/abs/2304.02643

Pretrained model for interactive segmentation from Meta.Al

SAM: Interactive segmentation
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Pretrained model for interactive segmentation from Meta.Al
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Segment Anything: What's special?

® Interactive segmentation: segment arbitrary objects from annotations
o “prompts”: points and/or box and/or mask
O more prompts improve the predictions

® \ersatile: can be integrated within pipelines that provide prompts
o From user inputs, object detectors, nucleus seeds, ...
o Model is fully open-source!



Segment Anything: What's special?

® Interactive segmentation: segment arbitrary objects from annotations

O
O

® \ersatile: can be integrated within pipelines that provide prompts

“prompts”: points and/or box and/or mask
more prompts improve the predictions

o From user inputs, object detectors, nucleus seeds, ...
o Model is fully open-source!
e How?
o Large dataset with diverse images and objects
o lterative training loop

|—> annotate —l

model data

T— train <—|

Segment Anything 1B (SA-1B):

* 1+ billion masks
* 11 million images

* privacy respecting
* licensed images




Segment Anything: Training iteration

Given image and ground-truth mask
e Compute image embeddings,
sample positive point or box
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Given image and ground-truth mask
e Compute image embeddings, sample positive point or box
® Run prediction, compute loss for object and IOU estimate
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Given image and ground-truth mask

e Compute image embeddings, sample positive point or box

® Run prediction, compute loss for object and IOU estimate

e Sample point prompts where prediction is wrong, rerun prediction with all prompts + mask
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Given image and ground-truth mask
e Compute image embeddings, sample positive point or box
Run prediction, compute loss for object and IOU estimate

o
e Sample point prompts where prediction is wrong, rerun prediction with all prompts + mask
® Repeat
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Segment Anything: Training iteration

Given image and ground-truth mask

e Compute image embeddings, sample positive point or box

Run prediction, compute loss for object and IOU estimate

Sample point prompts where prediction is wrong, rerun prediction with all prompts + mask
Repeat

Average losses, update weights




Seg m e nt A nyt h i n g : Ca p a b i I it i es https://segment-anything.com/

Segmentation from user inputs (prompts)
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Segmentation from user inputs (prompts) Automatic Mask Generation (AMG)



https://segment-anything.com/

Segment Anything for
Microscopy
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Archit, ..., Pape, bioRxiv (2023)

Our aims & contributions o o o 1205, 08 21554208

e How well does SAM work for microscopy data? Which model size is best?

e Can we improve it (by finetuning) on microscopy data?

e Build a napari-based tool for interactive and automatic segmentation and tracking.

Collaboration between my group and DFKI; + several open source contributions.


https://doi.org/10.1101/2023.08.21.554208
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Archit, ..., Pape, bioRxiv (2023)
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Our aims & contributions

Archit, ..., Pape, bioRxiv (2023)
https://doi.org/10.1101/2023.08.21.554208

e How well does SAM work for microscopy data? Which model size is best?

e Build a napari-based tool for interactive and automatic segmentation and tracking.

Can we improve it by finetuning on microscopy data?

e

U

We are in revision; will submit revised version this week!

Results are from revision experiments and not in preprint yet.

N

J



https://doi.org/10.1101/2023.08.21.554208

Finetuning SAM

Our contributions: ®
| e 2
® Re-implement iterative training L
o Original code not published I
o Complex procedure p

o Use to finetune SAM components

\ lightweight mask decoder
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Finetuning SAM + improve instance seg

Our contributions: ®
| e 2
® Re-implement iterative training L
o Original code not published N
o Complex procedure A

o Use to finetune SAM components
P lightweight mask decoder

A
e Add decoder for instance segmentation (AlIS) T

o Predicts foreground
o Regresses distances to boundary + centroid image
o Input for watershed ) encoder

prompt

‘ encoder ‘
proInpt im!xge
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Finetuning for light microscopy

Training data: cell and nucleus segmentation (published datasets)

@)

O O O O

Cells in Phase-contrast (LiveCELL)

Cells in Tissue (TissueNet)

Cells and Nuclei in Fluorescence (Neurips Cell Seg, DSB)
Cells in LightSheet (PlantSeg-Roots)

Bacteria in labelfree imaging (DeepBacs)

Evaluate on test-split of training datasets (“in domain”)
and unseen datasets (“out of domain”):

©)

Nuclei and cells in confocal, cells in immunofluorescence, nuclei in histopathology, ...

Compare interactive and automatic instance segmentation

@)

Compare to CellPose baseline for automatic segmentation



Interactive Segmentation:

In domain & Out-of-domain
Default Finetuned  Default Finetuned Default Finetuned  Default Finetuned

SAM SAM SAM SAM SAM SAM SAM SAM

L .,
N e <

LiveCELL Lizard
Mouse
DeepBacs Embryo
\ "
TissueNet & PlantSeg-
Ovules
PlantSeg- .
Root CovidIF

24




25

Results: In Domain

Results for LIVECell Dataset
(In Domain; Test Split)

Evaluation:

® Interactive Segmentation:
o Derive prompts from ground-truth,
improve iteratively

® Instance segmentation:
o Compare with CellPose

e Both: compute segmentation
accuracy (compared to ground-truth)
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Automatic Segmentation

Instance segmentation on LIVECell Dataset

Runtimes on laptop (CPU);
including embedding computation (dominates for AlS)

VIT-B-LM
AlS: 9 sec

VIT-B
AMG: 75 sec
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Results: Out of domain

Results for out of-domain datasets.

