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Abstract

Due to the complexity of the data involved, understanding and visualizing pat-
terns of human genetic variation is often challenging. Many of our tools for
data visualization focus on understanding genetic population structure, PCA
and STRUCTURE, emphasize the differences among people. Though appropri-
ate for specific applications, these figures are readily misinterpreted by broader
audiences. Here, we present a set of Euler diagram based visualizations as a
simple tool for demonstrating the shared nature of human genetic variation.

Main

A key insight from human genetics is that, as a species, we are all very ge-
netically similar to one another and share much of our genetic variation. Our
genome can be depicted as a string of letters (A, T, G, and C), referring to
the four nucleobases found in DNA. Two human genomes picked at random are
identical at ∼99.9% of sites (e.g. [7]).1 In that small fraction that doesn’t match
(∼1/1000 sites), your chromosome might carry an A while the other person’s
chromosome carries a T. The majority of sites with variation have no known
function; indeed, carrying an A instead of an T may have no discernible effect
on your traits. Much of the common genetic variation is shared among human
groups [5]. Human geneticists are interested both in understanding which sites
in the genome are functional and in unraveling the subtle differences between
individuals and groups that highlight our shared history.

1This number accounts for only single nucleotide variants and would go down slightly if
copy number variants were included.
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Due to the complexity of the data involved, understanding and visualizing
patterns of human genetic variation is often challenging. One helpful place to
start is to visualize the global frequencies of variants at individual sites within
the genome to see how variation is shared - see the Geography of Genetic Vari-
ants Browser from the Novembre Lab for a nice interactive tool [8]. However,
because the human genome contains approximately 3 billion sites, it would
take a few lifetimes to walk through the genome in this manner, so researchers
often turn to genome-wide summary statistics to capture patterns of genetic
variation. Population structure is commonly visualized using approaches like
principal component plots which separate individuals along the major axes of
genotypic variation. As is their purpose, these plots highlight the differences
between individuals and groups, and so it can be easy to forget that their axes
explain a relatively small proportion of the genetic variation observed in the
subset of base pairs that vary between individuals.

Here, we share some resources for teaching human genetics using data from
the 1000 Genomes Project, inspired by [3] and [1]. These visualizations first
center on the variation in a set of diverse samples from the Americas (see Figure
2) before expanding to include more globally distributed examples. In a small
sample of people, we expect that they vary at only a small fraction of sites in
their entire sequenced genomes.2 Most of this variation is rare, and though
these rare variants can be medically salient, they are the properties of specific
people and their immediate families, rather than of the larger human groups.
To learn about more widely shared variation and following methods similar to
those in [1], we defined a variant as “common” in a sample if it was found in
more than 5% of people’s chromosomes and then filtered the data based on this
criterion.

The small blue circle in the above figure captures just how little variation
rises to this frequency in the Americas. As the rest of this manuscript focuses
on the sharing of these common variants, it’s important to maintain perspective
regarding the scale of these differences relative to the size of the human genome.

There are seven different samples from the Americas in the 1000 Genomes
Project dataset (as described in [1]), each sample being made up of 60-105
people, and we counted the number of common variants found in each sample.3

The levels of genetic diversity, shown as differences in the number of common
variants, vary between samples: African Caribbean in Barbados (ACB) and
African Ancestry in Southwest US (ASW) display the highest levels of variation.
Similar to Figure 1 from [3], we implement an Euler diagram to visualize the
amount of overlap in common genetic variation between samples (Figure 3).
This style of visualization is like a Venn diagram, with the added property that
the areas and overlaps of the shapes are proportional to the number of common
variants in the corresponding samples.

It’s clear from this figure that the majority of common variants are not

2If we sequence the entire population of the world, we’d see nearly every site being variable
in some one. But these variants would be vanishingly rare in the population, overall.

3It would be interesting to explore rarefaction approaches to account for the differences in
the sample size [2].
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Figure 1: The scale of common variants in the Americas compared to the human
genome. The area of each circle is scaled proportionally by the number of sites in
that category. The small blue circle corresponds with the number of common variants;
“common” is defined as having a minor allele frequency of greater than 5% in at least
one of the samples.
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Figure 2: Number of common variants in seven samples from the Americas.
The area of each circle is proportional to the number of common variants within that
sample from the 1000 Genomes Project. A “common” variant is defined as having a
minor allele frequency of greater than 5%, where the minor allele identity is determined
by its global allele frequency (its frequency across all samples in the 1000 Genomes
Project). The number of individuals within each sample has also been included to
ensure that this quantity is relatively consistent between samples.
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Figure 3: Overlap in common variants between samples from the Americas. See
Figure 2 for the color legend. It is not mathematically possible to generate ellipses
with a given overlap without distortions to the areas. See the Technical details section
(below) for statistics quantifying the slight errors in this and following Euler diagrams.

unique to a single sample. Instead, they are often widely distributed and shared
between samples, resulting in a large degree of overlap between ellipses. The
African Caribbean and African American (ACB and ASW) samples share nearly
all of the common variation found in other samples. However, as noted above,
they also have greater amounts of genetic variation compared to that found in
the other samples (larger area), and some of that variation is not common in
the other samples from the Americas. This does not mean that these variants
are completely absent from the other groups, but instead, that these variants
are rare or undetected in the other samples included in the figure. For example,
maybe 10% of people’s chromosomes in the ACB sample carry a T instead of
an A at a particular site, but this T is found in only 1% of the CEU sample.

