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Abstract—Stochastic modeling concerns the use of probability
to model real-world situations in which uncertainty is present.
Therefore, the purpose of stochastic modeling is to estimate the
probability of outcomes within a forecast, i.e. to be able to predict
what conditions or decisions might happen under different situations.
In the present study, we present a model of a stochastic diffusion
process based on the bi-Weibull distribution function (its trend
is proportional to the bi-Weibull probability density function). In
general, the Weibull distribution has the ability to assume the
characteristics of many different types of distributions. This has
made it very popular among engineers and quality practitioners, who
have considered it the most commonly used distribution for studying
problems such as modeling reliability data, accelerated life testing,
and maintainability modeling and analysis. In this work, we start
by obtaining the probabilistic characteristics of this model, as the
explicit expression of the process, its trends, and its distribution by
transforming the diffusion process in a Wiener process as shown in
the Ricciaardi theorem. Then, we develop the statistical inference of
this model using the maximum likelihood methodology. Finally, we
analyse with simulated data the computational problems associated
with the parameters, an issue of great importance in its application to
real data with the use of the convergence analysis methods. Overall,
the use of a stochastic model reflects only a pragmatic decision on
the part of the modeler. According to the data that is available and
the universe of models known to the modeler, this model represents
the best currently available description of the phenomenon under
consideration.

Keywords—Diffusion process, discrete sampling, likelihood
estimation method, simulation, stochastic diffusion equation, trends
functions, bi-parameters Weibull density function.

I. INTRODUCTION

THE statistical analysis of what are referred to as
lifetime, survival time, or failure time data has become

a topic of considerable interest to statisticians and workers
in many areas, including the biomedical, engineering, and
social sciences (e.g. Woolson and Clarke [1], Mason et al.
[2]). Applications of lifetime distribution methodology range
from investigations of the durability of manufactured items to
studies of human diseases and their treatment (e.g. Blischke
and Murthy [3], Klugman and Parsa [4]). Some methods of
dealing with lifetime data are quite old, but starting about 1970
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the field expanded rapidly with respect to methodology, theory,
and fields of application. For instance, Davis [5] described
applications of the exponential distribution to reliability, Feigl
and Zelen [6] provided an early application of an exponential
model with covariates to medical survival data, and Cox [7]
discussed the gamma distribution in connection with failure
times. These include various parametric models and their
associated statistical methods, nonparametric and distribution
free methods, and graphical procedures.

Various parametric families of models are used in the
analysis of lifetime data and the modeling of aging or failure
processes. Among univariate models, a few distributions
occupy a central position because of their demonstrated
usefulness in a wide range of situations. Foremost in this
category are the exponential, Weibull, log-normal, log-logistic,
and gamma distributions (e.g. Gumbel [8], Lieblein and Zelen
[9], Pike [10] and Boag [11]). Actually, the Weibull distribution
is perhaps the most widely used lifetime distribution model.
Application to the lifetimes or durability of manufactured
items is common, and it is used as a model with diverse types
of items, such as ball bearings, automobile components, and
electrical insulation.

In recent years important advances have been made in
modeling based on stochastic diffusion processes, which
are defined and studied by several approaches. A number
of authors have treated these diffusion processes from the
viewpoint of the corresponding Itô stochastic diffusion process
(SDE), for instance Giovanis and Skiadas [12] with the Bass
distribution model, Katsamaki and Skiadas [13] with the
exponential model, and Giovanis and Skiadas [14] with the
logistic model. In spite of this, another way of defining and
studying stochastic diffusion processes is based on backwards
and forwards Kolmogorov equations, which are also known
as Fokker-Plank equations, associated with the corresponding
infinitesimal moments. For example, [15] for the the gamma
model, [16] for the diffusion model with cubic drift, and
[17] for the case of the use of the lognormal and Gompertz
diffusion process. This method of approaching and studying
the topic is particularly interesting when we wish to construct
nonhomogeneous versions of a diffusion by introducing just
time functions (exogenous factors) into the infinitesimal
moments. Furthermore, the question of statistical inference and
the problem of parameters estimation in these processes have
received recently considerable attention, in situations in which
the process is observed continuously or discretely. In most
cases, the parameter estimation is based on approximating the
maximum likelihood methodology. A large body of literature
has this question, both in general and in particular cases,
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see [18]-[20]. The problem becomes yet more complex when
the distribution parameters are unknown, which we need to
estimate from the samples and the uncertainty increases even
more.

