
eProcessor - European, Extendable,
Energy-Efficient, Extreme-Scale, Extensible, Processor Ecosystem

Invited Paper

Lluc Alvarez∗
Abraham Ruiz

Arnau Bigas-Soldevilla
Pavel Kuroedov
Alberto Gonzalez
Hamsika Mahale
Noe Bustamante
Albert Aguilera

Francesco Minervini
Javier Salamero
Oscar Palomar

Barcelona Supercomputing Center
Barcelona, Spain

Vassilis Papaefstathiou†
Antonis Psathakis
Nikolaos Dimou

Michalis Giaourtas
Iasonas Mastorakis

Georgios Ieronymakis
Georgios-Michail Matzouranis

Vasilis Flouris
Nick Kossifidis

Manolis Marazakis
Institute of Computer Science, FORTH

Heraklion, Crete, Greece

Bhavishya Goel
MadhavanManivannan

Ahsen Ejaz
Panagiotis Strikos
Mateo Vázquez
Ioannis Sourdis
Pedro Trancoso
Per Stenström

Chalmers University of Technology
Gothenburg, Sweden

Jens Hagemeyer
Lennart Tigges
Nils Kucza

Bielefeld University
Bielefeld, Germany

Jean-Marc Philippe
Thales Research & Technology

Palaiseau, France

Ioannis Papaefstathiou
Exascale Performance Systems

EXAPSYS Plc
Thessaloniki, Greece

ABSTRACT
The eProcessor project aims at creating a RISC-V full stack ecosys-
tem. The eProcessor architecture combines a high-performance
out-of-order core with energy-efficient accelerators for vector pro-
cessing and artificial intelligence with reduced-precision functional
units. The design of this architecture follows a hardware/software
co-designapproachwith relevantapplicationusecases fromthehigh-
performance computing, bioinformatics and artificial intelligence
domains. Two eProcessor prototypeswill be developed based on two
fabricated eProcessor ASICs integrated into a computer-on-module.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
Single instruction, multiple data; Systolic arrays.

KEYWORDS
Multicore architecture, RISC-V, European research project
∗Corresponding author: Lluc Alvarez, e-mail: lluc.alvarez@bsc.es
†Also with Computer Science Department, University of Crete, Greece.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0140-5/23/05.
https://doi.org/10.1145/3587135.3592178

ACMReference Format:
Alvarez et al. 2023. eProcessor - European, Extendable, Energy-Efficient,
Extreme-Scale, Extensible, Processor Ecosystem: Invited Paper. In 20th ACM
International Conference on Computing Frontiers (CF ’23), May 9–11, 2023,
Bologna, Italy.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3587135.3592178

1 INTRODUCTION
eProcessor is an ambitious European project that aims at creating
a full stack high performance processor ecosystem, including both
software and hardware. The eProcessor technology is based on the
RISC-V open source Instruction Set Architecture (ISA) and features
highperformance computing anddeep learningaccelerators coupled
to a high performance, low energy out-of-order processor.

The project follows a hardware/software co-design approach for
improved application performance and system energy efficiency.
eProcessor co-designs solutions to provide high performance, low-
power, and fault tolerance for both traditional and emerging High-
Performance Computing (HPC) applications. Uniquely, the project
specializes all components of the system in the context of a broad
application domain: a combination of energy efficient accelerators,
adaptiveon-chipmemorystructures, aflexible andhighperformance
energy-efficient CPU, and the corresponding software stack.

The project contemplates a set of application use cases of interest
to be optimized for the eProcessor ecosystem. These consist of a
diverse set of applications in the domains of HPC, artificial intel-
ligence, deep learning, machine learning and bioinformatics. The
application use cases are used in the project to drive the design of

309

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587135.3592178&domain=pdf&date_stamp=2023-08-04


CF ’23, May 9–11, 2023, Bologna, Italy Alvarez et al.

