

This project has received funding from the European High-Performance Computing Joint
Undertaking Joint Undertaking (JU) under grant agreement No 956702. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and
Spain, Sweden, Greece, Italy, France, and Germany.

D6.2

Simulation infrastructure and early architectural
explorations

v1.0

Document information

Work package: WP6: System Simulation and FPGA Emulation
Contract number: 956702
Project website: www.eprocessor.eu
Author(s) Ioannis Mavroidis (EXAP)

Contributors BSC: Julian Pavon Rivera, Ivan Vargas
EXAP: Iakovos Mavroidis, Dimitri Mavroidis

Reviewer(s) Vassilis Papaefstathiou (FORTH)
Dissemination Level PU
Nature R - Report
Contractual deadline: 31/3/2022

This document may contain proprietary material of certain eProcessor contractors. The commercial use of any information
contained in this document may require a license from the proprietor of that information.

Ref. Ares(2022)2413213 - 31/03/2022

http://www.eprocessor.eu/

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 1

Change Log

Version Author(s) Comments and Description of change
0.1 Ioannis Mavroidis

(EXAPSYS)
Initial version

0.2 Ioannis Mavroidis
(EXAPSYS)

Added FP, speed-ups

0.3 Ioannis Mavroidis
(EXAPSYS),
Ivan Vargas (BSC)

Updated default parameter values to better match Cortus core.
Added vector section.

0.4 Vassilis Papaefstathiou
(FORTH)

Reviewed version

1.0 Ioannis Mavroidis
(EXAPSYS)

Final version for submission

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 2

Contents

Contents 2
1. Summary 3
2. The gem5 simulator 3
3. Simulations for Scalar Core 3

3.1 Benchmark Suite 3
3.2 Methodology 4
3.3 Results 7
3.3.1 L1 Caches 7
3.3.2 L2 Cache 13
3.3.3 L1 and L2 Caches Line Size 16
3.3.4 Integer Unit 18
3.3.5 Floating Point Unit 21
3.3.6 Load-Store Buffers 24
3.3.7 Reorder Buffers 25
3.3.8 Instruction Mix 26

4. Simulation for Vector Accelerators 27
4.1 Methodology 27
4.2 Experimental Results 29

5. Concluding Remarks and Next Steps 30
6. List of Abbreviations 31

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 3

1. Summary

This deliverable reports on the results from the first stage of “Task 6.1: Architectural simulations” in
the context of “WP6: System Simulation and FPGA Emulation”, in which we develop the simulation
infrastructure required to drive the architectural design decisions for the eProcessor chip. For this
purpose we use the state-of-the-art gem5 simulator and several microbenchmarks from the
Bioinformatics and HPC domains.

Part of our work also involves simulation of the RISC-V vector ISA. However, since gem5 does not
include a flexible and customizable vector architecture, such as one that could evaluate different
implementations including short (around 512-bit), medium (around 4,096-bit), and large (16,384-bit
or more) vectors, we extended gem5 by adding our own parameterizable Vector Processing Unit
(VPU).

The microbenchmarks are all run in a multitude of hardware configurations, each one varying the size
or other features of specific architectural blocks, and examine how each configuration affects the total
runtime. Our results will be used in microarchitecture component sizing decisions.

2. The gem5 simulator

For our simulations we use gem51. The gem5 simulator has been established as the de facto simulator
used for computer architecture research. It is utilized both in academia and in industry by companies
such as ARM, AMD, Google, Micron, HP, and Samsung.

Some of its features are the following:

● Open-source, community-supported
● Event-driven, cycle accurate simulation
● 2 different modes of operation: Full-system emulation, and syscall emulation
● Modular design consisting of components that can be easily parameterized, extended or

replaced.
● Models for multiple components: CPUs, caches, memory controllers, buses, etc.
● Multiple CPUs ranging in simulation detail: atomic, timing-simple, in-order, detailed out-of-

order
● Support for multiple ISAs: AMD, ARM, SPARC, MIPS, POWER, RISC-V, x86
● Components written in C++ for higher simulation speed, but configurable via Python for

greater ease of use.