This paper introduces a stochastic diffusion process based
on the bi-parameter Weibull distribution. Section I contains
the definition of the model and its characteristics where, in
order to obtain the distribution of the process, we employed
the theorem of Ricciardi. Section II deals with the inference
study of the unknown parameters by the mean of maximum
likelihood method, although there are many ways to estimate
the parameters, the maximum likelihood is generally the most
popular method. This is extended in Section III, where we
use simulated data to sort out the computational problems
associated with the parameters and to obtain the estimators
of the model.

II. FORMULATION OF THE MODEL AND ITS BASIC
PROBABILISTIC CHARACTERISTICS

A. The Model

One-dimensional stochastic differential equations of the Itô
type have the following general form:

dx(t) = a (x(t), t)) dt+ b(x(t), t)dW (t), (1)

where the functions a (x(t), t)) and b(x(t), t) are so-called
drift and diffusion terms, respectively, and W (t) is a standard
Wiener process. The drift and diffusion terms in (1) determines
the statistical properties of the variable x(t).

The proposed model in this work is the
stochastic Weibull diffusion process defined as the
time-nonhomogeneous one-dimensional diffusion process
{x(t), t ∈ [t1, T ], 0 < t1 ≤ T}, with values in (0,+∞) by
the following Itô’s stochastic differential equation (SDE)

dx(t) =
(α
t
− βtα

)
x(t)dt+ σx(t)dw(t), (2)

with the initial condition P(x(t1) = x1) = 1 and where w(t)
is a standard Wiener process.

Alternatively, the above-defined process can be considered
by the Kolmogoroff approach with infinitesimal moments
(drift and diffusion coefficients) given by⎧⎨⎩ a(x, t) =

(α
t
− βtα

)
x,

b(x, t) = σ2x2.
(3)

It can be shown that the functions a(x, t) and b(x, t),
0 < x < +∞, are Borel measurables and satisfy the
uniform Lipschitz and the growth conditions (see Kloeden
and Platen [21]). As a result, there exist a separable,
measurable and almost surely sample continuous process
{x(t), t ∈ [t1, T ], t1 > 0} which is the unique (a.s.) solution
of the SDE (2). Thus, we denote the probability density
function (p.d.f.) of the process by f(y, t | x, s), which is
the unique solution to the following equations, known as the
Fokker-Planck and the backward Kolmogorov equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f(y, t | x, s)
∂t

=− ∂

∂x
[a(y, t)f(y, t | x, s)]

+
1

2

∂2

∂x2
[b(y, t)f(y, t | x, s)],

∂f(y, t | x, s)
∂s

=− a(x, t)
∂f(y, t | x, s)

∂x

− 1

2
b(x, t)

∂2f(y, t | x, s)
∂x2

,

(4)

with the delta-type initial condition

lim
t→s

f(y, t | x, s) = δ(y − x),

where δ(.) is the Dirac delta function on R.

B. Distribution of the Model

The common solution to the Kolmogorov equations (4) is
obtained by the use of Ricciardi’s theorem [22] which basically
transforms a diffusion process to a Wiener process. In fact,
the infinitesimal moments (3) verify the conditions of the
Ricciardi’s theorem; therefore, such a transformation exists
and has the following form:

⎧⎨⎩
φ(t) = t,

ψ(x, t) =
1

σ
[log(x)− α log(t) +

β

α+ 1
tα+1 +

σ2

2
t].

(5)

From the above, the p.d.f. of the considered process have
the following expression:

f(y, t | xs, s) =
1√

2πσ2(t− s)y−1

exp(− [log(y)− μ(s, t, xs)]
2

2σ2(t− s)
),

(6)

where μ(s, t, xs) is the mean of the desired probability
distribution.