NOC

L2 Cache + Home Node

RVOOO IOMMU

eProcessor

eAccelerator

L2 Cache + Home Node

RVOOO eAccelerator

Coherent
Chip-to-Chip

Link

Figure 1: eProcessor architecture overview.Modules shaded
in gray are included only in the second tape-out.

the overall system and, at the same time, the project extends these
applications and their software frameworks to support the RISC-V
ISA. In addition, instead of focusing on the peak performance of
dense computations, some of the applications use sparse data sets
and/or low/mixed-precision, so one of the goals of the project is to
develop a system that offers sustained application performance.

To achieve these goals, the eProcessor project is developing the
eProcessor architecture, which is explained in Section 2. Then, Sec-
tion3explains the twoeProcessorprototypes,onesinglecoreandone
multi-core, that will be fabricated in the project. Section 4 explains
the application use cases of intereset for the project and their opti-
mizations. Finally, Section5draws themainconclusionsof thiswork.

2 EPROCESSORARCHITECTURE
Figure 1 shows a high-level overview of the eProcessor architecture,
which consists of the RISC-V out-of-order core (RVOOO), the eAc-
celerator, the L2 cache, the Network-on-Chip (NoC), the IOMMU
and the coherent chip-to-chip link. The first and second tape-outs
include one and two RVOOO cores and eAccelerators, respectively.

2.1 RVOOOCore
The RVOOO core is a 4-way out-of-order scalar RISC-V core that
supports the RV64GCV ISA.

2.1.1 CPU Pipeline. The RVOOOCPU pipeline has an instruction
fetch width of 6 instructions per cycle. The fetch stage contains an
instruction FIFO, a gshare/TAGE branch predictor, a Branch Target
Buffer (BTB), and aReturnAddress Stack (RAS). TheBTBhas a size of
512 entries, while the branch predictor Global History Register and
Pattern History Table have a size of 22 and 8192 entries, respectively.

The register renaming stage contains a physical register file with
128 registers that are shared between floating point and integer units.
The physical register file holds both speculative and committed state.

The Re-Order Buffer (ROB) size 128 is entries, and the total num-
ber of reservation station entries is 80 with 5 ports: 2 scalar units,
FPU, MULT/DIV, and LD/ST. The maximum number of entries per
port is 16. The reservation stations issue the oldest ready instructions
to the functional units. The issue width is 1 instruction per cycle for
each reservation station port, except for 2 instructions per cycle for
the LD/ST port, adding up to a total of 6 instructions per cycle. The
LD/ST queue has 16 entries, it supports out-of-order execution of
loads and stores, and the loads can also be speculative.

2.1.2 Private Caches. The RVOOO core includes private separate
L1 instruction and data (L1I and L1D) caches of 16KB each and 64B
lines. Both caches are virtually indexed and physically tagged.

Figure 2: eAccelerator overview

The L1D supports two load or store operations (in any mix) per
cycle. The latency of both operations is a single cycle. The L1D is
write back and it allocates and loads on write access. A configurable
number of hits under misses is also supported.

The L1D uses the MESI cache coherence protocol, supported via
the AMBA5 Coherent Hub Interface (CHI) to the L2 cache. The L1D
implements the RN-F functionality (fully coherent request node,
which supports snoop transactions). The CHI data width is a 64B
cache line, so the L1D tracks the dirty/clean state per line basis.

TheL1I interfacewith the restof the systemisCHIRN-Iwithadata
widthof 64B.TheL1I doesnot support hardwaremanaged coherence.

2.1.3 TLB Hierarchy. For virtual memory, the RVOOO implements
the Sv39 and Sv48 address translation modes. The RVOOO includes
two L1 TLBs and two L2 TLBs (one of each for instructions and for
data), plus a single Page Table Walker (PTW). The data L2 TLB is
sharedwith theeAccelerator.All theTLBs supportflushingentriesby
virtual page number, by ASID, by both, and flushing the whole TLB.

Both instructionanddataL1TLBsare fully associative cacheswith
32 entries, and each entry can hold a leaf Page Table Entry (PTE) for
anypage size (4KB, 2MB, 1GBand512GB inSv48).Uponamiss, theL1
TLBs forwards the translation request to its corresponding L2 TLB.