3. Simulations for Scalar Core

3.1 Benchmark Suite

The Benchmarks that we use for the early architectural explorations of eProcessor, fall into the
Bioinformatics and HPC domains. “WP3: Software Applications Use Cases, Specifications and
Evaluation” develops and provides the RISC-V assembly code and linker scripts for a total of 93
microbenchmarks. Each microbenchmark implements a function of well-known benchmark suites

1 https://www.gem5.org/

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 4

such as the NAS Parallel Benchmarks, Wavefront alignment algorithm, Smith-Waterman etc. All
microbenchmarks start with some initialization code and then run the selected function in an infinite
loop. Each microbenchmark comes with a “weight” number signifying its relative importance within
the original benchmark. In order to speed up our simulations we use the top 22 microbenchmarks with
respect to their “weight”. These are shown in the following table:

Domain Benchmark Function
Bioinformatics BSW_B100_L1K_N1K sw_compute_banded
Bioinformatics BSW_B10_L100_N10K sw_compute_banded
Bioinformatics BSW_B200_L1K_N1K sw_compute_banded
Bioinformatics BSW_B20_L100_N10K sw_compute_banded
Bioinformatics BSW_B300_L1K_N1K sw_compute_banded
Bioinformatics BSW_B30_L100_N10K sw_compute_banded
Bioinformatics SW_L100_N10K sw_compute
Bioinformatics SW_L1K_N1K sw_compute
Bioinformatics WFA_L100K_N100_E10 affine_wavefronts_compute_next
Bioinformatics WFA_L100K_N100_E1 affine_wavefronts_compute_next
Bioinformatics WFA_L10K_N1K_E10 affine_wavefronts_compute_next
Bioinformatics WFA_L10K_N1K_E1 affine_wavefronts_compute_next
Bioinformatics WFA_L1K_N10K_E10 affine_wavefronts_compute_next
HPC NAS_CG_S conj_grad
HPC NAS_CG_W conj_grad
HPC NAS_EP_S vranlc
HPC NAS_EP_W vranlc
HPC NAS_FT_S fftz2
HPC NAS_IS_W rank
HPC NAS_MG_W resid
HPC NAS_SP_S adi
HPC NAS_SP_W adi

Table 1: Microbenchmarks used

3.2 Methodology

The gem5 simulator can be parameterized with several parameters. In order to study the effect of
various architectural features of the RISC-V scalar core, we needed to create a set of gem5
configurations for each such feature, varying the feature-related parameters, while keeping all other
parameters at some reasonable default values, matching the currently favored eProcessor architecture
as provided by Cortus.

In this way, a total of 101 different gem5 configurations are created and each was run against the 22
microbenchmarks of the previous section, for a total of 2222 simulations.

The following table lists all gem5 parameters that we use, along with their default values.

Parameter name Default

value
Description

--numROBEntries 64 Number of reorder buffer entries
--numPhysIntRegs 128 Number of physical integer registers
--LQEntries 8 Load Queue entries
--SQEntries 8 Store Queue entries
--fetchWidth 4 Fetch width

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 5

--fetchBufferSize 32 Fetch buffer size in bytes
--dispatchWidth 4 Dispatch width
--commitWidth 4 Commit width
--wbWidth 6 Writeback width
--decodeWidth 4 Decode width
--issueWidth 4 Issue width
--renameWidth 4 Rename width
--squashWidth 64 Squash width
--cache_line_size 64 Cache line size in bytes
--l1ic_size 16kB L1 Instr cache size
--l1ic_assoc 4 L1 Instr cache associativity
--l1ic_mshrs 4 L1 Instr cache MSHRs (max outstanding requests)
--l1ic_latency 1 L1 Instr cache latency
--l1dc_size 16kB L1 Data cache size
--l1dc_assoc 4 L1 Data cache associativity
--l1dc_mshrs 4 L1 Data cache MSHRs (max outstanding requests)
--l1dc_latency 1 L1 Data cache latency
--l2c_size 256kB L2 cache size
--l2c_assoc 8 L2 cache associativity
--l2c_latency 12 L2 cache latency
--rdwr_count 2 Number of read-write ports
--ALU_count 4 Number of Integer ALUs
--ALU_opLat 1 ALU latency
--ALU_pipelined True ALU pipelined
--mult_count 1 Number of Integer Multipliers
--mult_opLat 4 Integer Multiplier latency
--mult_pipelined True Integer Multiplier pipelined
--div_count 1 Number of Integer Dividers
--div_opLat 9 Integer Divider latency
--div_pipelined True Integer Divider pipelined
--FP_ALU_count
--FP_ALU_opLat
--FP_ALU_pipelined
--FP_mult_count
--FP_mult_opLat
--FP_mult_pipelined
--FP_div_count
--FP_div_opLat
--FP_div_pipelined

