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1. Summary 

This deliverable reports on the results from the first stage of “Task 6.1: Architectural simulations” in 
the context of “WP6: System Simulation and FPGA Emulation”, in which we develop the simulation 
infrastructure required to drive the architectural design decisions for the eProcessor chip. For this 
purpose we use the state-of-the-art gem5 simulator and several microbenchmarks from the 
Bioinformatics and HPC domains. 
 
Part of our work also involves simulation of the RISC-V vector ISA. However, since gem5 does not 
include a flexible and customizable vector architecture, such as one that could evaluate different 
implementations including short (around 512-bit), medium (around 4,096-bit), and large (16,384-bit 
or more) vectors, we extended gem5 by adding our own parameterizable Vector Processing Unit 
(VPU). 
 
The microbenchmarks are all run in a multitude of hardware configurations, each one varying the size 
or other features of specific architectural blocks, and examine how each configuration affects the total 
runtime. Our results will be used in microarchitecture component sizing decisions. 
 

2. The gem5 simulator 

For our simulations we use gem51. The gem5 simulator has been established as the de facto simulator 
used for computer architecture research. It is utilized both in academia and in industry by companies 
such as ARM, AMD, Google, Micron, HP, and Samsung. 
 
Some of its features are the following: 
 

● Open-source, community-supported 
● Event-driven, cycle accurate simulation 
● 2 different modes of operation: Full-system emulation, and syscall emulation 
● Modular design consisting of components that can be easily parameterized, extended or 

replaced. 
● Models for multiple components: CPUs, caches, memory controllers, buses, etc. 
● Multiple CPUs ranging in simulation detail: atomic, timing-simple, in-order, detailed out-of-

order 
● Support for multiple ISAs: AMD, ARM, SPARC, MIPS, POWER, RISC-V, x86 
● Components written in C++ for higher simulation speed, but configurable via Python for 

greater ease of use. 
 

3. Simulations for Scalar Core 

3.1 Benchmark Suite 

The Benchmarks that we use for the early architectural explorations of eProcessor, fall into the 
Bioinformatics and HPC domains. “WP3: Software Applications Use Cases, Specifications and 
Evaluation” develops and provides the RISC-V assembly code and linker scripts for a total of 93 
microbenchmarks. Each microbenchmark implements a function of well-known benchmark suites 

                                                      
1 https://www.gem5.org/ 
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such as the NAS Parallel Benchmarks, Wavefront alignment algorithm, Smith-Waterman etc. All 
microbenchmarks start with some initialization code and then run the selected function in an infinite 
loop. Each microbenchmark comes with a “weight” number signifying its relative importance within 
the original benchmark. In order to speed up our simulations we use the top 22 microbenchmarks with 
respect to their “weight”. These are shown in the following table: 
 
 
Domain Benchmark Function 
Bioinformatics BSW_B100_L1K_N1K sw_compute_banded 
Bioinformatics BSW_B10_L100_N10K sw_compute_banded 
Bioinformatics BSW_B200_L1K_N1K sw_compute_banded 
Bioinformatics BSW_B20_L100_N10K sw_compute_banded 
Bioinformatics BSW_B300_L1K_N1K sw_compute_banded 
Bioinformatics BSW_B30_L100_N10K sw_compute_banded 
Bioinformatics SW_L100_N10K sw_compute 
Bioinformatics SW_L1K_N1K sw_compute 
Bioinformatics WFA_L100K_N100_E10 affine_wavefronts_compute_next 
Bioinformatics WFA_L100K_N100_E1 affine_wavefronts_compute_next 
Bioinformatics WFA_L10K_N1K_E10 affine_wavefronts_compute_next 
Bioinformatics WFA_L10K_N1K_E1 affine_wavefronts_compute_next 
Bioinformatics WFA_L1K_N10K_E10 affine_wavefronts_compute_next 
HPC NAS_CG_S conj_grad 
HPC NAS_CG_W conj_grad 
HPC NAS_EP_S vranlc 
HPC NAS_EP_W vranlc 
HPC NAS_FT_S fftz2 
HPC NAS_IS_W rank 
HPC NAS_MG_W resid 
HPC NAS_SP_S adi 
HPC NAS_SP_W adi 

Table 1: Microbenchmarks used 

3.2 Methodology 

The gem5 simulator can be parameterized with several parameters. In order to study the effect of 
various architectural features of the RISC-V scalar core, we needed to create a set of gem5 
configurations for each such feature, varying the feature-related parameters, while keeping all other 
parameters at some reasonable default values, matching the currently favored eProcessor architecture 
as provided by Cortus. 
 
In this way, a total of 101 different gem5 configurations are created and each was run against the 22 
microbenchmarks of the previous section, for a total of 2222 simulations. 
 
The following table lists all gem5 parameters that we use, along with their default values. 
 
