

SCORE _Dx.n_Version number 1/17

D8.4 – Early Warning
and Digital Twin
Platform prototype

DATE OF DELIVERY - 31/08/2023
AUTHORS – Andrea Rucci (MBI), Ivan Boscaino
(MBI), Giovanni Serafino (MBI)

Ref. Ares(2023)5935957 - 31/08/2023

 SCORE _D8.4_1.0 2/17

DOCUMENT TRACKS DETAILS

Project acronym SCORE

Project title Smart Control of the Climate Resilience in European
Coastal Cities

Starting date 01.07.2021

Duration 48 months

Call identifier H2020-LC-CLA-2020-2

Grant Agreement No 101003534

Deliverable Information

Deliverable number D8.4

Work package number WP8

Deliverable title Early Warning and Digital Twin Platform prototype

Lead beneficiary MBI srl

Author(s) Andrea Rucci (MBI), Ivan Boscaino (MBI), Giovanni
Serafino (MBI)

Due date 31/08/2023

Actual submission date 31/08/2023

Type of deliverable Demonstrator

Dissemination level Public

VERSION MANAGEMENT

Revision table

Version Name Date Description

V 0.1
Giovanni Serafino (MBI),
Ivan Boscaino (MBI),
Andrea Rucci (MBI)

10/08/2023 First draft

V 0.2
José Pedro Matos (UST-
ID), Filippo Giannetti
(UNIPI)

24/08/2023 Updated draft internally reviewed

V 0.3
Giovanni Serafino (MBI),
Ivan Boscaino (MBI),
Andrea Rucci (MBI)

28/08/2023 Updated draft after contribution from partners

V1.0
Giovanni Serafino (MBI)
Iulia Anton (ATU)
Salem Gharbia (ATU)

28/08/2023 Final version

 SCORE _D8.4_1.0 3/17

All information in this document only reflects the author's view. The European Commission is not responsible for any
use that may be made of the information it contains.

LIST OF ACRONYMS AND ABBREVIATIONS

Acronym / Abbreviation Meaning / Full text

API Application Programming Interface

CCLL Coastal City Living Lab

CRUD Create, read, update, and delete

DSM Digital Surface Model

DT Digital Twin

EBA Ecosystem-Based Approach

EWS Early-Warning Support

GIS Geographic Information System

GUI Graphic User Interface

ICT Information and Communication Technologies

JSON Javascript Object Notation

REST Representational State Transfer

RPO Regional Planning Organization

SIP SCORE Information and communication technologies

SME Small or Medium Enterprise

SMEs Small-medium Enterprise

URLs Unique Resource Locator

USE User Scenario Evaluation

WP Work Package

 SCORE _D8.4_1.0 4/17

BACKGROUND: ABOUT THE SCORE PROJECT

SCORE is a four-year EU-funded project aiming to increase climate resilience in European coastal cities.

The intensification of extreme weather events, coastal erosion and sea-level rise are major challenges to be urgently
addressed by European coastal cities. The science behind these disruptive phenomena is complex, and advancing
climate resilience requires progress in data acquisition, forecasting, and understanding of the potential risks and
impacts for real-scenario interventions. The Ecosystem-Based Approach (EBA) supported by smart technologies has
potential to increase climate resilience of European coastal cities; however, it is not yet adequately understood and
coordinated at European level.

SCORE outlines a co-creation strategy, developed via a network of 10 coastal city ‘living labs’ (CCLLs), to rapidly,
equitably and sustainably enhance coastal city climate resilience through EBAs and sophisticated digital technologies.

The 10 coastal city living labs involved in the project are: Sligo and Dublin, Ireland; Barcelona/Vilanova i la Geltrú,
Benidorm and Basque Country, Spain; Oeiras, Portugal; Massa, Italy; Piran, Slovenia; Gdansk, Poland; Samsun,
Turkey.

SCORE will establish an integrated coastal zone management framework for strengthening EBA and smart coastal
city policies, creating European leadership in coastal city climate change adaptation in line with The Paris Agreement.
It will provide innovative platforms to empower stakeholders’ deployment of EBAs to increase climate resilience,
business opportunities and financial sustainability of coastal cities.

The SCORE interdisciplinary team consists of 28 world-leading organisations from academia, local authorities, RPOs,
and SMEs encompassing a wide range of skills including environmental science and policy, climate modelling, citizen
and social science, data management, coastal management and engineering, security and technological aspects of
smart sensing research.