μ(s, t, xs) = log(xs) + α log(
t

s
)− β

α+ 1
(tα+1 − sα+1)

− σ2

2
(t− s).

(7)

Consequently, according to (6), the p.d.f. of the process
is the density function of the one-dimensional lognormal
distribution.

x(t) | x(s) = xs ∼ Λ1[μ(s, t, xs), σ
2(t− s)].

C. Moments of the Process

We will make strong use of the fact that the random variable
x(t) | x(s) = xs is distributed as Λ1

[
μ(s, t, xs), σ

2(t− s)
]

and bearing in mind that the r-th conditional moment of the
process is expressed by:

E [xr(t)|x(s) = xs] = exp

(
rμ(s, t, xs) +

rσ2

2
(t− s)

)
. (8)
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In short, by considering the case r = 1 in the (8), the
conditional trend function of the process is:

E [x(t) | x(s) = xs] = xs

(
t

s

)α

e−
β

α+1 (t
α+1−sα+1). (9)

Thereby, assuming the initial condition P(x(t1) = x1) = 1,
the trend function of the process has the following form:

E [x(t)] =
xt1e

β
α+1 t

α+1
1

tα1
tαe−

β
α+1 t

α+1

. (10)

Remark 1: Note that in the absence of white noise (i.e.
σ = 0), by a simple integration, the solution of the ordinary
differential equation associated with the SDE (2) is x(t) =

ktαe−
β

α+1 t
α+1

, which is proportional to the bi-parameter
Weibull density function.

We can also see that the trend function given in (10)
is proportional to the density function of the bi-parameter
Weibull distribution. For those reasons, the process received
the name of Weibull diffusion process.

III. STATISTICAL INFERENCE ON THE MODEL

A. Maximum Likelihood Function

As long as we obtain the explicit expression of the p.d.f.
of the process (lognormal distribution), we can estimate the
parameters involved in the process, making use of discrete
sampling, based on the conditioned likelihood function which
is the product of the corresponding process transitions (given
by (6)).

Let us consider a discrete sampling of the process {X(ti) =
xti = xi, 1 ≤ i ≤ n} for the instants t1, . . . , tn, with
ti − ti−1 = h (h > 0), for i = 2, . . . , n. Assuming the initial
distribution P [x(t1) = x1] = 1, the conditioned likelihood
estimate of the parameters θ = (θ1, θ2, θ3) ≡ (α, β, σ2) is
that value θ = θ̂ = (α̂, β̂, σ̂2) which maximizes the likelihood
function associated.

L(x1, . . . , xn; θ) =
n∏

i=2

fθ (xi, ti | xi−1, ti−1), (11)

over θ, i.e., which gives highest local probability to the
observed sample (X(t1), . . . , X(tn)) = (x1, . . . , xn). In other
words,

L(x1, . . . , xn; θ̂) = sup
θ

{
n∏

i=2

fθ (xi, ti | xi−1, ti−1)

}
. (12)

Often such maximizing value θ̂ is unique and it can be
obtained by solving

∂

∂θj

n∏
i=2

fθ (xi, ti | xi−1, ti−1) = 0, j = 1, . . . , 3. (13)

Equation (13) reflects the fact that a smooth function has a
horizontal tangent plane at its maximum. Thus solving such

equations is necessary but not sufficient, since it still needs to
be shown that it is the location of a maximum.

Since taking derivatives of a product is tedious, one usually
resorts to maximizing the log of the likelihood (11), i.e.,

lv(α, β, σ
2) =− n− 1

2
log(2πh)− n− 1

2
log(σ2)

−
n∑

j=2

log(xj)− 1

2σ2h

n∑
j=2

[
Bj +

σ2

2
h

]2
,

with v = (x1, . . . , xn), and

Bj = log(xj/xj−1)− α log(tj/tj−1) +
β

α+ 1

(
tα+1
j − tα+1

j−1

)
,

for all j = 2, . . . , n, being simpler to deal with the likelihood
equations ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂lx1,...,xn
(α, β, σ2)

∂α
= 0,

∂lx1,...,xn
(α, β, σ2)

∂β
= 0,

∂lx1,...,xn
(α, β, σ2)

∂σ2
= 0.