Parameter name Default 

value 
Description 

--numROBEntries 64 Number of reorder buffer entries 
--numPhysIntRegs 128 Number of physical integer registers 
--LQEntries 8 Load Queue entries 
--SQEntries 8 Store Queue entries 
--fetchWidth 4 Fetch width 
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--fetchBufferSize 32 Fetch buffer size in bytes 
--dispatchWidth 4 Dispatch width 
--commitWidth 4 Commit width 
--wbWidth 6 Writeback width 
--decodeWidth 4 Decode width 
--issueWidth 4 Issue width 
--renameWidth 4 Rename width 
--squashWidth 64 Squash width 
--cache_line_size 64 Cache line size in bytes 
--l1ic_size 16kB L1 Instr cache size 
--l1ic_assoc 4 L1 Instr cache associativity 
--l1ic_mshrs 4 L1 Instr cache MSHRs (max outstanding requests)  
--l1ic_latency 1 L1 Instr cache latency 
--l1dc_size 16kB L1 Data cache size 
--l1dc_assoc 4 L1 Data cache associativity 
--l1dc_mshrs 4 L1 Data cache MSHRs (max outstanding requests) 
--l1dc_latency 1 L1 Data cache latency 
--l2c_size 256kB L2 cache size 
--l2c_assoc 8 L2 cache associativity 
--l2c_latency 12 L2 cache latency 
--rdwr_count 2 Number of read-write ports 
--ALU_count 4 Number of Integer ALUs 
--ALU_opLat 1 ALU latency 
--ALU_pipelined True ALU pipelined 
--mult_count 1 Number of Integer Multipliers 
--mult_opLat 4 Integer Multiplier latency 
--mult_pipelined True Integer Multiplier pipelined 
--div_count 1 Number of Integer Dividers 
--div_opLat 9 Integer Divider latency 
--div_pipelined True Integer Divider pipelined 
--FP_ALU_count 
--FP_ALU_opLat 
--FP_ALU_pipelined 
--FP_mult_count 
--FP_mult_opLat 
--FP_mult_pipelined 
--FP_div_count 
--FP_div_opLat 
--FP_div_pipelined 

2 
4 
True 
1 
8 
True 
1 
16 
True 

Number of FP ALUs 
FP ALU latency 
FP ALU pipelined 
Number of FP Multipliers 
FP Multiplier latency 
FP Multiplier pipelined 
Number of FP Dividers 
FP Divider latency 
FP Divider pipelined 

Table 2: gem5 configuration parameters 
 
 
Following is an example of the command used to compile one of the microbenchmarks: 
 
# riscv64-unknown-linux-gnu-gcc -O0 -O3 -g -no-pie -march=rv64g -
fno-builtin -fno-pic -nostdlib -o 
binaries/Bioinformatics.BSW_B100_L1K_N1K.0953_sw_compute_banded_168.
exe -T microbenchmarks-
main/CPU/Bioinformatics/BSW_B100_L1K_N1K/0953_sw_compute_banded_168/
0953_sw_compute_banded_168.lds -T microbenchmarks-
main/CPU/microbenchmark_orignal_env.lds microbenchmarks-
main/CPU/Bioinformatics/BSW_B100_L1K_N1K/0953_sw_compute_banded_168/
0953_sw_compute_banded_168.s 
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And below we show an example of the command that is used to run the resulting executable with 
gem5 for one of the configurations: 
 
# gem5/build/RISCV/gem5.opt --debug-flags=Exec configs/eprocessor.py 
--l1ic_assoc=1 --l1dc_assoc=1 --l1ic_size=4kB --l1dc_size=4kB --
l1ic_mshrs=2 --l1dc_mshrs=2 --
cmd=binaries/Bioinformatics.BSW_B100_L1K_N1K.0953_sw_compute_banded_
168.exe > /dev/null 2>/dev/null 
 
The gem5 configuration file configs/eprocessor.py seen in the above command, configures a minimal 
hardware system consisting of one out-of-order single-core CPU of RISC-V ISA, with separate Level 
1 instruction and data caches (L1 caches), a unified Level 2 cache (L2 cache), and a 1GB DDR3 main 
memory. It also configures the system to run in bare-metal, i.e. in syscall emulation mode without any 
OS code, until a total of 10 million instructions have been committed, for each of the benchmarks that 
we ran in this study. The selection of 10 million instructions is inline with guidance from the WP3 
benchmark developers and is adequate to capture the important activity of the benchmarks and 
associated cache effects.  
 
At the end of each simulation run, gem5 automatically dumps all recorded statistics into file 
m5out/stats.txt. The following screenshot shows the beginning of one such m5out/stats.txt file: 
 

 
Figure 1: Screenshot of gem5 statistics file 

 
All m5out/stats.txt files, from all 2222 simulations, are copied over and kept in a separate folder 
where they are available for post-processing. A Perl script was then used to post-process these files, 
extract the values of the statistics we wanted to measure and plot them in the graphs of the following 
sections. 
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3.3 Results 

In our simulations we study the following architectural blocks: L1 caches, L2 cache, Integer Unit 
(ALU), FP Unit (ALU, multiplier), Load-Store buffers, and Reorder Buffers. In the following sections 
we display the configurations we run for each block and the results from the simulations. 

3.3.1 L1 Caches 

For the L1 caches the parameters that we vary are: associativity, size, and number of MSHRs. 
Specifically: 
 

● The values that we try for associativity are: 1 (i.e. direct-mapped), 2 (i.e. 2-way set 
associative), and 4 (i.e. 4-way set associative). 

● The values that we try for size are: 4 kBytes, 8 kBytes, and 16 kBytes. 
● The values that we try for the number of MSHRs are: 2, 4, and 8. 

 
Taking all different combinations for these values results in a total of 3 x 3 x 3 = 27 configurations for 
the L1 caches. 
 
