{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Oo7dTA8PNR4T" }, "source": [ "# Stroke Prediction Using Clinical Data And CT" ] }, { "cell_type": "markdown", "metadata": { "id": "mn8q6sciNR4X" }, "source": [ "## Import Libraries" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "vg6exGjZNR4X" }, "outputs": [], "source": [ "import numpy as np\n", "import cv2\n", "import os\n", "from matplotlib import pyplot as plt\n", "import random\n", "import tensorflow as tf\n", "from keras import backend as K\n", "\n", "import pandas as pd\n", "import seaborn as sns\n", "from sklearn.decomposition import PCA\n", "\n", "from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix, classification_report, roc_auc_score, roc_curve, auc\n", "\n", "import keras\n", "import tensorflow\n", "from tensorflow.python.keras import layers\n", "from tensorflow.python.keras import models\n", "from tensorflow.keras.callbacks import ModelCheckpoint\n", "from scipy import ndimage\n", "from keras.applications import MobileNetV2\n", "import nibabel as nib\n", "from imblearn.metrics import specificity_score\n", "from sklearn.preprocessing import label_binarize\n", "\n", "from tensorflow.keras.models import Sequential\n", "\n", "from tensorflow.keras.layers import Dense, Conv2D, Flatten, Input\n", "\n", "from tensorflow.keras.layers import Input, Conv3D, MaxPooling3D, Flatten, Dense, BatchNormalization, concatenate\n", "\n", "from tensorflow.keras.models import Model\n", "\n", "from sklearn.preprocessing import LabelBinarizer, LabelEncoder\n", "from sklearn.metrics import confusion_matrix\n", "from sklearn.model_selection import StratifiedKFold\n", "\n", "np.random.seed(1)\n", "keras.utils.set_random_seed(1)\n", "\n", "drive_path = ''\n", "\n", "tensorflow.random.set_seed(1)\n", "sns.set(rc={'figure.figsize':(11.7,8.27)})\n", "sns.set_theme(style='whitegrid')" ] }, { "cell_type": "markdown", "metadata": { "id": "vzhPAxJMNR4Z" }, "source": [ "## Load Dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "q5RIW_ibNR4Z" }, "source": [ "### Clinical + Lab Data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "bH4qVcmPNR4a" }, "outputs": [ { "data": { "text/html": [ "
\n", " | patient_id | \n", "awitan | \n", "usia | \n", "tensi_atas | \n", "tensi_bawah | \n", "pt | \n", "pt_c | \n", "aptt | \n", "aptt_c | \n", "fibrinogen | \n", "gds | \n", "nihss_delta_3_cat | \n", "nihss_delta_2_cat | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "0.084363 | \n", "0.082348 | \n", "0.081907 | \n", "0.093346 | \n", "0.078607 | \n", "0.086936 | \n", "0.054387 | \n", "0.079857 | \n", "0.108844 | \n", "0.118202 | \n", "memburuk | \n", "tidak signifikan | \n", "
1 | \n", "2 | \n", "0.065616 | \n", "0.104680 | \n", "0.081907 | \n", "0.065343 | \n", "0.099213 | \n", "0.087685 | \n", "0.091623 | \n", "0.078625 | \n", "0.090270 | \n", "0.069889 | \n", "memburuk | \n", "tidak signifikan | \n", "
2 | \n", "3 | \n", "0.047806 | \n", "0.058621 | \n", "0.069894 | \n", "0.085879 | \n", "0.083186 | \n", "0.084687 | \n", "0.054387 | \n", "0.075421 | \n", "0.051067 | \n", "0.061915 | \n", "memburuk | \n", "tidak signifikan | \n", "
3 | \n", "4 | \n", "0.056242 | \n", "0.066995 | \n", "0.082126 | \n", "0.084572 | \n", "0.080134 | \n", "0.087685 | \n", "0.057998 | \n", "0.088237 | \n", "0.094169 | \n", "0.080067 | \n", "membaik | \n", "tidak signifikan | \n", "
4 | \n", "5 | \n", "0.126544 | \n", "0.087931 | \n", "0.120131 | \n", "0.093346 | \n", "0.082423 | \n", "0.086936 | \n", "0.074472 | \n", "0.082815 | \n", "0.084103 | \n", "0.071296 | \n", "signifikan | \n", "signifikan | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
140 | \n", "144 | \n", "0.056242 | \n", "0.071183 | \n", "0.065526 | \n", "0.065343 | \n", "0.090818 | \n", "0.081690 | \n", "0.078308 | \n", "0.079857 | \n", "0.079684 | \n", "0.061915 | \n", "memburuk | \n", "tidak signifikan | \n", "
141 | \n", "145 | \n", "0.084363 | \n", "0.083744 | \n", "0.076447 | \n", "0.065343 | \n", "0.086239 | \n", "0.077193 | \n", "0.091397 | \n", "0.081090 | \n", "0.075076 | \n", "0.066137 | \n", "signifikan | \n", "signifikan | \n", "
142 | \n", "146 | \n", "0.007030 | \n", "0.044664 | \n", "0.076884 | \n", "0.083452 | \n", "0.090818 | \n", "0.085437 | \n", "0.057772 | \n", "0.078132 | \n", "0.084599 | \n", "0.080443 | \n", "membaik | \n", "tidak signifikan | \n", "
143 | \n", "147 | \n", "0.051555 | \n", "0.073974 | \n", "0.120131 | \n", "0.102681 | \n", "0.072502 | \n", "0.083938 | \n", "0.084627 | \n", "0.087005 | \n", "0.078219 | \n", "0.216703 | \n", "memburuk | \n", "tidak signifikan | \n", "
144 | \n", "148 | \n", "0.028121 | \n", "0.079138 | \n", "0.070495 | \n", "0.071783 | \n", "0.084713 | \n", "0.078692 | \n", "0.088238 | \n", "0.080350 | \n", "0.068081 | \n", "0.062947 | \n", "signifikan | \n", "signifikan | \n", "
145 rows × 13 columns
\n", "