Both instruction and data L2 TLBs share the same structure to
store PTE lines as follows (note that a PTE line contains 8 contiguous
PTEs coming from the same 512 bit memory word):

• 4 PTE lines for 512GB pages (fully associative, Sv48 only)
• 4 PTE lines for 1GB pages (fully associative)
• 4 PTE lines for 2MB pages (fully associative)
• 64/256 PTE lines (instruction/data) for 4KB pages (16-way
set-associative)

Upon misses, both L2 TLBs forward the translation request to the
PTW, which translates any virtual page number into its correspond-
ing physical page number by walking the page table in memory. The
PTW fetches an entire PTE line in a single cycle.

2.2 eAccelerator
The eAccelerator is composed by a Vector Processing Unit (VPU),
reduced andmixed-precision functional units, and anArtificial Intel-
ligence (AI) accelerator. Figure 2 shows a high-level overview of it.

The vector processing unit is a loosely-coupled vector accelerator
featuring a long-vector design (MAX_VLEN = 128 elements of 64b)

310



eProcessor - European, Extendable, Energy-Efficient, Extreme-Scale, Extensible, Processor Ecosystem CF ’23, May 9–11, 2023, Bologna, Italy

S E(4b) F(3b)

S E(5b) F(2b)

S F(52b)E(11b)

S F(7b)E(8b)

S F(23b)E(8b)

FP64
FP32
BF16

HFP8

Figure 3: Supported FP formats in the eAccelerator

compliant with the RISC-V vector extension. It receives vector in-
structions at decoding stage from the RVOOO and returns the result
including any generated scalar value or exception in a slight-out-
of-order fashion. The vector accelerator has direct access to the L2
cache, it features a partial ordering for the execution of the vector
loads and stores (out-of-order loads, in-order stores), and handles the
memory disambiguation between scalar-vector and vector-vector
memory operations. The design of the VPU is an extension of the
Vitruvius [5] vector processing unit, which has been adapted to the
eAccelerator architecture requirements, and a new vector load store
unit has been developed from scratch. In addition, we use a novel
specification for the interface between the RVOOO and the VPU,
called the eProcessor Accelerator (EPA) interface. The EPA interface
is divided into multiple sub-groups for different operations: Vector
Instruction Dispatch, Common Data Bus, CPUMemOp (divided in
Issue, PhysicalAddress,Done andOverlap), Result, Commit (orNext-
Senior), Roll-Back, Control and Flush TLB. In this implementation,
the VPU has direct management of the CSRs.

The eAccelerator is composed of 4 vector lanes, each of them hav-
ing a slice of the vector register file and the corresponding arithmetic
units. The maximum vector length fits up to 128 64-bit elements per
vector register. For narrower elements, a packed SIMD approach is
used to increase the vector register utilization. In particular, it sup-
ports 64-, 32-, 16- and 8-bit integer andfloat operations, aswell as nar-
row integer types (4-, 2- and 1- bits). In addition to the standard IEEE
FP64 and FP32, it also supports Brain Float 16 (BF16) and two types
of hybrid 8-bit Floating Point (HFP8), shown in Figure 3. The non-
standard formats are aimed for more efficient training and inference
of AI applications. In addition, all FP formats have support for Fused
Multiply-Accumulate (FMA) operations, which achieve 2x FLOPS
compared to individual operations. In particular, the functional units
for HFP8 are highly optimized employing ad-hoc logic structures for
the small bit-width operations. For achieving further efficiency in AI
applications, the VPU is extended with a systolic array that reuses
the available arithmetic units with minimal hardware overhead [6].

2.3 L2 Cache andHomeNode
The eProcessor L2 Cache and Home Node (HN) are tightly coupled
and operate together in conjunction to form the eProcessor Shared
Last Level Cache. This is compliantwith theAMBA5CHIHN-F spec-
ification. The L2 Cache is an eight way-associative non-blocking
write-back cache with Pseudo-LRU replacement policy that can han-
dle a large number of outstanding transactions, misses and evictions.
The HN is a fully mapped directory cache coherence controller re-
sponsible for tracking sharers at the cache line granularity and uses a
MESI protocol to ensure coherence among the private L1 caches. The
designs are modular and can be replicated and instantiated in mul-
tiple nodes of a CHI NoC to create systems with several distributed
L2-HN slices, each responsible for a subset of the coherent system
address space. The design of the L2-HN is fully-pipelined, it can

serve up to one cache line per cycle (per slice) and it is optimized for
throughput to efficiently serve long vector memory accesses, which
can generate bursts of dozens of cache line requests.