We use the following naming convention for these configurations: 
 
 l1c_[associativity]_[size]_[# of MSHRs] 
 
For example, configuration l1c_1_8kB_4 represents a L1 cache that is direct-mapped, has a size of 8 
kBytes, and has 4 MSHRs. Configuration l1c_4_16kB_2 represents a L1 cache that is 4-way set 
associative, has a size of 16 kBytes, and has 2 MSHRs. 
 
Each microbenchmark is represented with one colored line in the following figures. Notice that since 
the figures in this report are restricted by a small width, including in all figures the names of the 
microbenchmarks corresponding to each colored line would make them unreadable. For this reason, 
the color-mapping of the microbenchmarks is shown once in the following figure, and all 
microbenchmark names have been omitted from the remaining figures of this report. 
 
 

 
Figure 2: Color-mapping of microbenchmarks (used in all Figures) 
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The following Figure 3 shows the running time (as expressed in millions of clock cycles), for each 
microbenchmark across all 27 L1 cache configurations. 
 

 
Figure 3: Running time for different L1 cache configurations 

 
The following Figure 4 shows the L1 data cache miss rate (for all microbenchmarks across all L1 
cache configurations), as defined by: 
 
Miss Rate 1 = L1 misses / L1 accesses 
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Figure 4: L1 data cache “Miss Rate 1” for different configurations 
 
However, there are cases where this graph can be misleading. For example, we notice cases where 
increasing the number of MSHRs resulted in an increased miss rate even though, as we can see in the 
previous Figure, the overall runtime decreases. The reason is that an increased number of MSHRs 
leads to increased ILP, and in cases where multiple memory instructions that all access the same 
cache line happen to run in parallel, multiple cache misses will be recorded (notice that this is just an 
artifact of how gem5 counts misses, since misses to the same cache line should normally be counted 
as a single miss). This is in contrast to having a smaller number of MSHRs where subsequent memory 
instructions will be stalled and not allowed to cause a cache miss. At a closer look, the multiple cache 
misses for the same cache line that can be recorded with a higher number of MSHRs will all result in 
a single L2 cache access. For this reason, a better metric for the L1 miss rate could be the one 
expressed as: 
 
Miss Rate 2 = L2 accesses / L1 accesses 
 
The following Figure 5 shows this metric: 
 

 
Figure 5: L1 data cache “Miss Rate 2” for different configurations 

 
Here, we can see that increasing the number of MSHRs, does indeed lead to fewer L2 accesses, and 
thus overall decreased runtime. 
 
Since the total of 27 configurations make the above diagrams a little hard to read and understand, here 
are the subset of these diagrams where only the configurations with 16 kBytes cache size are 
displayed, in Figures 6, 7 and 8. 
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Figure 6: Running time for 16 kBytes L1 cache configurations 

 
 
 

 
Figure 7: L1 data cache “Miss Rate 1” for 16 kBytes configurations 
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Figure 8: L1 data cache “Miss Rate 2” for 16 kBytes configurations 

 
 
Speed-ups: 
 
Going from direct-mapped to 2-way set associativity results in the following average and maximum 
speed-ups (across the 22 microbenchmarks) for the different L1 cache configurations (min speed-up is 
0, i.e. no speed-up, and is not shown). 
 
Notice: The speedups in this report are expressed in percentages, e.g. if time[configuration 1] = 150 
and time[configuration 2] = 100, then the reported speedup going from configuration 1 to 
configuration 2 is given by the expression speedup = round(100*(150/100-1), 1) = 50.0 (%) 
   
 
L1 Cache Configuration 

Direct-mapped => 2-way 
Average Speedup (%) 

 
Max Speedup (%) 

4 kBytes, 2 MSHRs 13.9 156.1 
4 kBytes, 4 MSHRs 7.4 50.6 
4 kBytes, 8 MSHRs 7.4 49.7 
8 kBytes, 2 MSHRs 8.3 158.5 
8 kBytes, 4 MSHRs 3.2 49.6 
8 kBytes, 8 MSHRs 3.1 49.3 
16 kBytes, 2 MSHRs 2.1 18.6 
16 kBytes, 4 MSHRs 1.9 17.7 
16 kBytes, 8 MSHRs 1.9 17.7 

Table 3: Speed-ups when L1 cache associativity changes from direct-mapped to 2-way 
 
 
Going from 2-way to 4-way set associativity results in the following average and maximum speed-
ups: 
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L1 Cache Configuration 

2-way => 4-way 
Average Speedup (%) 

 
Max Speedup (%) 

4 kBytes, 2 MSHRs 7.1 70.6 
4 kBytes, 4 MSHRs 4.2 14.6 
4 kBytes, 8 MSHRs 4.2 14.6 
8 kBytes, 2 MSHRs 1.0 12.2 
8 kBytes, 4 MSHRs 0.9 11.8 
8 kBytes, 8 MSHRs 0.9 11.8 
16 kBytes, 2 MSHRs 0.0 2.6 
16 kBytes, 4 MSHRs 0.0 2.9 
16 kBytes, 8 MSHRs 0.0 2.9 

Table 4: Speed-ups when L1 cache associativity changes from 2-way to 4-way 
 
Going from 4 kBytes to 8 kBytes results in the following average and maximum speed-ups: 
 
 
L1 Cache Configuration 

4 kBytes => 8 kBytes 
Average Speedup (%) 

 
Max Speedup (%) 