 SCORE _D8.4_1.0 5/17

EXECUTIVE SUMMARY

This document is a deliverable of the SCORE project, funded under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003534.

The D8.4 represents the first release of the back-end part of the geographic information system (GIS)-Based Digital
Twin – Early-Warning Support (DT-EWS) prototype, as a result of the activities in task T8.2 “Development of the Early
Warning Support and Digital Twin Platform”. Multiple versions of the deliverable will be produced during the project,
since the first one will be refined at different stages to correct bugs and add new features, until the end of the project,
based on the needs coming from the users and the outcomes of the deployment activities. Each release will be
tagged with a unique version number.

The system is composed of two main subsystems, namely the User Scenario Evaluation (USE) and the Early Warning
Support (EWS). The USE subsystem is meant to be employed for running simulations enabling what-if and long-term
analyses on scenarios built by users as a mixture of real, ground-truth data from the coastal city, and hypothetical
data, e.g., regarding weather events, sea state, and EBA solutions implemented within the urban study area. The
EWS subsystem, on the other hand, is intended to run continuously without inputs from the users, since it has to
monitor the current weather situation. By leveraging on real-time data from sensors distributed over the study area
and on weather forecasts, it can make projections on the urban flood risk. This way, it can raise alerts in case the risk
of potential floods in areas and/or implies water levels that can represent a risk for the population, or cause economic
damages. The complete description of the system architecture and functionalities are included in the report D8.5
[1].

The present document outlines the structure of the software composing the two subsystems of the Platform,
showing the general software framework, the directory structure, and listing the application programming interfaces
(APIs) under development for interfacing with the graphical user interface (GUI). It is worth noticing that the software
of the presented system is not open. Accordingly, it is not disclosed in this document.

LINKS WITH OTHER PROJECT ACTIVITIES

This document takes inputs that drove the DT-EWS system design from the SCORE project deliverables D8.1 - GIS
Based Digital Twin Platform functional requirements [2], D8.2 - GIS Based Early Warning and Digital Twin Platform
system architecture and design [3], and D8.3 - GIS-Based Early Warning and Digital Twin Platform Interface Control
Document [4]. It is also based on the downscaled models elaborated in SCORE project WP3, the SCORE Information
and communication technologies (ICT) platform (SIP) developed in SCORE project WP5, the exposure and
vulnerability maps provided by SCORE project WP6, and the list of EBAs specified in SCORE project WP7.

Many interactions between T8.2 and T8.3 “Development of tools to access and visualise SCORE data and outcomes”
also took place, since the design of the back-end system and of its GUI, at least from the functional point of view, did
influence each other and could not be carried out in a completely separated way, although the actual complete
integration between them is the focus of the activities of T8.4.

The outputs of this document are relevant for the SCORE WP8 system further development, integration, deployment,
(project tasks T8.4), and for the subsequent activities of system validation and assessment, whose plan is reported
in detail in D8.10 [4] (project task T8.5).

 SCORE _D8.4_1.0 6/17

TABLE OF CONTENT

1. Introduction ... 7

1.1 Scope of the deliverable ___ 7

1.2 Structure of the deliverable ___ 7

2. The USE SUBsystem ... 8

2.1 Subsystem Directories Structure ___ 8

2.2 Subsystem Services ___ 9

3. The EWS Subsystem ... 10

3.1 Main Scripts __ 11

3.2 The EWS Library ___ 11

3.3 The Risk Library ___ 12

3.4 Data Structures ___ 12

3.5 Maps Format ___ 14

4. Conclusions .. 14

5. Appendix A ... 16

6. References ... 17

INDEX OF FIGURES

Figure 1. List of the APIs available to the front-end to call back-end functions. .. 8
Figure 2. JSON Schemas employed by the REST APIs. ... 9

 SCORE _D8.4_1.0 7/17

1. INTRODUCTION
As outlined in detail in D8.5 [1], the DT-EWS system is composed of the USE and the EWS subsystems. The operations
of the former are largely driven by the user, who must create scenarios on which simulations are based. The latter,
on the other hand, is intended to run continuous simulations on the actual hydraulic situation and its projections in
the short term, taking into account real-time information coming from sensor data streams and weather forecasts.
The reader can refer to [1] for more details about the system architecture and functionalities.