The eProcessor L2-HN design is also augmented with two novel
mechanisms: (i) dead-block management and (ii) runtime config-
urable scratchpad. The dead-block management mechanism facil-
itates the eviction of cache blocks that have been deemed dead,
i.e. cache blocks that will not be reused before eviction as deter-
mined by the software runtime. In eProcessor, the OpenMP runtime
detects address regions that will no longer be accessed based on
task-dependency information and instructs the cache to evict them.
The run-time configurable cache/scratchpad mechanism enables
software to optimize data locality, to quickly adapt to the workload
demands, and to offer predictable access latency for critical portions
of the application dataset. The L2 cache allows parts of the cache
data arrays to be configured as a scratchpad at run-time and at page
granularity (4KB). A Linux kernel module handles the bookkeeping
and supports the mapping to the application virtual address space.

2.4 Network-on-Chip
The eProcessor NoC, which is based on the FastTrackNoC [3], sup-
ports the AMBA5 CHI interface and uses five physical channels to
accommodate the different CHI message classes and avoid protocol
level deadlocks. Each physical channel has two Virtual Channels
(VCs) to avoidhead-of-lineblockingandhence improveperformance.
The width of each physical channel corresponds to the size of the
messages it delivers. This enables the NoC to deliver CHI messages
as single flit packets. Each packet in a NoC router goes through
three pipeline stages: (i) allocation, (ii) Switch Traversal (ST) and
(iii) Link Traversal (LT). In the allocation stage round-robin priority
arbitration is used for Switch Allocation (SA). Packets winning SA
are allocated a free downstreamVC. Parallel to SA, look-ahead route
computation is performed to pre-compute the route the packet takes
in the next hop. In the ST and LT stages, the packet traverses the
router crossbar and the link, respectively, to propagate a hop.

The NoC reduces packet latency by allowing incoming packets to
bypass up to twopipeline stages of a routerwhen required conditions
are met [3]. More precisely, packets can bypass the SA stage when
entering the network, propagating a straight hop or exiting from the
network, if (i) there is no competing traffic using the required ports
of the switch and (ii) buffer space is available in the downstream VC.
Additionally, incoming packets in VC-0 can also bypass the ST stage
and directly proceed to LT using dedicated FastTrack paths [3], if
(i) VC-0 FIFO buffer does not contain any other packet ahead of the
bypassing packet, (ii) the packet is propagating a straight hop, (iii)
the required output link is free, and (iv) buffer space is available in
the downstream VC. Thereby, at best the packet latency per hop is
as short as the delay of the link and a 2:1 multiplexer.

2.5 Coherent Chip-to-Chip Link
TheCoherent Chip-to-Chip (C2C) link connects the NoC of the ePro-
cessor to an external companion FPGAor to another eProcessor chip.
The companion FPGA, which is described in Section 3.3, acts as a
bridge from the ASIC to the DDR4memory, PCIe and other I/O pe-
ripherals, aswell as hosting accelerators connected to the eProcessor,
such as the CNN off-chip accelerator described in Section 2.7.

311



CF ’23, May 9–11, 2023, Bologna, Italy Alvarez et al.

The C2C link provides a AMBA5 CHI interface, and therefore
extends the NoC to the companion FPGA. The connection between
the eProcessor and the companion FPGA is physically based on
an 8x SerDes link that provides 128 Gbps bandwidth per direction
(i.e. 16 GB/sec) assuming zero link and packet overheads, and thus
a theoretical aggregate bandwidth of 256 Gbps (i.e. 32 GB/sec).