2
4
True
1
8
True
1
16
True

Number of FP ALUs
FP ALU latency
FP ALU pipelined
Number of FP Multipliers
FP Multiplier latency
FP Multiplier pipelined
Number of FP Dividers
FP Divider latency
FP Divider pipelined

Table 2: gem5 configuration parameters

Following is an example of the command used to compile one of the microbenchmarks:

riscv64-unknown-linux-gnu-gcc -O0 -O3 -g -no-pie -march=rv64g -
fno-builtin -fno-pic -nostdlib -o
binaries/Bioinformatics.BSW_B100_L1K_N1K.0953_sw_compute_banded_168.
exe -T microbenchmarks-
main/CPU/Bioinformatics/BSW_B100_L1K_N1K/0953_sw_compute_banded_168/
0953_sw_compute_banded_168.lds -T microbenchmarks-
main/CPU/microbenchmark_orignal_env.lds microbenchmarks-
main/CPU/Bioinformatics/BSW_B100_L1K_N1K/0953_sw_compute_banded_168/
0953_sw_compute_banded_168.s

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 6

And below we show an example of the command that is used to run the resulting executable with
gem5 for one of the configurations:

gem5/build/RISCV/gem5.opt --debug-flags=Exec configs/eprocessor.py
--l1ic_assoc=1 --l1dc_assoc=1 --l1ic_size=4kB --l1dc_size=4kB --
l1ic_mshrs=2 --l1dc_mshrs=2 --
cmd=binaries/Bioinformatics.BSW_B100_L1K_N1K.0953_sw_compute_banded_
168.exe > /dev/null 2>/dev/null

The gem5 configuration file configs/eprocessor.py seen in the above command, configures a minimal
hardware system consisting of one out-of-order single-core CPU of RISC-V ISA, with separate Level
1 instruction and data caches (L1 caches), a unified Level 2 cache (L2 cache), and a 1GB DDR3 main
memory. It also configures the system to run in bare-metal, i.e. in syscall emulation mode without any
OS code, until a total of 10 million instructions have been committed, for each of the benchmarks that
we ran in this study. The selection of 10 million instructions is inline with guidance from the WP3
benchmark developers and is adequate to capture the important activity of the benchmarks and
associated cache effects.

At the end of each simulation run, gem5 automatically dumps all recorded statistics into file
m5out/stats.txt. The following screenshot shows the beginning of one such m5out/stats.txt file:

Figure 1: Screenshot of gem5 statistics file

All m5out/stats.txt files, from all 2222 simulations, are copied over and kept in a separate folder
where they are available for post-processing. A Perl script was then used to post-process these files,
extract the values of the statistics we wanted to measure and plot them in the graphs of the following
sections.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 7

3.3 Results

In our simulations we study the following architectural blocks: L1 caches, L2 cache, Integer Unit
(ALU), FP Unit (ALU, multiplier), Load-Store buffers, and Reorder Buffers. In the following sections
we display the configurations we run for each block and the results from the simulations.

3.3.1 L1 Caches

For the L1 caches the parameters that we vary are: associativity, size, and number of MSHRs.
Specifically:

● The values that we try for associativity are: 1 (i.e. direct-mapped), 2 (i.e. 2-way set
associative), and 4 (i.e. 4-way set associative).

● The values that we try for size are: 4 kBytes, 8 kBytes, and 16 kBytes.
● The values that we try for the number of MSHRs are: 2, 4, and 8.

Taking all different combinations for these values results in a total of 3 x 3 x 3 = 27 configurations for
the L1 caches.

