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functions of mass ratio and gap ratio [14], q 2 ⁄ , is a 
flow variable that is commonly referred to as a reduced vortex 
lift coefficient in which  is the lift coefficient and  is the 
reference lift coefficient, usually taken as a constant of 0.3. 
	 and  are parameters which need to be determined 
empirically and have typical values 0.3 and	 12 [17]. 

For the ease of computation, the equations of motion can be 
non-dimensionalised with the following scaled quantities:  

 
∗ y D⁄ ;	 ∗ 4 ⁄ ; ∗ w w⁄ ; Ω ∗ Ω w⁄ ; ∗

c mw⁄ ; w t 
 
where w  is a chosen arbitrary frequency. Introducing these 
quantities into (1) and (2) gives the following on-dimensional 
equations : 
 

	w y Ω
Ω

2
Ω

  (3)                
 

Ω Ω 1 Ω     (4) 
 

where C 4⁄ ; C ⁄ , and all the 
asterisks in (3)and (4) are omitted for simplicity. 

B. Second Sub-Harmonic Solutions 

Clearly, due to the presence of the quadratic and cubic 
nonlinearity terms, it is not possible to obtain the exact 
analytical solutions of (3) and (4). However, for primary 
resonance approximate solutions may be obtained using the 
Method of Multiple Scales. Distinguishing the quadratic items 
from the other ones in (3) and (4) with a parameter 	 ≪ 1 , 
(3) and (4) can be written as [18]: 

 

	w y Ω
Ω

2
Ω

    (5) 
 

Ω Ω Ω Ω   (6)  
            

Let T , then the approximate solutions to (5) and (6) 
can be expressed as:  
 

, ∑ T , T , T , … , T                       (7) 
 

, ∑ T , T , T , … , T                       (8)     
                                                     

To study the Second Sub-harmonic Resonance, the non-
dimensional shedding frequency Ω (representing the 
frequency of external forcing) is expressed with the non-
dimensional structural frequency  and a detuning parameter 

 as: 
 

Ω 2 	                                (9)     
                                                                 

After substituting (7)-(9) into (5) and (6) and equating the 
coefficients of ( 0,1) on the both sides of the equations, 
the system is expanded into six coupled equations, which can 
be solved sequentially: 
 

:                 
A                              (10)          

                                                                                               
4                         (11)        

                                                                                               
:  

2 4 4 4
8 	   (12) 

 
2 4 2 2

A 2A 	 (13) 
 

where , , , ,  represent the first and second order 

derivatives, respectively, and ; ; ; 

. 

The general solutions of (10) and (11) can be written in the 
form: 
 

T T T
T             (14)   

                    

T

T
										 T

T  (15) 
 

where  and  are the complex conjugates of and , 
respectively. Then, substituting (14) and (15) into (12) and (13) 
gives: 
 

3 4 4 	 2

	 4

2 4
16 2

16 8

8 2

	 4

2 4
16 2

16 8

8  (16) 
 

where  represents other terms, and ′  means derivative 
with respect to time T . 

It is recognized that the terms related to  and 
 have the secular properties, which can cause a 

disproportionate increase in the relative magnitude of the 
additional correction generated at this order of perturbation 
[18]. In order to eliminate the secular properties of final 
solution, the terms related to  and  in (16) 
have to be set equal to zero, then the solutions of (17) and (18) 
can be obtained: 
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2 	 4

2 4
16 2

16 8
8 0   (17) 

 
2 	

4 2
4 16 2

16
8 8

0  (18) 
 

It is convenient to express  and as: 
 

                                     (19) 
 

	                                       (20) 
 
Then substituting (19) and (20) into (17) and (18) and 
separating real and imaginary parts leads to: 
 

0                     (21) 
 

0                     (22) 
 

0                     (23) 
 

0                     (24) 
 

The solutions of (21)-(24) can be expressed as: 
 

                                    (25) 
 

                                      (26) 
	

                                       (27) 
 

                                       (28) 
 

Substituting (25)-(28) into (21)-(24), it can be obtained: 
 

0                      (29) 

 

0                      (30)  

 
To get the trivial solutions, 

 

0                              (31) 

 
and 

0                              (32) 

 
Then 

0  (33) 
 

0    (34) 
 
The discriminants of the quadratic equations (33) and (34) 

can be obtained: 
 

4
                 (35) 

 
4

                (36) 
 

If both of the discriminants are negative ( 0  and 
0), then there are no real roots of (33) and (34). In the 

second sub-harmonic resonance in VIV of a marine pipeline 
close to the seabed, it means that the oscillation will decay 
with the increase of time. However, If both discriminants are 
positive ( 0  and 0 .), then there are two distinct 
roots of (33) and (34). In the second sub-harmonic resonance 
in VIV of a marine pipeline close to the seabed, it means that 
the oscillation will increase all the time. In this case, the 
attention has to be paid to the max allowable amplitude of the 
pipeline. When the amplitude of the pipeline exceeds the 
allowable one, the damage of pipeline will take place, which 
may lead to a big loss.  

III. CONCLUSION 

The second sub-harmonic resonance in VIV of a pipeline 
close to the seabed is studied using the wake oscillator method. 
The main purpose of this work was to derive the amplitude-
frequency equation with regard to second sub-harmonic 
resonance of the cylinder from a recently derived wake 
oscillator model and solve the equation analytically using the 
multiple scales method. Moreover, a method of predicting the 
trend of oscillation is proposed, which may be helpful in the 
engineering. 

APPENDIX 
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2 

 
2 3 8 2 2
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2 3 8 2 2
8  
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4 3 3
4 16 4
16
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