(14)

In a word, by solving the (14), we obtain α̂, β̂, and σ̂2, the
maximum likelihood estimators of, respectively, α, β, and σ2.

B. Maximum Likelihood Estimators
In our case, the derivatives of the log-likelihood function,

with respect to the parameters α, β, and σ2 are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂lv(α, β, σ
2)

∂σ2
= −n− 1

2σ2
+

1

2σ4h

n∑
j=2

A2
j −

1

2σ2

n∑
j=2

Aj ,

∂lv(α, β, σ
2)

∂β
= − 1

σ2h

n∑
j=2

Aj

(
tα+1
j − tα+1

j−1

α+ 1

)
,

∂lv(α, β, σ
2)

∂α
= − 1

σ2h

n∑
j=2

∂Bj

∂α
Aj ,

(15)
where Aj = Bj +

σ2

2 h, j = 2, . . . , n. Then

∂Bj

∂α
=− log

(
tj

tj−1

)
− β

(α+ 1)2
(tα+1

j − tα+1
j−1 )

+
β

α+ 1

[
ln(tj)t

α+1
j − ln(tj−1)t

α+1
j−1

]
.

We obtain after some calculation, the following likelihood
equations:

−(n− 1)σ2h+
n∑

j=2

A2
j + σ2h

n∑
j=2

Aj = 0, (16a)

n∑
j=2

Aj

[
tα+1
j − tα+1

j−1

]
= 0, (16b)

n∑
j=2

Aj
∂Bj

∂α
= 0. (16c)
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From (16a), we can get (as a positive solution) the
expression of the estimator σ̂2

σ̂2

2
=

1

(n− 1)h

n∑
j=2

B̂2
j(

1 + 1
n−1

∑n
j=2 B̂

2
j

)1/2

+ 1

(17)

Then, by replacing the expression of σ̂2 in (16b) and (16c), we
obtain the estimators α̂ and β̂, from the following nonlinear
equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
j=2

Âj

[
tα̂+1
j − tα̂+1

j−1

]
= 0,

n∑
j=2

ÂjĈ = 0.

(18)

Here, for all j = 2, . . . , n, we have

B̂j = log(xj/xj−1)− α̂ log(
tj

tj−1
) +

β̂

α̂+ 1
(tα̂+1

j − tα̂+1
j−1 ),

Âj = B̂j +
σ̂2

2
h,

and

Ĉj =− log

(
tj

tj−1

)
− β

(α̂+ 1)2
(
tα̂+1
j − tα̂+1

j−1

)
+

β

α̂+ 1

[
ln(tj)t

α̂+1
j − ln(tj−1)t

α̂+1
j−1

]
.

Remark 2: From Zenha’s theorem [23], we can obtain
the maximum likelihood estimated trend function and the
conditional estimated trend function of the process, by
substituting the parameters by their estimators in (9) and (10):

Ê [x(t) | x(s) = xs] = xs

(
t

s

)α̂

e−
β̂

α̂+1 (t
α̂+1−sα̂+1), (19)

Ê [x(t)] =
xt1e

β̂
α̂+1 t

α̂+1
1

tα̂1
tα̂ e−

β̂
α̂+1 t

α̂+1

. (20)

IV. APPLICATION TO SIMULATED DATA

This section will complete the inference study of the
parameters of the model, with the specifications and
improvement previously mentioned, to obtain the maximum
likelihood estimations for parameters α, β, and σ2 in
a stochastic Weibull diffusion process with infinitesimal
moments given earlier by (3).