Within the SCORE project, the DT-EWS subsystem is to be deployed in the WP8 frontrunner CCLLs Massa (IT),
Vilanova i la Geltrú (ES), and Oarsoaldea (ES). However, it can be interesting testing it also in other scenarios,
depending on the available computational resources. At the present stage, the DT-EWS allows simulations by
different CCLLs at the same time, but only one user per each CCLL at the time. However, additional computational
resources will be available and, since the USE is realised as a Django project, its number of parallel runs can be easily
scaled, just adding new computational resources. The EWS, on the other hand, does not represent scalability issues,
as better explained at the beginning of Sect. 3.

1.1 Scope of the deliverable
The purpose of D8.5 is to provide a demonstrator of the first DT-EWS back-end system complete prototype, as the
result of activities of Task T8.2. At the moment, this back-end part is partially accessible, since MBI srl, which is the
leader of work package (WP) 8, and responsible of the implementation of this system, cannot completely disclose
the implemented code. The integration of the back-end with the front-end part, i.e. with the GUI, whose
development is part of the task T8.3 activities and is described in [5] and [6], is part of the ongoing task T8.4, started
in M24. Therefore, a system version equipped with the GUI will be realised in the coming weeks. With that
development, non-technical users will be able to operate with the system.

Here, we report the high-level structure of the code that underpins the system and the employed APIs that have
been implemented up to now, that will be key tools for the back-end and front-end integration. In the following, the
reader will find the URL where the APIs and their documentation are available.

1.2 Structure of the deliverable
The document is divided in two sections, each dedicated to one specific subsystem of the DT-EWS. The directories
structure of the USE and of the EWS subsystems are briefly outlined, indicating the role of each element in the whole
system, which are the main scripts and the employed libraries. Moreover, the APIs for the USE subsystem that have
been listed in [1], along with their functions, are included; on the other hand, the APIs exploited by the EWS
subsystem to interface with sensors for getting real-time data streams, and with other system modules are
mentioned but not showed, since they are internal to the system.

For the complete description of the system architecture, please refer to [1].

 SCORE _D8.4_1.0 8/17

2. THE USE SUBSYSTEM
2.1 Subsystem Directories Structure

The project is based on the Django high-level Python web framework, and it is structured like a typical Django project
[2]:

└── SCORE_DT_API
 └── api
 └── app

 └── manage.py

 └── mysite

 └── requirements.txt

Figure 1. List of the APIs available to the front-end to call back-end functions.

Django is the high-level Python web framework employed for the development of the USE subsystem because it
allows creating REST-APIs in a very flexible and scalable way, and smoothly interacting with the database. The EWS

 SCORE _D8.4_1.0 9/17

subsystem, on the other hand, has been developed as an independent module that can run autonomously, and that
has been directly realised in Python.
The main directory contains the classic Django configuration files and sub-directories: ma na ge . py , mys i t e / and
r e qui r e me nt s . t xt used to list the additional Python modules needed by the project.
In addition to the usual Django files, the a pp/ directory contains the mode l s . py module that defines all the
database models (tables) used by the APIs for authentication, operations on scenarios, and simulations management,
as described in [1].

The a pi / directory:

└── api
 └── main.py

 └── schemas.py
contains the definition and implementation of all API endpoints and related input and output Javascript object
notation (JSON) schemas used for automatic validation and documentation. The employed schemas are listed at the
URL reported in the following section, and are listed in Figure 2.

Figure 2. JSON Schemas employed by the REST APIs.

2.2 Subsystem Services
The USE module consists of the following services:

• The representational state transfer (REST) API,

• The Database (DB),

• The task manager.

 SCORE _D8.4_1.0 10/17

The REST API service is documented and testable for developers at https://score_dt_api.mbigroup.it/docs. Figure 1
shows the web page with the list that can be found at the URL with the related create, read, update, and delete
(CRUD) operations.

The technical URL for programmers is https://score_dt_api.mbigroup.it from which, after authentication, APIs can
be used, based on the documentation contained in the previous URL. In Appendix A, a brief example of Python code
for using the APIs is reported.