To look at the overlap in a different way, we first considered the variation
that is common (>5%) in a given sample and then identified in which other
samples the variant is also common.

This method of filtering results in an Euler diagram where the ellipse of
the highlighted sample completely encircles the other ellipses. A sample with
greater numbers of common variants that are not common in other samples will
show a larger disparity in size compared with the other ellipses. As before, these
figures illustrate the high degree of sharing of variation among samples in the
Americas. The African Caribbean in Barbados (ACB) and African Ancestry
in Southwest US (ASW) samples contain the most genetic diversity, with some
of this variation being shared only between those two samples. In compari-
son, there is somewhat less common variation (small diagram size) in the other
samples and nearly all of it is shared.

Zooming back out and putting Figure 3 back onto the scale of the whole
genome, the Euler diagram shrinks down to match the fraction of common
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Figure 4: Sharing of common variants found in each sample from the Americas.
Each diagram highlights a different sample, identified in the title, that was used to
filter the variants down to only those that were common in the sample. The sizes of
each plot are proportional to the number of variants included in the analysis (sizes are
not proportional to previous figures). See Figure 8 near the bottom of this manuscript
for an alternative visualization of this figure.

variants in the genome.
Genetic diversity in the Americas reflects the history of colonialism and the

transatlantic slave trade, which has moved people from across the globe into the
region over the past few hundred years. Given this, you may wonder whether
the high degree of overlap reflects this recent history of the Americas or whether
it is representative of sharing that is present in geographically distant samples.
To look into this question, we created an Euler diagram with five samples, one
from each of the broad geographic groupings used by [1] (Figure 6).

Overall, this diagram has a very similar structure to the diagram created
with the samples from the Americas. There is a high degree of overlap between
all of the samples, with the higher genetic diversity of the Yoruba in Ibadan,
Nigeria sample resulting in a larger ellipse that stretches outside of the cluster
of other ellipses. This pattern matches the one of high diversity in the African
Caribbean and African American (ACB and ASW) samples from the Americas
described above. Even when considering quite geographically distant samples
of humans, the dominant pattern is that of shared genetic variation.

Lastly, given this global view, we can zoom in and look at how variation is
partitioned at finer geographic scales by using all 26 samples within the 1000
Genomes Project dataset. We see that samples from Africa contain the greatest
amount of genetic diversity. Much of that common genetic variation is shared,
but each sample contains some variation not found in other samples. There’s a
slight reduction in the variation present in samples whose recent ancestors lived
outside Africa, consistent with the view that humans evolved in Africa, and
when humans first migrated out of Africa, they took with them only a subset
of the genetic diversity present in Africa.

It’s easy for us to fall into the trap of thinking that humans are very genet-
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Figure 5: Common variants in perspective. An Euler diagram of the common
variants in samples located in the Americas relative to the scale of the human genome.
As a small note, the positions and orientations of ellipses within the Euler diagram
differ slightly from Figure 3. This is because the ‘eulerr‘ package gives varied results
with each run due to random starting conditions within the algorithm.
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Figure 6: Overlap in common variants between samples from global samples. An
Euler diagram of the common variants in five geographically distant samples: Bengali
in Bangladesh (BEB), Han Chinese in Beijing, China (CHB), British in England and
Scotland (GBR), Mexican Ancestry in Los Angeles, California (MXL), and Yoruba in
Ibadan, Nigeria (YRI).

Figure 7: Sharing of common variation within geographic regions. Five Euler
diagrams of the 26 global samples using the broad geographic groupings from [1]. See
Table 2 in the Technical details section for the color legend for each subfigure.
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ically different. Historically, our ideas about the structure of human biological
variation have been shaped by a few visible physical traits, notably skin color,
that have a geographic pattern. But the genetic variants contributing to skin
pigmentation are unrepresentative of the more general patterns of genetic shar-
ing present among groups of people sampled from across the world. The genetic
changes involved in skin pigmentation differences can show striking geographic
patterns (e.g SLC24A5), but that is because they have been shaped by strong
local adaptation to the climatic conditions that people encountered as they
moved around the world. These loci are fascinating examples of adaptation but
are also the exception in comparison to the high degree of sharing that we see
for most of human genetic variation.
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Technical details