To forwardCHI packets to the FPGA, theC2C linkwraps the pack-
ets in C2C link packets and these are forwarded by the SerDes. The
link protocol uses 128-bit data granularity to simplify the encoding
and decoding of link packets, which also minimizes the link latency.
In addition, the C2C link includes link level re-transmission mech-
anismwhere each packet includes a CRC for error detection and, if
a link receiver detects a CRC error, it requests a re-transmission of
this packet and all the following ones from the opposite transmitter.
The C2C link multiplexes the CHI packets from different virtual
channels to the serial link and provides its own credit-based flow
control optimized to sustain the provided link bandwidth. The serial
link uses 64b/66b encoding as well as scrambling to provide enough
transitions for the clock data recovery in the SerDes block.

2.6 IOMMU
The eProcessor architecture includes a RISC-V IOMMU IP fully com-
pliantwith the official specifications; this IP is among thefirst RISC-V
IOMMU implementations. The IOMMU is utilized for IO devices
connected to the eProcessor chip via the C2C link. The IOMMU sup-
ports multiple concurrent I/O devices assigned to multiple contexts
(processes), includes IOTLBs with various caching structures with
support for huge-pages, and performs hardware page table walks for
standard 39-bit (Sv39) and 48-bit (Sv48) virtual addresses. The design
targets high-performance and low-latency non-blocking operation
with hits-under-misses andmultiple concurrent hardware page table
walks. The design includes the official CSRs, the Command and Fault
queues (CQ, FQ) and a hardware performance monitor. The system
interface is compliant with the AMBA5 CHI and the configuration
interface compliant with AXI. Moreover, all the necessary Linux
kernel support and IOMMU driver is developed in the project.

2.7 Off-Chip CNNAccelerator
A Convolutional Neural Network (CNN) hardware accelerator IP
for FPGAs is developed in the eProcessor project to illustrate the
ability of the eProcessor chip to be connected to external accelerators
using the C2C link. The CNN IP can be generated for different FPGA
targets and can be tuned with respect to the available computing
or memory resources. The accelerator is programmable thanks to
a firmware generation toolchain that takes CNN description files
as input (Tensorflow files for example). Synchronization and data
transfers between the accelerator and the host are managed using
specific APIs that take into account the memory coherence feature
provided by the C2C link. This off-chip CNN accelerator will be
used to demonstrate a hybrid CPU/FPGA execution of the Border
Surveillance application use case described in Section 4.5.

3 EPROCESSOR PROTOTYPES
This section describes the eProcessor prototypes that are developed
in the project, including the two fabricated ASICs, the microserver
architecture, and the companion FPGA.

Figure 4: eProcessor Computer-on-Module overview

3.1 ASIC Implementation
The selected technology for the fabrication of the eProcessor ASICs
is GLOBALFOUNDRIES 22nm FD-SOI (22FDX), which offers a good
balance between performance and cost. The selection of the standard
cells includes two options for high-performance (2 GHz and above):
12-track cells, which offer higher performance but have no option for
bodybiasing, and8-trackcells,whichofferhighdensityandallowfor-
ward body biasing to increase performance. The use of either library
versionwill be defined according to the trade off between timing and
area estimations, thatwill be available from the first synthesis experi-
ments. Other options such as 7.5-track and Ultra-Low Leakage (ULL)
libraries usually offerworse performance, so they are not considered.

The memory compilers include register files of 1, 2 and Pseudo-2
ports for high performance and small size, and 1-, 2- and Pseudo-
2-port SRAM for larger sizes, as well as a 1-port ROM. The high-
performance register files support an operating frequency of up to
2.5 GHz with a size limit of 81 Kb. Larger SRAM sizes (up to 2 Mb)
support only up to 1.1 GHz.

The tentative area utilization and budget for the first tape-out
(the single-core ASIC) is 9 mm2, while for the second tape-out (the
multi-core ASIC) is 15 mm2. The target frequency for the eProcessor
core is 2 GHzmaximum frequency at 100 °C junction temperature
(max 45 °C ambient) in the slow-slow corner and a supply voltage of
0.9 V - 2%. Themaximum design junction temperature will be 100 °C.