We use the following naming convention for these configurations:

 l1c_[associativity]_[size]_[# of MSHRs]

For example, configuration l1c_1_8kB_4 represents a L1 cache that is direct-mapped, has a size of 8
kBytes, and has 4 MSHRs. Configuration l1c_4_16kB_2 represents a L1 cache that is 4-way set
associative, has a size of 16 kBytes, and has 2 MSHRs.

Each microbenchmark is represented with one colored line in the following figures. Notice that since
the figures in this report are restricted by a small width, including in all figures the names of the
microbenchmarks corresponding to each colored line would make them unreadable. For this reason,
the color-mapping of the microbenchmarks is shown once in the following figure, and all
microbenchmark names have been omitted from the remaining figures of this report.

Figure 2: Color-mapping of microbenchmarks (used in all Figures)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 8

The following Figure 3 shows the running time (as expressed in millions of clock cycles), for each
microbenchmark across all 27 L1 cache configurations.

Figure 3: Running time for different L1 cache configurations

The following Figure 4 shows the L1 data cache miss rate (for all microbenchmarks across all L1
cache configurations), as defined by:

Miss Rate 1 = L1 misses / L1 accesses

0

5

10

15

20

25

30

35

40

45
l1

c_
1_

4k
B_

2
l1

c_
1_

4k
B_

4
l1

c_
1_

4k
B_

8
l1

c_
1_

8k
B_

2
l1

c_
1_

8k
B_

4
l1

c_
1_

8k
B_

8
l1

c_
1_

16
kB

_2
l1

c_
1_

16
kB

_4
l1

c_
1_

16
kB

_8
l1

c_
2_

4k
B_

2
l1

c_
2_

4k
B_

4
l1

c_
2_

4k
B_

8
l1

c_
2_

8k
B_

2
l1

c_
2_

8k
B_

4
l1

c_
2_

8k
B_

8
l1

c_
2_

16
kB

_2
l1

c_
2_

16
kB

_4
l1

c_
2_

16
kB

_8
l1

c_
4_

4k
B_

2
l1

c_
4_

4k
B_

4
l1

c_
4_

4k
B_

8
l1

c_
4_

8k
B_

2
l1

c_
4_

8k
B_

4
l1

c_
4_

8k
B_

8
l1

c_
4_

16
kB

_2
l1

c_
4_

16
kB

_4
l1

c_
4_

16
kB

_8

N
um

 C
yc

le
s

(M
)

0

10

20

30

40

50

60

l1
c_

1_
4k

B_
2

l1
c_

1_
4k

B_
4

l1
c_

1_
4k

B_
8

l1
c_

1_
8k

B_
2

l1
c_

1_
8k

B_
4

l1
c_

1_
8k

B_
8

l1
c_

1_
16

kB
_2

l1
c_

1_
16

kB
_4

l1
c_

1_
16

kB
_8

l1
c_

2_
4k

B_
2

l1
c_

2_
4k

B_
4

l1
c_

2_
4k

B_
8

l1
c_

2_
8k

B_
2

l1
c_

2_
8k

B_
4

l1
c_

2_
8k

B_
8

l1
c_

2_
16

kB
_2

l1
c_

2_
16

kB
_4

l1
c_

2_
16

kB
_8

l1
c_

4_
4k

B_
2

l1
c_

4_
4k

B_
4

l1
c_

4_
4k

B_
8

l1
c_

4_
8k

B_
2

l1
c_

4_
8k

B_
4

l1
c_

4_
8k

B_
8

l1
c_

4_
16

kB
_2

l1
c_

4_
16

kB
_4

l1
c_

4_
16

kB
_8

M
is

s
Ra

te
 1

 (%
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 9

Figure 4: L1 data cache “Miss Rate 1” for different configurations

However, there are cases where this graph can be misleading. For example, we notice cases where
increasing the number of MSHRs resulted in an increased miss rate even though, as we can see in the
previous Figure, the overall runtime decreases. The reason is that an increased number of MSHRs
leads to increased ILP, and in cases where multiple memory instructions that all access the same
cache line happen to run in parallel, multiple cache misses will be recorded (notice that this is just an
artifact of how gem5 counts misses, since misses to the same cache line should normally be counted
as a single miss). This is in contrast to having a smaller number of MSHRs where subsequent memory
instructions will be stalled and not allowed to cause a cache miss. At a closer look, the multiple cache
misses for the same cache line that can be recorded with a higher number of MSHRs will all result in
a single L2 cache access. For this reason, a better metric for the L1 miss rate could be the one
expressed as:

Miss Rate 2 = L2 accesses / L1 accesses

The following Figure 5 shows this metric:

Figure 5: L1 data cache “Miss Rate 2” for different configurations

Here, we can see that increasing the number of MSHRs, does indeed lead to fewer L2 accesses, and
thus overall decreased runtime.

Since the total of 27 configurations make the above diagrams a little hard to read and understand, here
are the subset of these diagrams where only the configurations with 16 kBytes cache size are
displayed, in Figures 6, 7 and 8.

0

5

10

15

20

25

30

35

40

l1
c_

1_
4k

B_
2

l1
c_

1_
4k

B_
4

l1
c_

1_
4k

B_
8

l1
c_

1_
8k

B_
2

l1
c_

1_
8k

B_
4

l1
c_

1_
8k

B_
8

l1
c_

1_
16

kB
_2

l1
c_

1_
16

kB
_4

l1
c_

1_
16

kB
_8

l1
c_

2_
4k

B_
2

l1
c_

2_
4k

B_
4

l1
c_

2_
4k

B_
8

l1
c_

2_
8k

B_
2

l1
c_

2_
8k

B_
4

l1
c_

2_
8k

B_
8

l1
c_

2_
16

kB
_2

l1
c_

2_
16

kB
_4

l1
c_

2_
16

kB
_8

l1
c_

4_
4k

B_
2

l1
c_

4_
4k

B_
4

l1
c_

4_
4k

B_
8

l1
c_

4_
8k

B_
2

l1
c_

4_
8k

B_
4

l1
c_

4_
8k

B_
8

l1
c_

4_
16

kB
_2

l1
c_

4_
16

kB
_4

l1
c_

4_
16

kB
_8

M
is

s
Ra

te
 2

 (%
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 10

Figure 6: Running time for 16 kBytes L1 cache configurations

Figure 7: L1 data cache “Miss Rate 1” for 16 kBytes configurations

0

5

10

15

20

25

30

35

40

45
N

um
 C

yc
le

s
(M

)

0

5

10

15

20

25

30

35

40

45

50

M
is

s
Ra

te
 1

 (%
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 11

Figure 8: L1 data cache “Miss Rate 2” for 16 kBytes configurations

Speed-ups:

Going from direct-mapped to 2-way set associativity results in the following average and maximum
speed-ups (across the 22 microbenchmarks) for the different L1 cache configurations (min speed-up is
0, i.e. no speed-up, and is not shown).

Notice: The speedups in this report are expressed in percentages, e.g. if time[configuration 1] = 150
and time[configuration 2] = 100, then the reported speedup going from configuration 1 to
configuration 2 is given by the expression speedup = round(100*(150/100-1), 1) = 50.0 (%)

L1 Cache Configuration

Direct-mapped => 2-way
Average Speedup (%)

Max Speedup (%)

4 kBytes, 2 MSHRs 13.9 156.1
4 kBytes, 4 MSHRs 7.4 50.6
4 kBytes, 8 MSHRs 7.4 49.7
8 kBytes, 2 MSHRs 8.3 158.5
8 kBytes, 4 MSHRs 3.2 49.6
8 kBytes, 8 MSHRs 3.1 49.3
16 kBytes, 2 MSHRs 2.1 18.6
16 kBytes, 4 MSHRs 1.9 17.7
16 kBytes, 8 MSHRs 1.9 17.7

Table 3: Speed-ups when L1 cache associativity changes from direct-mapped to 2-way

Going from 2-way to 4-way set associativity results in the following average and maximum speed-
ups:

0

5

10

15

20

25

30

35
M

is
s

Ra
te

 2
 (%

)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 12

L1 Cache Configuration

2-way => 4-way
Average Speedup (%)

Max Speedup (%)