We used the ‘geovar‘ package in Python to group the ∼92 million variants in-
cluded in the 1000 Genomes Project based on minor allele frequency (MAF)
[1]. Variants were separated into five bins based (MAF=0%, 0%<MAF<1%,
1%<MAF<5%, 5%<MAF<10%, and MAF>10%), though two bins would have
sufficed for this analysis (MAF<5% and MAF>5%). We used the ‘eulerr‘ pack-
age in R to calculate the position and orientation of ellipses in the Euler diagrams
[4]. Unfortunately, exactly proportionally scaling the area of every region of this
diagram becomes difficult to impossible as you increase the number of sets, or
samples. Because of this, we have included two goodness-of-fit measurements
provided by the ‘eulerr‘ package and described in further details in the package’s
tutorial. For both measurements, values closer to zero have less error. Below is
a table with these measurements for all of the Euler diagrams presented in this
manuscript:
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Table 1: Euler diagram statistics
figure stress diagError
3 4.53E-04 0.019573681

4 ACB 1.09E-04 0.008677686
4 ASW 1.52E-04 0.0133913503
4 CEU 1.04E-04 0.016955049
4 CLM 3.08E-04 0.0260526896
4 MXL 2.53E-04 0.0236936357
4 PEL 1.89E-04 0.0181390286
4 PUR 3.58E-04 0.0288044056

5 1.09E-09 0.0001789465
6 2.30E-03 0.0198055721

7 Africa 1.19E-03 0.027619266
7 Europe 6.39E-07 0.0004395497

7 South Asia 6.41E-04 0.0458260097
7 East Asia 5.77E-04 0.0410841878
7 Americas 4.53E-04 0.019573681

The package also breaks down error by set overlap to better understand
exactly which sections are over-/underrepresented by the visualization, though
that is not included here. With all of that being said, these diagrams offer a
unique visualization method that can be particularly useful for more qualitative
interpretations of the population relationships. We converted the output of ‘eu-
lerr‘ into a JSON format and passed this to JavaScript for plotting using D3.js.
Plotting is possible directly from R, but we used D3.js for its customizability and
support of interactive figures. Interactive versions of these figures are available
at https://james-kitchens.com/blog/visualizing-human-genetic-diversity, and all
of the figures (alongside the code we used to generate them) can be found at
https://github.com/kitchensjn/visualizing-human-genetic-diversity.
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Table 2: Figure 7 Color Legends
Africa Esan in Nigeria (ESN), Gambian in Western Division,

The Gambia - Mandinka (GWD), Luhya in Webuye,
Kenya (LWK), Mende in Sierra Leone (MSL), Yoruba
in Ibadan, Nigeria (YRI)

Europe Finnish in Finland (FIN), British in England and
Scotland (GBR), Iberian populations in Spain (IBS),
Toscani in Italy (TSI)

South Asia Bengali in Bangladesh (BEB), Gujarati Indians in Hous-
ton, TX (GIH), Indian Telugu in the UK (ITU), Punjabi
in Lahore, Pakistan (PJL), Sri Lankan Tamil in the UK
(STU)

East Asia Chinese Dai in Xishuangbanna, China (CDX), Han
Chinese in Beijing, China (CHB), Han Chinese South
(CHS), Japanese in Tokyo, Japan (JPT), Kinh in Ho
Chi Minh City, Vietnam (KHV)

Americas African Caribbean in Barbados (ACB), African Ances-
try in Southwest US (ASW), Utah residents (CEPH)
with Northern and Western European ancestry (CEU),
Colombian in Medellin, Colombia (CLM), Mexican An-
cestry in Los Angeles, California (MXL), Peruvian in
Lima, Peru (PEL), Puerto Rican in Puerto Rico (PUR)

Additional figures

The following figures offer alternative methods of visualization to those within
this manuscript. Details about these figures are provided in the figure captions.
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Figure 8: Sharing of common variants found in each sample from the Americas.
Seven ”coffee stain” diagrams, an alternate visualization of Figure 4. The colored
area is proportional in size to the number of common variants within the highlighted
sample, identified in the title, that aren’t shared with another sample. Within each
subfigure, the ellipse on the bottom corresponds with the highlighted sample and is
filled in with that sample’s respective color. All other ellipses are filled in with white
and stacked on top, thus giving the appearance of cutting out the area and leaving
only the common variants that aren’t shared with another sample.

Figure 9: Sharing of common variation within geographic regions. An UpSet
plot, an alternative visualization of Figure 6. UpSet plots, created by [6], are useful
for handling large numbers of sets. They can communicate the exact overlap between
sets, unlike Euler diagrams (as discussed in the Technical details section), but are also
a bit more challenging to read as there are multiple subfigures. To draw comparisons
with the Euler diagrams, the horizontal bar graph on the bottom left depicts the areas
of the ellipses and the vertical bar graph shows the areas of the overlaps between
ellipses referenced usings dots in the bottom subfigure.
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