3.2 Microserver Architecture
For the bring-up and subsequent integration of the eProcessorASICs
in an operational environment, a flexible architecture is needed. To
minimize costs and risks, we use a modular approach in which the
ASICs are integrated into a COM (Computer-On-Module). The COM
standard selected is the COM-HPC Client, which allows the integra-
tionof two large ICs (the companionFPGAandeProccesorASIC) and
also provides space for sufficient RAM. In addition, the standard fea-
turesmany interfaces suchas 10Gigabit Ethernet,USB3andPCIe.As
depicted in figure 4, the targeted microserver architecture supports
one eProcessor ASIC. The companion FPGA is used to accompany
the eProcessor ASIC and acts as a combined north and southbridge
like in classical x86 architectures (as explained in Section 3.3).

312



eProcessor - European, Extendable, Energy-Efficient, Extreme-Scale, Extensible, Processor Ecosystem CF ’23, May 9–11, 2023, Bologna, Italy

Figure 5: Companion FPGA system overview

The interconnection between the eProcessor ASIC, the compan-
ion FPGA, and external accelerators (or a dual-socket eProcessor
system) is realized by a switch matrix offering a wide range of pos-
sible variations. Special care has been taken to ensure that both
eProcessor tapeouts are supported by one microserver PCB.

3.3 Companion FPGA
Figure 5 shows an overview of the companion FPGA architecture.
The companion FPGA provides various legacy and modern high-
speed interfaces which are transparently mapped into the eProces-
sors address space via the C2C link. Some of the interfaces are avail-
able as hard IP core in the porcessing system, such as theUSB 3 or the
DisplayPort. Others are created in the programmable logic, such as
the 10 Gigabit Ethernet or the UART. Beside the interfaces, a fully op-
erational DDR4Memory Controller is provided by the FPGA fabric.

In addition to providing interfaces, the CPU of the companion
FPGAisused tomanage theeProcessormodule.This includes, among
other, the configuration of the eProcessor ASIC or setting the bias
voltage of the different substrates. Additionally, supply voltages and
currents of the CPU can be managed and analyzed.

4 APPLICATIONUSE CASES
This sectiondescribes the applicationuse cases thatwill be optimized
for and demonstrated on the eProcessor prototypes.

4.1 NAS Parallel Benchmarks
TheNAS Parallel Benchmarks [1] are awidely used benchmark suite
to evaluate HPC systems. The benchmark suite consists of eight
individual benchmark problems: EP, MG, CG, FT, IS, LU, SP and BT.
These benchmarks focus on computational aerophysics, although
most of the benchmarks havemuch broader relevance, since they are
typical of many real-world scientific computing applications. The
benchmark suite also includes a set of pre-defined input sets for each
of the benchmarks, including small inputs that can be used in the
early development stages of the architecture, up to large inputs that
canbeused tomeasure theperformanceof the eProcessorprototypes.

The NAS Parallel Benchmarks will be adapted to make the most
of some of the features of the eProcessor architecture. In particular,
in order to increase the performance of the benchmarks, the codes
are going to be vectorized so they utilize the VPU of the eAccelerator.

The vectorization will use the FP64 data type to fulfill the preci-
sion requirements of HPC applications. In addition, the scratchpad
memory of the configurable L2 cache will also be leveraged.

4.2 Bioinformatics
Recent advances in next-generation sequencing technologies have
enabled the proliferation of Bioinformatics applications. These appli-
cations have an enormous datasets and computational cost, so they
have become a commonworkload in HPC systems and an important
target for accelerators. In the project we use a set of Bioinformatics
algorithms commonly found in different stages of genomic pipelines.

The Smith-Waterman-Gotoh algorithm is a dynamic program-
ming algorithm that computes the pairwise alignment of two DNA
sequences. The goal of pairwise sequence alignment is to identify
similar regions between twobiological sequences,which is useful for
analyzing functional, structural, and evolutionary relationships be-
tween the two.Given the two sequences of lengths𝑁 and𝑀 , the time
complexity of the SWG algorithm is𝑂 (𝑁 ·𝑀). The outputs of the al-
gorithm are the similarity score computed using affine gap penalties
and the optimal sequence of alignment operations (i.e., substitutions,
insertions, and deletions) to align one sequence into the other.