A. Simulated Trajectory of the Process

The trajectory of the model can be obtained by simulating
the exact solution of the SDE (2), which is found by the mean
of Itô’s formula. That’s why we consider the transformation
y(t) = log(x(t)), thereby after applying the Itô’s formula, we
have the following SDE:

TABLE I
MEAN AND STANDARD ERROR OF α̂

h num.obs. mean(α) SE(α)

0.007 100 0.5035 0.0093
0.007 500 0.5012 0.0096
0.007 1000 0.4915 0.0185

0.0035 100 0.4958 0.0147
0.0035 500 0.5024 0.0077
0.0035 1000 0.5009 0.0070
0.0007 100 0.5137 0.0210
0.0007 500 0.5008 0.0101
0.0007 1000 0.5142 0.0220

⎧⎨⎩ dy(t) =

(
α

t
− βtα − σ2

2

)
dt+ σdw(t),

y(t1) = log(x1).

(21)

By integrating (21), we obtain:

y(t) =y(t1) + α log(
t

t1
)− β

α+ 1
(tα+1 − tα+1

1 )

− σ2

2
(t− t1) + σ (w(t)− w(t1)) ,

(22)

In short, we deduce the analytical expression of the solution
of SDE(2) from the (22)

x(t) =x1 exp

(
α log

(
t

t1

)
− β

α+ 1

(
tα+1 − tα+1

1

)
−σ2

2
(t− t1) + σ (w(t)− w(t1))

)
.

(23)

Therefore, the simulated trajectories of the process are
obtained from the following discretizing time interval [t1, T ]:
ti = t1 + (i − 1)h, for i = 1, . . . , N (N is an integer and
h > 0 is the discretization step), taking into account that
the random variable in the expression σ(w(t) − w(t1)), in
(23), is distributed as a one-dimensional normal distribution
N1

(
0, σ2(t− t1)

)
.

B. Simulated Data

In this simulation, we consider M process trajectories, each
of which has N observations, estimating the parameters by
means of the system (18). In total M estimators are obtained
for each parameter (i.e. one vector of M components), from
which we compute the sample mean and the standard error
(SE) of each estimator.

Let us study the evolution of the mean and the standard error
of the estimators with respect to the variation in the number
N and h. The results of this study are shown in Tables I-III.

A Matlab program was implemented to carry out the
calculation required for this study. The true parameter values
considered in this simulation are α = 0.5, β = 0.8, σ = 0.04
and the start point is xt1 = 0.001, and t1 = 0.05.

Fig. 1 shows some simulated trajectories of the process and
the estimated trend function of the process obtained using te
Zenha theorem, replacing the parameters by their estimators
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Fig. 1 Simulated trajectories of the stochastic Weibull diffusion process and its estimated trend function

TABLE II
MEAN AND STANDARD ERROR OF β̂

h num.obs. mean(β) SE(β)

0.007 100 0.8183 0.0921
0.007 500 0.8046 0.0137
0.007 1000 0.8129 0.0218

0.0035 100 0.7894 0.2394
0.0035 500 0.7879 0.0354
0.0035 1000 0.7637 0.0964
0.0007 100 1.3072 0.8539
0.0007 500 0.8358 0.1891
0.0007 1000 1.0253 0.3835

TABLE III
MEAN AND STANDARD ERROR OF σ̂

h num.obs. mean(σ) SE(σ)

0.007 100 0.0394 0.0025
0.007 500 0.0401 0.0008
0.007 1000 0.0403 0.0009

0.0035 100 0.0380 0.0021
0.0035 500 0.0404 0.0008
0.0035 1000 0.0399 0.0009
0.0007 100 0.0380 0.0030
0.0007 500 0.0398 0.0015
0.0007 1000 0.0405 0.0011

in (10). In this simulation we assume h = 0.007, N = 100,
M = 10.

V. CONCLUSION

The methodology introduced, based on stochastic
nonhomogeneous Weibull diffusion process, which perform
the possibility to incorporate exogenous factors. From a
theoretical point of view, we conclude that the bi-parameter

Weibull process presented, which is of a nonhomogeneous
nature, is such that we can explicitly establish its probability
transition density function in terms of a log-normal distribution
(6) together with its moment functions, and in particular
its trend functions (10). We can also establish parameter
estimation results using the maximum likelihood method and
construct approximated confidence intervals, on the basis
of discrete sampling. Therefore, the bi-parameter Weibull
process we described is followed by a set of statistical results
that enable it to be applied to real data.