Direct-mapped, 2 MSHRs 13.9 88.7 
Direct-mapped, 4 MSHRs 8.8 23.9 
Direct-mapped, 8 MSHRs 8.8 23.9 
2-way set assoc., 2 MSHRs 7.7 77.9 
2-way set assoc., 4 MSHRs 4.4 16.3 
2-way set assoc., 8 MSHRs 4.4 16.3 
4-way set assoc., 2 MSHRs 1.4 7.6 
4-way set assoc., 4 MSHRs 1.0 3.4 
4-way set assoc., 8 MSHRs 1.0 3.4 

Table 5: Speed-ups when L1 cache size changes from 4 kBytes to 8 kBytes 
 

Going from 8 kBytes to 16 kBytes results in the following average and maximum speed-ups: 
 
 
L1 Cache Configuration 

8 kBytes => 16 kBytes 
Average Speedup (%) 

 
Max Speedup (%) 

Direct-mapped, 2 MSHRs 9.3 132.5 
Direct-mapped, 4 MSHRs 4.3 35.3 
Direct-mapped, 8 MSHRs 4.3 35.1 
2-way set assoc., 2 MSHRs 3.7 24.5 
2-way set assoc., 4 MSHRs 3.2 24.4 
2-way set assoc., 8 MSHRs 3.3 24.4 
4-way set assoc., 2 MSHRs 2.8 25.1 
4-way set assoc., 4 MSHRs 2.4 24.0 
4-way set assoc., 8 MSHRs 2.4 24.0 

Table 6: Speed-ups when L1 cache size changes from 8 kBytes to 16 kBytes 
 
Going from 2 to 4 MSHRs results in the following average and max speed-ups: 
 
 
L1 Cache Configuration 

2 MSHRs => 4 MSHRs 
Average Speedup (%) 

 
Max Speedup (%) 

Direct-mapped, 4 kBytes 9.6 70.9 
Direct-mapped, 8 kBytes 5.4 73.6 
Direct-mapped, 16 kBytes 1.5 7.5 
2-way set assoc., 4 kBytes 4.8 55.6 
2-way set assoc., 8 kBytes 1.8 6.5 
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2-way set assoc., 16 kBytes 1.4 6.8 
4-way set assoc., 4 kBytes 2.1 9.4 
4-way set assoc., 8 kBytes 1.7 6.2 
4-way set assoc., 16 kBytes 1.3 6.6 

Table 7: Speed-ups when L1 cache changes from using 2 MSHRs to 4 MSHRs 
 
Going from 4 to 8 MSHRs results in the following average and maximum speed-ups: 
 
 
L1 Cache Configuration 

4 MSHRs => 8 MSHRs 
Average Speedup (%) 

 
Max Speedup (%) 

Direct-mapped, 4 kBytes 0.1 0.7 
Direct-mapped, 8 kBytes 0.1 0.5 
Direct-mapped, 16 kBytes 0.1 0.4 
2-way set assoc., 4 kBytes 0.1 0.6 
2-way set assoc., 8 kBytes 0.1 0.4 
2-way set assoc., 16 kBytes 0.1 0.4 
4-way set assoc., 4 kBytes 0.1 0.8 
4-way set assoc., 8 kBytes 0.1 0.5 
4-way set assoc., 16 kBytes 0.1 0.5 

Table 8: Speed-ups when L1 cache changes from using 4 MSHRs to 8 MSHRs 
 

3.3.2 L2 Cache 

For the unified L2 cache we vary the following parameters: associativity, and cache size. Specifically: 
 

● The values that we try for associativity are: 2, 4, and 8 
● The values that we try for size are: 64 kBytes, 128 kBytes, 256 kBytes, and 512 kBytes 

 
The number of MSHRs is kept constant at 20. Taking all different combinations for these values 
results in a total of 3 x 4 = 12 configurations for the L2 cache. 
 
We use the following naming convention for these configurations: 
 
 l2c_[associativity]_[size] 
 
For example, configuration l2c_2_128kB represents a L2 cache that is 2-way set associative and has a 
size of 128 kBytes. Configuration l2c_4_256kB_2 represents a L2 cache that is 4-way set associative 
and has a size of 256 kBytes. 
 
The following Figure 9 shows the running time (as expressed in millions of clock cycles), for each 
microbenchmark across all 12 L2 cache configurations. 
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Figure 9: Running time for different L2 cache configurations 

  
The following Figure 10 shows the L2 cache miss rate, as defined by: 
 
Miss Rate = L2 misses / L2 accesses 
 

 
Figure 10: L2 cache Miss Rate for different configurations 
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We also vary the latency of the L2 cache from 12 up to 24 clock cycles, while keeping all other 
parameters at their default values (i.e. size=256 kBytes, associativity=8). The following Figure 11 
shows the running time for the different latency settings: 
 

 
Figure 11: Running time for different L2 cache latencies (256 kBytes, 8-way set assoc.) 