The Banded Smith-Waterman-Gotoh algorithm implements a
heuristic approach towards reducing the computational complex-
ity of the original algorithm. To do so, it calculates the alignment
between two sequences by considering only those residues that can
be aligned within a diagonal band of width𝑊 . Using this approach,
this algorithm reduces time and space complexity to𝑂 (𝑁 ·𝑊 ).

TheWavefront Alignment [4] algorithm proposes an alternative
encoding of the dynamic programming matrix and an efficient al-
gorithm to compute the alignment. To do so, it computes the cells
of the dynamic programming matrix by increasing score, so it only
needs to compute a minimal number of cells to find the optimal
alignment. TheWFA algorithm runs in𝑂 (𝑁 ·𝑆) time, proportional
to the sequence length 𝑁 and the error score 𝑆 between sequences.

The FM-index is one of the most common data structures used
within aligners and metagenomics classification tools. This data
structure is used to identify the exact-matching locations of short se-
quence substrings (called seeds)within a referencegenome.Thealgo-
rithm is dominated by irregular memory accesses to a large memory
space, being both memory-latency and memory-bandwidth bound.

4.3 DeepHealth Toolkit
The DeepHealth toolkit [2] is a software ecosystem consisting of
two main open-source libraries for AI and computer vision that can
be leveraged by medical applications use cases. The European Dis-
tributedDeep Learning (EDDL) library is an optimized tensor library
for distributed deep learning. The library is built around the concept
of tensor and offers many functionalities with a device-independent
interface, enabling a strong decoupling between the network train-
ing logic and thehardware implementation.TheEuropeanComputer
Vision Library (ECVL) facilitates the integration and exchange of
data between computer vision and image processing libraries.

The DeepHealth toolkit also provides a set of medical use cases
that apply deep learning techniques for automaticmedical diagnosis.
One of them is the Skin Lesion Classification use case, which targets
improving melanoma diagnoses and reducing melanoma mortality

313



CF ’23, May 9–11, 2023, Bologna, Italy Alvarez et al.

Figure 6: SmartMirrorperforming face andobject recognition

by facilitating the application of digital skin imaging technologies.
To do so, this use case uses a VGG16 deep learning model to perform
the classification of sample images from the International Skin Imag-
ing Collaboration (ISIC) dataset across eight different categories (i.e.,
classes). The ISIC 2019 dataset is divided into three subsets of images:
19,330 for training, 1,000 for validation, and 5,001 for testing.

The libraries of theDeepHealth toolkitwill be adapted to speed up
the computations by leveraging the AI accelerator of the eProcessor
architecture, including the low-precision FP formats BF16 and HFP8.

4.4 SmartMirror
The Smart Mirror is designed as an intuitive interface to support in-
teraction in smart home environments, focusing on local processing
to protect the users data. It shows a mirror image of the user and
overlays personalized information or smart home status on top of the
image. For this purpose, a camera image is used to recognize faces,
objects and simple hand gestures for intuitive control (see figure 6).
All calculations areperformed locallyon thedevicewithopen-source
software, which ensures the highest level of privacy, as no data is
transferred to the cloud and third-party providers. The local data pro-
cessing should be coupled with the highest level of energy efficiency,
as excessive power consumption is not desirable in private homes.
The AI accelerator of the eProcessor architecture will take over the
calculation of the neural networks in a performant way, providing
low latency and high throughput for a pleasant user experience.

4.5 Border Surveillance
Drone-based border surveillance consists of using drones flying at a
high altitude to capture and analyze high-resolution images to detect
(andsometimes recognize) specific targets, threatsor illegal activities.
TheBorder Surveillance use case targets amaritime context inwhich
the drone is flying alongmaritime borders to detect boats. The drone
embeds sensors such cameras to acquire colored or thermal/infrared
images to be processed. Due to the speed of the drone, the varying
environment and the high altitude, the detection task may be quite
hard, especially if the drone flies near a coast, if there are rocks in
the see, foam or wave shadows. Thus, efficient detection algorithms
must be chosen to achieve the required accuracy and avoid toomuch
false detection. In the recent years, CNN algorithms have been used
with great success in detection tasks and are thus natural candidates
to tackle the challenges inherent to such a use case.