3. THE EWS SUBSYSTEM
The EWS subsystem has been developed in pyt hon 3. 10 . The project is structured in two separate Python
packages: the EWS itself and the Risk package. The former contains the code and the scripts which are specific for
the EWS functions, while the latter, called by the EWS processes, is a separate library devoted to the management
of vulnerability and exposures (see WP6 work in D6.3 [8]), and to the computation of the associated risks.

The general structure is the following:

└── EWSS

 └── bin

 └── data

 │ └── common

 │ └── test
 │ └── massa

 │ └── oarsoaldea

 │ └── ...
 └── lib

 │ └── EWS

 │ └── Risk

 │ └── Utils

 └── scripts

The bi n/ directory contains the runner scripts for the EWS and the general package setup, calling the libraries in
l i b/ , which are specific for the EWS, Risk and other shared utility functions. The da t a / directory is instead devoted
to the specific CCLLs on which the system is operating. Along with common data, to each CCLL is dedicated a specific
sub-directory in which exposure maps [8], reference scenarios, test files and warning results are stored. A s c r i pt s /
directory is also present and contains general scripts in ba s h or pyt hon that are useful for data management.

A peculiarity of the EWS consists in running simulations avoiding the use of LISFLOOD-FP [9], the digital hydraulic
model, thanks to AI/ML algorithms, whose functions are extensively reported in D8.5 [1]. This implies very fast
operations and a hugely reduced need for computational resources, compared to the USE subsystem. For this reason,
in this stage of the development, where few realizations of the EWS are required, there is no need for a particular

software architecture to guarantee parallel runs of the EWS on the same machine. However,

https://score_dt_api.mbigroup.it/docs
https://score_dt_api.mbigroup.it/

 SCORE _D8.4_1.0 11/17

in the perspective of a better scalability of the system, future EWS versions may include, as in the USE subsystem,
the Celery Python library for task management, with RabbitMQ as message-broker software, that will allow
transparently parallel runs on different machines.

3.1 Main Scripts
The bi n/ directory contains two runners called c omput e _r i s k. py and e ws . py . The first is responsible for

computing the damage from a given flooding layer using a specific exposure element and map. The latter, instead, is
the actual runner of the EWS, whose instance is expected to run separately and specifically for each CCLL in
background and with regular time basis.

└── bin

│ └── compute_risk.py

│ └── ews.py

│ └── setup.py

│ └── README.md

└── ...

The EWS runner relies on a single configuration file in which all the necessary parameters are defined (see D8.5 [1]
for details).

3.2 The EWS Library
The EWS library contains all the code and scripts related to the actual Early Warning Support functionality of the
system. The pr oc e s s i ng/ sub-directory is devoted to the definition of the abstract algorithms used in the data
processing, while scenarios, defined as abstract objects implementing specific operations, are defined in
s c e na r i os / . The main class is defined in the e ws . py file and is responsible for the whole run process and depends
on the configuration whose template structure is defined in c onf i g. py (more details in [1]).

└── EWS

 └── __init__.py

 └── classifier.py

 └── config.py

 └── datastream.py

 └── ews.py

 └── preset.py

 └── validator.py

 └── scenario

 │ └── __init__.py

 │ └── scenario.py

 SCORE _D8.4_1.0 12/17

 │ └── operations.py

 └── processing

 └── __init__.py

 └── aggregation.py

 └── cluster.py
 └── imputation.py

 └── outlier.py

 └── oversample.py

Sensor and forecast datastreams are connected to the EWS by specific classes defined in da t a s t r e a m. py and rely
on the same APIs used by the DT-EWS, connected to the activities of WP5 regarding the interfaces with sensors.

3.3 The Risk Library
The Ri s k/ library is devoted to the computation of the damages on a CCLL due to the flooding on different exposure
elements. Vulnerability functions defined in [8] are implemented as abstract classes which can be passed to a risk
object able to compute the damage on a given exposure map due to a specific hazard.

└── Risk

 └── __init__.py

 └── definitions.py

 └── predefined.py

 └── risk.py

 └── vulnerability.py

 └── vulnerability

 └── vulnerability_functions_buildings.csv

 └── vulnerability_functions_roads.csv

 └── vulnerability_functions_railways.csv

Specific vulnerability functions, which are common for all the CCLLs, are tabulated into . c s v files in the
vul ne r a bi l i t y/ sub-directory, while the abstract objects are defined in the r i s k. py and vul ne r a bi l i t y . py

files. Exposure maps are instead placed into the data directory which will be described in the next subsections.