 
 
Speed-ups: 
 
Going from 2-way to 4-way set associativity results in the following average and maximum speed-
ups: 
  
 
L2 Cache Configuration 

2-way => 4-way 
Average Speedup (%) 

 
Max Speedup (%) 

64 kBytes 0.4 5.4 
128 kBytes 0.3 3.0 
256 kBytes 0.9 17.6 
512 kBytes 1.0 17.6 

Table 9: Speed-ups when L2 cache associativity changes from 2-way to 4-way 
 
Going from 4-way to 8-way set associativity results in the following average and maximum speed-
ups: 
  
 
L2 Cache Configuration 

4-way => 8-way 
Average Speedup (%) 

 
Max Speedup (%) 

64 kBytes 0.0 0.9 
128 kBytes 0.0 0.4 
256 kBytes 0.2 4.7 
512 kBytes 0.2 1.3 

Table 10: Speed-ups when L2 cache associativity changes from 4-way to 8-way 
 
Going from 64 kBytes to 128 kBytes results in the following average and maximum speed-ups: 
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L2 Cache Configuration 

64 kBytes => 128 kBytes 
Average Speedup (%) 

 
Max Speedup (%) 

2-way set assoc. 2.7 35.9 
4-way set assoc. 2.6 37.2 
8-way set assoc. 2.6 36.0 

Table 11: Speed-ups when L2 cache size changes from 64 kBytes to 128 kBytes 
 
Going from 128 kBytes to 256 kBytes results in the following average and maximum speed-ups: 
  
 
L2 Cache Configuration 

128 kBytes => 256 kBytes 
Average Speedup (%) 

 
Max Speedup (%) 

2-way set assoc. 2.7 38.6 
4-way set assoc. 3.3 47.0 
8-way set assoc. 3.7 54.9 

Table 12: Speed-ups when L2 cache size changes from 128 kBytes to 256 kBytes 
 
 
Going from 256 kBytes to 512 kBytes results in the following average and maximum speed-ups: 
  
 
L2 Cache Configuration 

256 kBytes => 512 kBytes 
Average Speedup (%) 

 
Max Speedup (%) 

2-way set assoc. 2.4 42.5 
4-way set assoc. 2.6 37.6 
8-way set assoc. 2.5 31.9 

Table 13: Speed-ups when L2 cache size changes from 256 kBytes to 512 kBytes 
 
Changing the L2 cache latency from 24 down to 12 cycles results in the following average and 
maximum speed-ups (for a 256 kBytes, 8-way set assoc. L2 cache): 
 
256 kBytes, 8-way s.a. L2 cache Average Speedup (%) Max Speedup (%) 
Latency going from 24 to 20 cycles 3.6 9.1 
Latency going from 20 to 16 cycles 3.7 10.1 
Latency going from 16 to 12 cycles 3.6 10.0 

Table 14: Speed-ups when L2 cache latency changes from 24 cycles down to 12 cycles 
 

3.3.3 L1 and L2 Caches Line Size 

The following Figures 12, 13 and 14 show how varying the cache line size from 16 up to 64 bytes, 
affects the running time and the L1 data cache and L2 cache miss rates. 
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Figure 12: Running time for different cache line sizes 

 
 

 
Figure 13: L1 data cache “Miss Rate 2” for different cache line sizes 
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Figure 14: L2 cache Miss Rate for different cache line sizes 

 
Speed-ups: 
 
Going from 16 to 32 bytes results in the following speed-ups: average 15.2, maximum 63.0 
Going from 32 to 64 bytes results in the following speed-ups: average 19.2, maximum 63.5 
 

3.3.4 Integer Unit 

The Integer unit comprises of 3 types of units: 
 

● Integer multipliers (for Integer multiplications) 
● Integer divisors (for Integer divisions) 
● Integer ALUs (for all remaining Integer operations) 

 
Since the available microbenchmarks do not perform any (at least, significant) number of integer 
multiplications or divisions, we did not examine the Integer multipliers or divisors. 
 
For the Integer ALUs, the parameters that we vary are: the number of ALUs, latency, and whether 
they are pipelined or not. Specifically: 
 

● The values that we try for the number of ALUs are: 1, 2, and 4. 
● The values that we try for latency are: 1, 2, and 4 clock cycles. 
● The values that we try for pipelined are: false, and true (in case of latencies higher than 1). 

 
Taking all different combinations for these values results in a total of 3 + (3 x 2 x 2) = 15 
configurations for the Integer ALUs. 
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 ALU_c[# of ALUs]_l[latency]_p[1 if pipelined, 0 if not] 
 
For example, ALU_c1_l4_p0 represents a configuration with 1 ALU that has a latency of 4 cycles and 
is not pipelined. Similarly ALU_c4_l2_p1 represents a configuration with 4 ALUs that have a latency 
of 2 cycles and are pipelined. 
 
The following Figure 15 shows the running time for each microbenchmark across all 15 Integer ALU 
configurations. 
 

 
Figure 15: Running time for different ALU configurations 

 
Assuming most designs nowadays use a pipelined integer ALU, the following Figure 16 shows only 
the subset of this figure containing the pipelined ALU configurations. 
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Figure 16: Running time for pipelined ALU configurations 

 
The following Figure 17 shows the parameter “FU Busy” which represents the number of attempts 
that were made to use an ALU when none was available. 
 
 

 
 Figure 17: ALU non-availability for different ALU configurations 
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Going from 1 to 2 ALUs results in the following average and maximum speed-ups: 
  

0

5

10

15

20

25

30

35

40

45
N

um
 C

yc
le

s 
(M

)

0

5

10

15

20

25

30

35

FU
 B

us
y 

(M
)



D6.2 Simulation infrastructure and early architectural explorations                   
   

This document is Public, and was produced under the eProcessor project (EC contract 956702).                         21 
 

 
ALUs Configuration 

1 Int ALU => 2 Int ALUs 
Average Speedup (%) 

 
Max Speedup (%) 

Latency: 1 37.3 70.6 
Latency: 2, Pipelined: false 51.4 89.7 
Latency: 2, Pipelined: true 32.6 59.3 
Latency: 4, Pipelined: false 62.1 94.2 
Latency: 4, Pipelined: true 22.1 41.7 