4 kBytes, 2 MSHRs 7.1 70.6
4 kBytes, 4 MSHRs 4.2 14.6
4 kBytes, 8 MSHRs 4.2 14.6
8 kBytes, 2 MSHRs 1.0 12.2
8 kBytes, 4 MSHRs 0.9 11.8
8 kBytes, 8 MSHRs 0.9 11.8
16 kBytes, 2 MSHRs 0.0 2.6
16 kBytes, 4 MSHRs 0.0 2.9
16 kBytes, 8 MSHRs 0.0 2.9

Table 4: Speed-ups when L1 cache associativity changes from 2-way to 4-way

Going from 4 kBytes to 8 kBytes results in the following average and maximum speed-ups:

L1 Cache Configuration

4 kBytes => 8 kBytes
Average Speedup (%)

Max Speedup (%)

Direct-mapped, 2 MSHRs 13.9 88.7
Direct-mapped, 4 MSHRs 8.8 23.9
Direct-mapped, 8 MSHRs 8.8 23.9
2-way set assoc., 2 MSHRs 7.7 77.9
2-way set assoc., 4 MSHRs 4.4 16.3
2-way set assoc., 8 MSHRs 4.4 16.3
4-way set assoc., 2 MSHRs 1.4 7.6
4-way set assoc., 4 MSHRs 1.0 3.4
4-way set assoc., 8 MSHRs 1.0 3.4

Table 5: Speed-ups when L1 cache size changes from 4 kBytes to 8 kBytes

Going from 8 kBytes to 16 kBytes results in the following average and maximum speed-ups:

L1 Cache Configuration

8 kBytes => 16 kBytes
Average Speedup (%)

Max Speedup (%)

Direct-mapped, 2 MSHRs 9.3 132.5
Direct-mapped, 4 MSHRs 4.3 35.3
Direct-mapped, 8 MSHRs 4.3 35.1
2-way set assoc., 2 MSHRs 3.7 24.5
2-way set assoc., 4 MSHRs 3.2 24.4
2-way set assoc., 8 MSHRs 3.3 24.4
4-way set assoc., 2 MSHRs 2.8 25.1
4-way set assoc., 4 MSHRs 2.4 24.0
4-way set assoc., 8 MSHRs 2.4 24.0

Table 6: Speed-ups when L1 cache size changes from 8 kBytes to 16 kBytes

Going from 2 to 4 MSHRs results in the following average and max speed-ups:

L1 Cache Configuration

2 MSHRs => 4 MSHRs
Average Speedup (%)

Max Speedup (%)

Direct-mapped, 4 kBytes 9.6 70.9
Direct-mapped, 8 kBytes 5.4 73.6
Direct-mapped, 16 kBytes 1.5 7.5
2-way set assoc., 4 kBytes 4.8 55.6
2-way set assoc., 8 kBytes 1.8 6.5

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 13

2-way set assoc., 16 kBytes 1.4 6.8
4-way set assoc., 4 kBytes 2.1 9.4
4-way set assoc., 8 kBytes 1.7 6.2
4-way set assoc., 16 kBytes 1.3 6.6

Table 7: Speed-ups when L1 cache changes from using 2 MSHRs to 4 MSHRs

Going from 4 to 8 MSHRs results in the following average and maximum speed-ups:

L1 Cache Configuration

4 MSHRs => 8 MSHRs
Average Speedup (%)

Max Speedup (%)

Direct-mapped, 4 kBytes 0.1 0.7
Direct-mapped, 8 kBytes 0.1 0.5
Direct-mapped, 16 kBytes 0.1 0.4
2-way set assoc., 4 kBytes 0.1 0.6
2-way set assoc., 8 kBytes 0.1 0.4
2-way set assoc., 16 kBytes 0.1 0.4
4-way set assoc., 4 kBytes 0.1 0.8
4-way set assoc., 8 kBytes 0.1 0.5
4-way set assoc., 16 kBytes 0.1 0.5

Table 8: Speed-ups when L1 cache changes from using 4 MSHRs to 8 MSHRs

3.3.2 L2 Cache

For the unified L2 cache we vary the following parameters: associativity, and cache size. Specifically:

● The values that we try for associativity are: 2, 4, and 8
● The values that we try for size are: 64 kBytes, 128 kBytes, 256 kBytes, and 512 kBytes

The number of MSHRs is kept constant at 20. Taking all different combinations for these values
results in a total of 3 x 4 = 12 configurations for the L2 cache.