3.4 Data Structures
Data used by the whole package, along with the results of each run are stored in the da t a / directory which possesses
the structure shown below:

└── data

 SCORE _D8.4_1.0 13/17

 └── common

 └── massa

 │ └── config.yml
 │ └── dsm.asc

 │ └── exposure

 │ │ └── buildings_potential.geojson

 │ │ └── buildings_total.geojson

 │ │ └── population.geojson

 │ │ └── roads.geojson

 │ └── scenarios

 │ │ └── scenario_1

 │ │ │ └── layers

 │ │ │ │ └── res_0.asc

 │ │ │ │ └── res_1800.asc

 │ │ │ │ └── …

 │ │ │ └── rain.csv

 │ │ │ └── sea.csv

 │ │ │ └── river_1.csv

 │ │ └── ...
 │ └── tests

 │ └── warnings

 └── oarsoaldea

 │ └── ...
 └── ...

For each CCLL, a specific directory is defined. Each directory contains the configuration file c onf i g. yml , defining
all the parameters needed by the EWS and the digital surface model (DSM), stored as raster files in compliance with
those of the city used by LISFLOOD-FP [9]. In the e xpos ur e / sub-directory there are the vector layers defining the
specific exposure of the cities for the different elements, i.e., population, buildings, roads, or railways, that will be
used by the Risk package called by the EWS. The s c e na r i os / sub-directory, instead, contains the set of historical
or synthetic scenarios used in the EWS classification process. For each scenario, a set of . c s v files with the temporal
series associated to each relevant object is present, each one associated to a different input of the digital hydraulic
model [9]. Results of the simulations obtained using this model are placed in the l a ye r s / sub-directory which,
therefore, contains the set of all the flooding layers related to the scenarios during the time-evolution, with time in
seconds embedded in the file name.
Results of the EWS are instead stored in the wa r ni ngs / directory, with files reporting the run time to keep track of
the different background runs. An example of single CCLL run result is the following:

└── data

 SCORE _D8.4_1.0 14/17

 └── massa

 │ └── warnings

 │ │ └── 2023-08-03 15:50:00+00:00_config.yml
 │ │ └── 2023-08-03 15:50:00+00:00_log

 │ │ └── 2023-08-03 15:50:00+00:00_buildings_total.geojson

 │ │ └── 2023-08-03 15:50:00+00:00_population.geojson

 │ │ └── 2023-08-03 15:50:00+00:00_roads.geojson

 │ │ └── 2023-08-03 15:50:00+00:00_roads.geojson

 │ │ └── 2023-08-03 15:50:00+00:00_res.geotiff
 │ └── …

 └── ...

Results of the damage computation are exported as GeoJSON files, while the flooding map in a GeoTiff [10] raster. A
copy of the configuration file and the logs of the run are always kept in order to check for possible problems or details
about past runs.

3.5 Maps Format
Raster and vector geospatial data are internally converted and stored in EPSG:4326 [11] format projections.
Scenarios flooding layers are stored as raster files in AAIGrid [12], a format compliant with LISFLOOD-FP [9], whereas
the results are converted in GeoTIFF [10] which guarantee more versatility. Exposure maps are given in [8] as vector
files; in the EWS subsystem, these are converted and stored internally as GeoJSON files [13]. Possible variations could
be done in the next releases, if needed in the process of integration with the front-end, or if explicitly requested by
the final users.

4. CONCLUSIONS
This document reports on the structure of the SCORE DT-EWS back-end system prototype, that will be used for
simulating scenarios assembled by the final users, thanks to the USE subsystem, and to monitor and predict possible
risks due to weather events and river discharge, thanks to the EWS subsystem. The scheme of the directories, with
a brief explication of the software structure, is illustrated. However, since this deliverable is public, the implemented
code is not disclosed.