Table 15: Speed-ups when number of Integer ALUs changes from 1 to 2 
 
Going from 2 to 4 ALUs results in the following average and maximum speed-ups: 
  
 
ALUs Configuration 

2 Int ALUs => 4 Int ALUs 
Average Speedup (%) 

 
Max Speedup (%) 

Latency: 1 9.4 24.5 
Latency: 2, Pipelined: false 32.5 59.0 
Latency: 2, Pipelined: true 7.8 19.5 
Latency: 4, Pipelined: false 47.6 84.6 
Latency: 4, Pipelined: true 3.8 9.7 

Table 16: Speed-ups when number of Integer ALUs changes from 2 to 4 
 

3.3.5 Floating Point Unit 

The FP unit comprises of 3 types of units: 
 

● FP multipliers (for single or double precision FP multiplications) 
● FP divisors (for single or double precision FP divisions) 
● FP ALUs (for all remaining FP operations) 

 
Since the available microbenchmarks do not perform any (at least, significant) number of FP 
divisions, we did not examine the FP divisors. 
 
For the FP ALUs, the parameters that we vary are: the number of ALUs, latency, and whether they are 
pipelined or not. Specifically: 
 

● The values that we try for the number of ALUs are: 1, 2, and 4. 
● The values that we try for latency are: 3, 4, and 5 clock cycles. 
● The values that we try for pipelined are: false, and true. 

 
Taking all different combinations for these values results in a total of 3 x 3 x 2 = 18 configurations for 
the FP ALUs. 
 
The naming convention that we use for these configurations is similar to the one for the Integer 
ALUs: 
  
 FP_ALU_c[# of ALUs]_l[latency]_p[1 if pipelined, 0 if not] 
 
The following Figure 18 shows the running time for each microbenchmark across all 18 FP ALU 
configurations. 
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Figure 18: Running time for different FP ALU configurations 

 
For the FP Multipliers, the parameters that we vary are: the number of Multipliers, latency, and 
whether they are pipelined or not. Specifically: 
 

● The values that we try for the number of Multipliers are: 1, 2. 
● The values that we try for latency are: 6, 8, and 10 clock cycles. 
● The values that we try for pipelined are: false, and true. 

 
Taking all different combinations for these values results in a total of 2 x 3 x 2 = 12 configurations for 
the FP Multipliers. 
 
The naming convention that we use for these configurations is similar to the one for the FP ALUs: 
 
 FP_mult_c[# of ALUs]_l[latency]_p[1 if pipelined, 0 if not] 
 
The following Figure 19 shows the running time for each microbenchmark across all 12 FP 
Multipliers configurations. 
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Figure 19: Running time for different FP Multipliers configurations 

 
 
 
 
Speed-ups: 
 
Going from 1 to 2 FP ALUs results in the following average and maximum speed-ups: 
  
 
FP ALUs Configuration 

1 FP ALU => 2 FP ALUs 
Average Speedup (%) 

 
Max Speedup (%) 

Latency: 3, Pipelined: false 1.3 15.4 
Latency: 3, Pipelined: true 0.1 1.5 
Latency: 4, Pipelined: false 2.3 27.2 
Latency: 4, Pipelined: true 0.1 1.6 
Latency: 5, Pipelined: false 3.4 43.3 
Latency: 5, Pipelined: true 0.1 1.6 

Table 17: Speed-ups when number of FP ALUs changes from 1 to 2 
 
Going from 2 to 4 FP ALUs results in the following average and maximum speed-ups: 
  
 
FP ALUs Configuration 

2 FP ALU => 4 FP ALUs 
Average Speedup (%) 

 
Max Speedup (%) 

Latency: 3, Pipelined: false 0.1 2.2 
Latency: 3, Pipelined: true 0.0 0.1 
Latency: 4, Pipelined: false 0.2 3.2 
Latency: 4, Pipelined: true 0.0 0.0 
Latency: 5, Pipelined: false 0.6 8.4 
Latency: 5, Pipelined: true 0.0 0.3 

Table 18: Speed-ups when number of FP ALUs changes from 2 to 4 
 
Going from 1 to 2 FP multipliers results in the following average and maximum speed-ups: 
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FP Multipliers Configuration 

1 FP mult => 2 FP mult 
Average Speedup (%) 

 
Max Speedup (%) 

Latency: 6, Pipelined: false 3.2 25.6 
Latency: 6, Pipelined: true 0.1 1.1 
Latency: 8, Pipelined: false 5.9 57.7 
Latency: 8, Pipelined: true 0.1 0.9 
Latency: 10, Pipelined: false 7.9 77.7 
Latency: 10, Pipelined: true 0.1 0.8 

Table 19: Speed-ups when number of FP Multipliers changes from 1 to 2 
 
Changing the latency of FP multipliers from 10 to 8 clock cycles, results in the following average and 
maximum speed-ups: 
 
 
FP Multipliers Configuration 

Latency 10 => Latency 8 
Average Speedup (%) 

 
Max Speedup (%) 

# of Multipliers: 1, Pipelined: false 4.1 23.3 
# of Multipliers: 1, Pipelined: true 1.9 14.7 
# of Multipliers: 2, Pipelined: false 2.4 14.8 
# of Multipliers: 2, Pipelined: true 1.9 14.8 