One of the primary constraints on the computing subsystem is the
power consumption, due to limited battery capacity of the drone. For
this reason, in the embedded domain, detection algorithmswith high
accuracy such as CNNs rely on accelerators to reach the necessary
levelsofperformanceandenergy-efficiency. Suchanenergy-efficient
computing system is planned to be composed by the eProcessor ar-
chitecture connected to an FPGA configured with the off-chip CNN
accelerator described in Section 2.7. The FGPA-based off-chip CNN
acceleratorwill be responsible for the executionof themajorityof the
computations,while specificparts of theCNNwill be executedon the
eProcessor chip if they are not relevant for hardware acceleration.

5 CONCLUSIONS
The goal of the eProcessor project is to create a full stack high perfor-
mance energy-efficient ecosystem based on RISC-V. To this end, the
eProcessor architecture combines a high-performance out-of-order
core with energy-efficient accelerators for vector processing and
artificial intelligencewith low- andmixed-precision functional units,
providing high performance and energy efficiency for a set of rele-
vant application uses cases in the fields of high-performance comput-
ing, bioinformatics and artificial intelligence. In ahardware/software
co-design approach, the application use cases drive the design of the
system, and the project ports these applications and their software
frameworks toRISC-V.Theprojectwillbuild twoprototypesbasedon
two fabricated eProcessor ASICs, one single core and onemulti-core.

ACKNOWLEDGMENTS
The eProcessor project has received funding from the European
High-Performance Computing Joint Undertaking (JU) under grant
agreement No 956702. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and the
respective national research organisations from Spain (PCI2021-
121991/ MCIN/AEI/10.13039/501100011033), Sweden, Greece, Italy,
France (ANR-20-EHPC-0006), andGermany (BMBF). The eProcessor
project is also co-funded by the UE NextGenerationEU/PRTR.

REFERENCES
[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks—Summary
and Preliminary Results. In Proceedings of the 1991 ACM/IEEE Conference on Super-
computing (Supercomputing ’91). Association for Computing Machinery, 158–165.

[2] Michele Cancilla, Laura Canalini, Federico Bolelli, Stefano Allegretti, Salvador
Carrión, Roberto Paredes, Jon A. Gómez, Simone Leo, Marco Enrico Piras, Luca
Pireddu, Asaf Badouh, Santiago Marco-Sola, Lluc Alvarez, Miquel Moreto, and
Costantino Grana. 2021. The DeepHealth Toolkit: A Unified Framework to
Boost Biomedical Applications. In 2020 25th International Conference on Pattern
Recognition (ICPR). 9881–9888.

[3] Ahsen Ejaz and Ioannis Sourdis. 2022. FastTrackNoC: A NoC with FastTrack
Router Datapaths. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 971–985.

[4] SantiagoMarco-Sola, Juan Carlos Moure, Miquel Moreto, and Antonio Espinosa.
2020. Fast gap-affine pairwise alignment using the wavefront algorithm.
Bioinformatics btaa777 (2020), 1–8.

[5] FrancescoMinervini, Oscar Palomar, OsmanUnsal, Enrico Reggiani, Josue Quiroga,
Joan Marimon, Carlos Rojas, Roger Figueras, Abraham Ruiz, Alberto Gonzalez,
et al. 2023. Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor
for High Performance Computing Applications. ACM Transactions on Architecture
and Code Optimization 20, 2 (2023), 1–25.

[6] Mateo Vazquez Maceiras, Muhammad Waqar Azhar, and Pedro Trancoso. 2022.
VSA: A Hybrid Vector-Systolic Architecture. In 2022 IEEE 40th International
Conference on Computer Design (ICCD). IEEE Computer Society, 368–376.

314