We use the following naming convention for these configurations:

 l2c_[associativity]_[size]

For example, configuration l2c_2_128kB represents a L2 cache that is 2-way set associative and has a
size of 128 kBytes. Configuration l2c_4_256kB_2 represents a L2 cache that is 4-way set associative
and has a size of 256 kBytes.

The following Figure 9 shows the running time (as expressed in millions of clock cycles), for each
microbenchmark across all 12 L2 cache configurations.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 14

Figure 9: Running time for different L2 cache configurations

The following Figure 10 shows the L2 cache miss rate, as defined by:

Miss Rate = L2 misses / L2 accesses

Figure 10: L2 cache Miss Rate for different configurations

0

5

10

15

20

25

30

35

40

45
N

um
 C

yc
le

s
(M

)

0

20

40

60

80

100

120

M
is

s
Ra

te
 (%

)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 15

We also vary the latency of the L2 cache from 12 up to 24 clock cycles, while keeping all other
parameters at their default values (i.e. size=256 kBytes, associativity=8). The following Figure 11
shows the running time for the different latency settings:

Figure 11: Running time for different L2 cache latencies (256 kBytes, 8-way set assoc.)

Speed-ups:

Going from 2-way to 4-way set associativity results in the following average and maximum speed-
ups:

L2 Cache Configuration

2-way => 4-way
Average Speedup (%)

Max Speedup (%)

64 kBytes 0.4 5.4
128 kBytes 0.3 3.0
256 kBytes 0.9 17.6
512 kBytes 1.0 17.6

Table 9: Speed-ups when L2 cache associativity changes from 2-way to 4-way

Going from 4-way to 8-way set associativity results in the following average and maximum speed-
ups:

L2 Cache Configuration

4-way => 8-way
Average Speedup (%)

Max Speedup (%)

64 kBytes 0.0 0.9
128 kBytes 0.0 0.4
256 kBytes 0.2 4.7
512 kBytes 0.2 1.3

Table 10: Speed-ups when L2 cache associativity changes from 4-way to 8-way

Going from 64 kBytes to 128 kBytes results in the following average and maximum speed-ups:

0

5

10

15

20

25

30

35

40

45

l2c_lat12 l2c_lat16 l2c_lat20 l2c_lat24

N
um

 C
yc

le
s

(M
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 16

L2 Cache Configuration

64 kBytes => 128 kBytes
Average Speedup (%)

Max Speedup (%)

2-way set assoc. 2.7 35.9
4-way set assoc. 2.6 37.2
8-way set assoc. 2.6 36.0

Table 11: Speed-ups when L2 cache size changes from 64 kBytes to 128 kBytes

Going from 128 kBytes to 256 kBytes results in the following average and maximum speed-ups:

L2 Cache Configuration

128 kBytes => 256 kBytes
Average Speedup (%)

Max Speedup (%)

2-way set assoc. 2.7 38.6
4-way set assoc. 3.3 47.0
8-way set assoc. 3.7 54.9

Table 12: Speed-ups when L2 cache size changes from 128 kBytes to 256 kBytes

Going from 256 kBytes to 512 kBytes results in the following average and maximum speed-ups:

L2 Cache Configuration

256 kBytes => 512 kBytes
Average Speedup (%)

Max Speedup (%)

2-way set assoc. 2.4 42.5
4-way set assoc. 2.6 37.6
8-way set assoc. 2.5 31.9

Table 13: Speed-ups when L2 cache size changes from 256 kBytes to 512 kBytes

Changing the L2 cache latency from 24 down to 12 cycles results in the following average and
maximum speed-ups (for a 256 kBytes, 8-way set assoc. L2 cache):

256 kBytes, 8-way s.a. L2 cache Average Speedup (%) Max Speedup (%)
Latency going from 24 to 20 cycles 3.6 9.1
Latency going from 20 to 16 cycles 3.7 10.1
Latency going from 16 to 12 cycles 3.6 10.0