Table 20: Speed-ups when FP Multipliers latency changes from 10 to 8 cycles 
 
Changing the latency of FP multipliers from 8 to 6 clock cycles, results in the following average and 
maximum speed-ups: 
 
 
FP Multipliers Configuration 

Latency 8 => Latency 6 
Average Speedup (%) 

 
Max Speedup (%) 

# of Multipliers: 1, Pipelined: false 4.6 29.6 
# of Multipliers: 1, Pipelined: true 2.1 17.2 
# of Multipliers: 2, Pipelined: false 2.3 17.4 
# of Multipliers: 2, Pipelined: true 2.0 17.4 

Table 21: Speed-ups when FP Multipliers latency changes from 8 to 6 cycles 
 

3.3.6 Load-Store Buffers 

The following Figure 20 shows how varying the number of load and store buffers from 4 up to 32, 
affected the running time. Each configuration contains the same number of load and store buffers, for 
example, configuration lsq_4 contains 4 load buffer entries and 4 store buffer entries. 
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Figure 20: Running time for different Load-Store buffers configurations 

 
Speed-ups: 
 
Changing the number of load & store buffer entries results in the following average and maximum 
speed-ups: 
  
Change Average Speedup (%) Max Speedup 

(%) 
Going from 4 to 8 load & store buffer entries 23.4 41.1 
Going from 8 to 12 load & store buffer entries 6.2 22.0 
Going from 12 to 16 load & store buffer entries 2.1 10.4 
Going from 16 to 20 load & store buffer entries 0.5 6.4 
Going from 20 to 32 load & store buffer entries 0.3 2.5 

Table 22: Speed-ups when number of Load & Store Buffer Entries changes from 4 up to 32 

3.3.7 Reorder Buffers 

The following Figure 21 shows how varying the number of reorder buffer entries from 32 up to 256, 
affects the running time. 
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Figure 21: Running time for different Reorder buffers configurations 

 
Speed-ups: 
 
Changing the number of reorder buffer entries results in the following average and maximum speed-
ups: 
  
Change Average Speedup (%) Max Speedup (%) 
Going from 32 to 64 ROBs 6.4 11.5 
Going from 64 to 128 ROBs 0.1 0.5 
Going from 128 to 256 ROBs 0.0 0.0 

Table 23: Speed-ups when number of Reorder Buffer Entries changes from 32 up to 256 

3.3.8 Instruction Mix 

The following Figure 22 shows the instruction mix, in millions of executed instructions across all 
microbenchmarks (for a specific configuration, in this case l1c_1_4kB_2). The number of commited 
instructions is fixed at 10 million for all the simulations that we run. However, the number of 
executed instructions (“num_insts” in the figure) can be higher due to branch mispredictions and 
speculative execution. 
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Figure 22: Instruction mix 
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deliverable we develop the first approach to build the simulation infrastructure required to take the 
architectural decisions for the design of the eProcessor chip and the VPU integration. For this purpose 
we used gem5, a simulator for computer architecture research, widely accepted in both academia and 
industry. 
 

4.1 Methodology 

To simulate a single RISC-V core processor on the gem5 simulator we use an out of order CPU 
microarchitecture model and a memory model that resembles an ARM A72. The parameters used for 
this core are described in detail in Table 3. 
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--fetchWidth 2 Fetch width 
--fetchBufferSize 16 Fetch buffer size in bytes 
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--wbWidth 8 Writeback width 
--decodeWidth 2 Decode width 
--issueWidth 8 Issue width 
--renameWidth 3 Rename width 
--squashWidth 12 Squash width 
--cache_line_size 64 Cache line size in bytes 
--l1ic_size 48Kb L1 Instr cache size 
--l1ic_assoc 3 L1 Instr cache associativity 
--l1ic_mshrs 4 L1 Instr cache MSHRs (max 

outstanding requests)  
--l1ic_latency 1 L1 Instr cache latency 
--l1dc_size 32Kb L1 Data cache size 
--l1dc_assoc 2 L1 Data cache associativity 
--l1dc_mshrs 16 L1 Data cache MSHRs (max 

outstanding requests) 
--l1dc_latency 2 L1 Data cache latency 
--l2c_size 256kB L2 cache size 
--l2c_assoc 16 L2 cache associativity 
--l2c_latency 12 L2 cache latency 
--rdwr_count  Number of read-write ports 
--ALU_count 4 Number of Integer ALUs 
--ALU_opLat 1 ALU latency 
--ALU_pipelined True ALU pipelined 
--mult_count 1 Number of Integer Multipliers 
--mult_opLat 4 Integer Multiplier latency 
--mult_pipelined True Integer Multiplier pipelined 
--div_count 1 Number of Integer Dividers 
--div_opLat 9 Integer Divider latency 
--div_pipelined True Integer Divider pipelined 
--FP_ALU_count 
--FP_ALU_opLat 
--FP_ALU_pipelined 
--FP_mult_count 
--FP_mult_opLat 
--FP_mult_pipelined 
--FP_div_count 
--FP_div_opLat 
--FP_div_pipelined 

3 
1 
True 
2 
3 
True 
2 
64 
True 

Number of FP ALUs 
FP ALU latency 
FP ALU pipelined 
Number of FP Multipliers 
FP Multiplier latency 
FP Multiplier pipelined 
Number of FP Dividers 
FP Divider latency 
FP Divider pipelined 

Table 24: gem5 configuration parameters 
 
 
Following is an example of the standard command used to compile the benchmarks: 
 