At the moment, the finalization of the development of the REST APIs for a functional integration of the DT-EWS back-
end (developed in task T8.2) and front-end (developed in task T8.3) is undergoing in task T8.4, started in M24.
Interoperability and functional tests will be performed in order to ensure that defined functionalities specified in the
previous WP8 deliverables are provided as expected [3] - [5]. The results of the integration activities and related
validation procedures will be reported in the deliverable D8.8 “GIS-Based Early Warning and Digital Twin Platform
integration report”, due at M30. The integration will also aim to ensure information flows between the complete
integrated system and the modules developed in the other WPs are respected. This activity aims also to verify that
the data processed by the DT-EWS is returned to stakeholders as needed. This goal will be pursued thanks to

 SCORE _D8.4_1.0 15/17

meetings, training and feedback sessions with the end users and stakeholders after back-end and GUI integration.
Thanks to the GUI, it will be possible also for non-technical users (i.e., people not familiar with programming) to
explore and operate with the complete system functionality.

Once the system back-end and front-end parts integration is complete, the task T8.4 will move to the deployment of
the integrated solution in the frontrunner coastal cities, with a particular focus on system customization to the
specific CCLL needs.

 SCORE _D8.4_1.0 16/17

5. APPENDIX A
Here we report, as an example, a piece of Python code with some instructions that a developer can use to test the
APIs listed in this document and linked in Section 2.2.

i mpor t r e que s t s

ur l = " ht t ps : / / s c or e _dt _a pi . mbi gr oup. i t "

-

Ge t a t oke n f or t he us e r

-

da t a = {" us e r na me " : " a l i c e " , " pa s s wor d" : " t e s t " }

r = r e que s t s . pos t (f " {ur l } / t oke n" , da t a =da t a)

r . r a i s e _f or _s t a t us ()

r e s pons e = r . j s on()

t oke n = r e s pons e [" a c c e s s _t oke n"]

-

Pr e pa r e s t he he a de r s f or t he ne xt r e que s t s

-

he a de r s = {" Aut hor i z a t i on" : f " Be a r e r { t oke n}" }

-

Cr e a t e a s c e na r i o

-

da t a = {" na me " : " s c e na r i o 1" , " de s c r i pt i on" : " s c e na r i o 1 de s c r i pt i on" }

r = r e que s t s . pos t (f " {ur l } / s c e na r i os " , j s on=da t a , he a de r s =he a de r s)

r . r a i s e _f or _s t a t us ()

s c e na r i o = r . j s on()

-

Re a d a s c e na r i o

-

r = r e que s t s . ge t (f " {ur l } / s c e na r i os / { s c e na r i o[' i d '] }" , he a de r s =he a de r s)

r . r a i s e _f or _s t a t us ()

r e s pons e = r . j s on()

pr i nt (r e s pons e)

 SCORE _D8.4_1.0 17/17

6. REFERENCES
[1] SCORE D8.5 – Early Warning and Digital Twin Platform release notes and user manual

[2] https://docs.djangoproject.com/en/4.2/ (last accessed 21/08/2023)

[3] SCORE D8.1 - GIS Based Digital Twin Platform functional requirements

[4] SCORE D8.2 - GIS Based Early Warning and Digital Twin Platform system architecture and design

[5] SCORE D8.3 - GIS-Based Early Warning and Digital Twin Platform Interface Control Document

[6] SCORE D8.6 – Tools to access and visualise SCORE data and outcomes

[7] SCORE D8.7 – Tools to access and visualise SCORE data and outcomes release notes

[8] SCORE D6.3 – Exposure database and vulnerability curves for the frontrunners CCLLs

[9] https://www.seamlesswave.com/LISFLOOD8.0.html (last accessed 20/08/2023)

[10] https://www.ogc.org/standard/geotiff/ (last accessed 21/08/2023)

[11] https://epsg.io/4326 (last accessed 21/08/2023)

[12] https://gdal.org/drivers/raster/aaigrid.html#raster-aaigrid (last accessed 21/08/2023)

[13] https://geojson.org/ (last accessed 21/08/2023)

https://docs.djangoproject.com/en/4.2/
https://www.seamlesswave.com/LISFLOOD8.0.html
https://www.ogc.org/standard/geotiff/
https://epsg.io/4326
https://gdal.org/drivers/raster/aaigrid.html#raster-aaigrid
https://geojson.org/

	1. Introduction
	1.1 Scope of the deliverable
	1.2 Structure of the deliverable

	2. The USE SUBsystem
	2.1 Subsystem Directories Structure
	2.2 Subsystem Services

	3. The EWS Subsystem
	3.1 Main Scripts
	3.2 The EWS Library
	3.3 The Risk Library
	3.4 Data Structures
	3.5 Maps Format

	4. Conclusions
	5. Appendix A
	6. References