Same evaluation procedure as before.
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Results: Out of domain

Results for out of-domain datasets.

Same evaluation procedure as before.
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Finetuning for electron microscopy

® Training data: Mitochondria and nucleus segmentation in electron microscopy
o Most training data from MitoNet (https://doi.ora/10.1016/j.cels.2022.12.006).

® Compare default and finetuned model.
o Compare automated segmentation with MitoNet.

e Evaluate on test-split of training datasets (“in domain”)

and unseen datasets (“out of domain”)
o Application to EM mitochondria from non-training data.


https://doi.org/10.1016/j.cels.2022.12.006

Interactive Segmentation:

In domain & Out-of-domain
Default Finetuned Default Finetuned Default Finetuned Default Finetuned
SAM SAM SAM SAM SAM SAM SAM SAM
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Muscle)
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30
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Results: In & out-of domain

VIiT Large

Evaluation: Same approach as for LM

® In domain (top row)
e Out of domain (rest)
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Results: In & out-of domain

ViT Large

Evaluation: Same approach as for LM

® In domain (top row)
e Out of domain (rest)
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Mitochondria

Instance segmentation on Lucchi Dataset

Runtimes on laptop (CPU);
including embedding computation (dominates for AlS)

VIT-B-EM
AIS: 10 sec
VIT-B
%4 AMG: 80 sec
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Finetuning as a user

CovidIlF

Improve models further for your data?

® How much data is needed?

® Which computational resources are
required?
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Finetuning as a user

CovidIF

Improve models further for your data?

® How much data is needed?

® Which computational resources are

required?

a

<

e Few images with annotations are
sufficient!

® Finetuning is possible on CPU (but
takes quite long); reasonable time
on a GPU.
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Application in practice

SAM (pretrained
for modality)

{New microscopy W ! (Automatic }

data LSegmentatlon
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Application in practice

SAM (pretrained
for modality)

|

New microscopy W |

data

Automatic W Result not (lnteractive
15egmentationJ good enough? Lcorrection

|
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Application in practice

SAM (pretrained
for modality)

New microscopy W |

data

Automatic
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Result not ( Interactive

|
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good enough? L correction
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Application in practice

“Personalized”

New microscopy W |

data

Automatic
L Segmentation

SAM -

Retrain! J

Result not ( Interactive

|
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good enough? L correction
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Application in practice

Result not
g good enough?




MIicroSAM:
Napari Integration
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microSAM: SAM for napari

® napari plugins that enable interactive and automatic:
o 2D Segmentation
o 3D Segmentation
o Tracking (2D + time)
o Finetuning on own data

e Core functionality:
o Default + finetuned models
o Multidimensional segmentation / tracking
(interactive and automatic)
o Tiled prediction for large images
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microSAM: SAM for napari

® napari plugins that enable interactive and automatic:

©)

@)
@)
@)

2D Segmentation

3D Segmentation
Tracking (2D + time)
Finetuning on own data

e Core functionality:

@)
@)

©)

Default + finetuned models
Multidimensional segmentation / tracking
(interactive and automatic)

Tiled prediction for large images

Code and documentation available at: \

https://github.com/computational-cell-analytics/micro-sam

New release (v0.5):
® Latest microscopy models, i
compatible with Biolmage.lO modelzoo.
e Updated and extended Ul,
napari plugin integration.
e Will be announced later this or early next week

(it’s done, but we need to test it and
K update documentation). /



https://github.com/computational-cell-analytics/micro-sam
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Plan Live Demos

Starting the tool, explain components

2D Segmentation on LiveCELL
o Compare default and finetuned model (vit_b, show auto segmentation for vit_b)

2D Segmentation with tiling (with vit_t)

3D Segmentation on Lucchi
o Use precomputed embeds and amg

Finetuning (on the Lucchi data we have annotated)



Next Steps & Outlook
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Feedback and contributions on
the tool are very welcome!

Next steps

® Create v1.0 release: same as v0.5 with additional:

o Full Biolmage.lO integration to enable cross-compatibility.
m  Microscopy Image Browser, QuPath, BioEngine, ...

® Integration of efficient training procedures for finetuning (LoRA)
o To enable better training on CPU and small GPUs

® Provide better and more models:
o EM Organelle Generalist Model

m Training on OpenOrganelle and other organelle segmentation datasets.

o Histopathology Model

Check out our repository for all the details:
https://github.com/computational-cell-analytics/micro-sam



https://github.com/computational-cell-analytics/micro-sam
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Outlook:
Universal microscopy segmentation and tracking

® Incorporate 3D (2D + time) segmentation in SAM-like model
o Advantage Transformer: same model for 2d and 3d is possible!

e \Vision Mamba: Investigate newer (more efficient) architectures
o Our recent (preliminary!) work: https://arxiv.org/abs/2404.07705

e Semantic awareness (e.g. differentiate organelles in EM, one model for microscopy)

e Zero-shot adaptation (improve segmentation from examples)


https://arxiv.org/abs/2404.07705
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