 
$ $LLVM/bin/clang++ --target=riscv64-unknown-elf -march=rv64g -mepi -O2 -
DUSE_RISCV_VECTOR -o kernel.e kernel.cc 
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And the next is an example of the command that was used to run the resulting executable with gem5 
for one of the configurations: 
 

 
$ ./build/RISCV/gem5.opt configs/example/se.py -c $APPS/kernel.e --cpu-type 
DerivO3CPU --caches --l2cache --cacheline_size 64 --l1i_size 32kB --
l1d_size 32kB --l2_size 256kB --l2_assoc 16 --l1i_assoc 4 --l1d_assoc 4 --
num-l3caches 0 --sys-clock 2GHz 
 

 
Since the simulations in gem5 take a long time to execute, we reduced the L2 cache size in order to 
force the simulations to stress the memory system and thus we can obtain meaningful results even for 
medium size datasets. This means that instead of simulating an input of 256 millions of elements to 
stress the memory, we can simulate only 2 millions to get our results. 
 
 

4.2 Experimental Results 

We perform our first simulations on a model of an out of order RISC-V core. During this deliverable 
we perform the Axpy kernel from the RIVEC benchmarks2, changing the type of data from float to 
integer. This change was required because the support for floating point instructions is still work in 
progress. For this analysis we use three sizes of datasets, from 256 thousand data to 2,56 millions of 
integer numbers, and we cover vector lengths from 8 to 64 elements per vector. Since Axpy is a 
memory-bound kernel, a marginal speed-up increase is obtained as the vector lane size increases. 
 
The results are shown next, in Figure 23: 
 

 
Figure 23: Number of cycles executed for scalar and for different configurations of vector lengths 8, 
16, 32 and 64. 
 
                                                      
2 “Rivec benchmark suite,” https://github.com/RALC88/riscv-vectorizedbenchmark-suite, accessed: 
2022-03-30. 
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In Figure 24, we show the number of executed instructions for the axpy kernel. We take the number 
of instructions executed for scalar axpy as a baseline and then we present the number of times that the 
number of cycles are reduced. For example, for the VL = 8 the number of executed instructions 
reduces by 6 times, for VL = 16 the number of executed instructions reduces by 16 times, for VL = 32 
the number of executed instructions reduces by 24 times and finally for VL = 64 the number of 
executed instructions reduces by 48 times. 

 
Figure 24: Number of executed instructions taking the scalar number of executed instructions as 
baseline. 

 

5. Concluding Remarks and Next Steps 

In this report we presented the simulation infrastructure that we developed, as well as the results that 
we received from the simulations that will be used to drive the architectural design decisions for the 
eProcessor chip. 
 
Concerning the simulations of the scalar core, we explored how different microarchitecture 
component sizing decisions affect the overall runtime of a set of representative microbenchmarks. 
 
Concerning the simulations of the vector accelerators, this first approach of the integration of the VPU 
to the OoO RISC-V established the first step to the integration of the whole RISC-V vector extension. 
The integration of the VPU will allow better architectural decisions in the design of both the VPU and 
the core. The main important achievements in this deliverable are listed below: 

1. Support for the decoding of vector instructions. 
2. Support for basic vector memory operations such as loads and stores with unit strided. 
3. Support for fundamental vector arithmetic operations such as multiplication, addition, etc. 
4. Add templates to include more core models besides the already supported DerivO3, Atomic 

and Minor. 
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Upcoming tasks for the scalar core simulations include: 
1. Use a wider range of microbenchmarks from more domains 
2. Run some simulations in Full-system emulation mode, i.e. with OS code 
3. Explore more architectural components, such as branch predictor and others 
4. Enhance gem5 configuration to better match the evolving core from Cortus 

 
Upcoming tasks for the VPU simulations include: 

1. Extend the vector decoder to cover the RISCV vector extension. 
2. Support for more types of instructions. 
3. Add the eProcessor core model as the OoO model integrated to the VPU. 
4. Execute and Analyze more benchmarks from the RIVEC suit. 

 
 

6. List of Abbreviations 

ALU: Arithmetic-Logic Unit 
Atomic: gem5 core model used to generate checkpoints and simulate in functional 
level. 
DerivO3: gem5 core model of a generic Out of Order core. 
FP: Floating Point 
HPC: High Performance Computing 
ISA: Instruction Set Architecture 
Minor: gem5 core model of a generic in order core. 
MSHR: Miss Status Holding Register 
NAS: NASA Advanced Supercomputing 
OoO: Out of Order. 
RIVEC: is a suite of benchmarks that focuses on vector microarchitectures; 
nevertheless, it can be used as well for Multimedia SIMD microarchitectures. 
SIMD: Single Instruction Multiple Data. 
VL: Vector Length 
VPU: Vector Processing Unit. 


	Contents
	1. Summary
	2. The gem5 simulator
	3. Simulations for Scalar Core
	3.1 Benchmark Suite
	3.2 Methodology
	3.3 Results
	3.3.1 L1 Caches
	3.3.2 L2 Cache
	3.3.3 L1 and L2 Caches Line Size
	3.3.4 Integer Unit
	3.3.5 Floating Point Unit
	3.3.6 Load-Store Buffers
	3.3.7 Reorder Buffers
	3.3.8 Instruction Mix

	4. Simulation for Vector Accelerators
	4.1 Methodology
	4.2 Experimental Results

	5. Concluding Remarks and Next Steps
	6. List of Abbreviations