ACKNOWLEDGMENT

M. Bahij is grateful for the financial support of the Erasmus
Mundus Action 2 Strand 1 Program through the BATTUTA
Project (North Africa) funded by the European Commission
(EACEA). S. Gama and J. Matos were partially supported
by CMUP (UID/ MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and European structural funds
(FEDER), under the partnership agreement PT2020.

REFERENCES

[1] R. F. Woolson and W. R. Clarke, Statistical Methods for the Analysis
of Biomedical Data, 2nd ed. John Wiley & Sons, Vol.371, New York,
United States, 2000.

[2] R. L. Mason, R. F. Gunst, and J. L. Hess Statistical Design and Analysis of
Experiments: with Applications to Engineering and Science,Wiley, New
York, United States, 1989.

[3] W. R. Blischke and D. N. P. Murthy, Probability distributions for
modeling time to failure, in Reliability: Modeling, Prediction, and
Optimization, John Wiley & Sons, Inc.,Hoboken, NJ, USA, 2000.

[4] S. A. Klugman, and R. Parsa, Fitting bivariate loss distributions with
copulas, Insurance: Mathematics and Economics, Elsevier, Vol. 24, no.1,
1999, pp. 139–148.

[5] D. J. Davis, An Analysis of some Failure Data, Journal of the American
Statistical Association, Taylor & Francis Group, Vol. 47, no.250, 1952,
pp. 113–150.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:10, No:6, 2016 

305International Scholarly and Scientific Research & Innovation 10(6) 2016 scholar.waset.org/1307-6892/10004736

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, M

at
he

m
at

ic
al

 a
nd

 C
om

pu
ta

tio
na

l S
ci

en
ce

s 
V

ol
:1

0,
 N

o:
6,

 2
01

6 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

47
36

http://waset.org/publication/A-Stochastic-Diffusion-Process-Based-on-the-Two-Parameters-Weibull-Density-Function/10004736
http://scholar.waset.org/1307-6892/10004736


[6] P. Feigl and M. Zelen, Estimation of exponential survival probabilities
with concomitant information, Biometrics, JSTOR, 1965, pp. 826–838.

[7] D. R Cox, Renewal Theory Methuen, CoxRenewal Theory1962, London,
1962.

[8] E. J. Gumbel, Statistics of extremes. 1958, Columbia Univ. press, New
York, 1958.

[9] J. Lieblein and M. Zelen, Statistical investigation of the fatigue life of
deep-groove ball bearings, Journal of Research of the National Bureau
of Standards, Citeseer, Vol. 57, no.5, 1956, pp. 273–316.

[10] M. C. Pike, A method of analysis of a certain class of experiments in
carcinogenesis, Biometrics, JSTOR, Vol. 22, no.1, 1966, pp. 142–161.

[11] J. W. Boag, Maximum Likelihood Estimates of the Proportion of Patients
Cured by Cancer Therapy, Journal of the Royal Statistical Society. Series
B (Methodological), Royal Statistical Society, Wiley, Vol. 11, no.1, 1949,
pp. 15–53.

[12] A. N. Giovanis and C. H. Skiadas, A Stochastic Logistic Innovation
Diffusion Model Studying the Electricity Consumption in Greece and the
United States, Technological Forecasting and Social Change, Vol. 61,
1999, pp. 235–246.

[13] A. Katsamaki and C. H. Skiadas, Analytic solution and estimation of
parameters on stochastics exponential model for a technological diffusion
process, Applied Stochastics Model and Data Analysis, Vol. 11, 1995, pp.
59–75.

[14] C. Skiadas and A. Giovani, A stochastic bass innovation diffusion model
for studying the growth of electricity consumption in Greece, Applied
Stochastic Models and Data Analysis, Vol. 13, 1997, pp. 85–101.

[15] R. Gutiérrez-Sánchez, A. Nafidi, A. Pascual, E. R. Ábalos, Three
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