Table 14: Speed-ups when L2 cache latency changes from 24 cycles down to 12 cycles

3.3.3 L1 and L2 Caches Line Size

The following Figures 12, 13 and 14 show how varying the cache line size from 16 up to 64 bytes,
affects the running time and the L1 data cache and L2 cache miss rates.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 17

Figure 12: Running time for different cache line sizes

Figure 13: L1 data cache “Miss Rate 2” for different cache line sizes

0

10

20

30

40

50

60

cls_16 cls_32 cls_64

N
um

 C
yc

le
s

(M
)

0

10

20

30

40

50

60

cls_16 cls_32 cls_64

L1
 M

is
s

Ra
te

 2

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 18

Figure 14: L2 cache Miss Rate for different cache line sizes

Speed-ups:

Going from 16 to 32 bytes results in the following speed-ups: average 15.2, maximum 63.0
Going from 32 to 64 bytes results in the following speed-ups: average 19.2, maximum 63.5

3.3.4 Integer Unit

The Integer unit comprises of 3 types of units:

● Integer multipliers (for Integer multiplications)
● Integer divisors (for Integer divisions)
● Integer ALUs (for all remaining Integer operations)

Since the available microbenchmarks do not perform any (at least, significant) number of integer
multiplications or divisions, we did not examine the Integer multipliers or divisors.

For the Integer ALUs, the parameters that we vary are: the number of ALUs, latency, and whether
they are pipelined or not. Specifically:

● The values that we try for the number of ALUs are: 1, 2, and 4.
● The values that we try for latency are: 1, 2, and 4 clock cycles.
● The values that we try for pipelined are: false, and true (in case of latencies higher than 1).

Taking all different combinations for these values results in a total of 3 + (3 x 2 x 2) = 15
configurations for the Integer ALUs.

We use the following naming convention for these configurations:

0

20

40

60

80

100

120

cls_16 cls_32 cls_64

L2
 M

is
s

Ra
te

 (%
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 19

 ALU_c[# of ALUs]_l[latency]_p[1 if pipelined, 0 if not]

For example, ALU_c1_l4_p0 represents a configuration with 1 ALU that has a latency of 4 cycles and
is not pipelined. Similarly ALU_c4_l2_p1 represents a configuration with 4 ALUs that have a latency
of 2 cycles and are pipelined.

The following Figure 15 shows the running time for each microbenchmark across all 15 Integer ALU
configurations.

Figure 15: Running time for different ALU configurations

Assuming most designs nowadays use a pipelined integer ALU, the following Figure 16 shows only
the subset of this figure containing the pipelined ALU configurations.

0

5

10

15

20

25

30

35

40

45

N
um

 C
yc

le
s

(M
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 20

Figure 16: Running time for pipelined ALU configurations

The following Figure 17 shows the parameter “FU Busy” which represents the number of attempts
that were made to use an ALU when none was available.

 Figure 17: ALU non-availability for different ALU configurations

Speed-ups:

Going from 1 to 2 ALUs results in the following average and maximum speed-ups:

0

5

10

15

20

25

30

35

40

45
N

um
 C

yc
le

s
(M

)

0

5

10

15

20

25

30

35

FU
 B

us
y

(M
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 21

ALUs Configuration

1 Int ALU => 2 Int ALUs
Average Speedup (%)

Max Speedup (%)

Latency: 1 37.3 70.6
Latency: 2, Pipelined: false 51.4 89.7
Latency: 2, Pipelined: true 32.6 59.3
Latency: 4, Pipelined: false 62.1 94.2
Latency: 4, Pipelined: true 22.1 41.7

Table 15: Speed-ups when number of Integer ALUs changes from 1 to 2

Going from 2 to 4 ALUs results in the following average and maximum speed-ups:

ALUs Configuration

2 Int ALUs => 4 Int ALUs
Average Speedup (%)

Max Speedup (%)

Latency: 1 9.4 24.5
Latency: 2, Pipelined: false 32.5 59.0
Latency: 2, Pipelined: true 7.8 19.5
Latency: 4, Pipelined: false 47.6 84.6
Latency: 4, Pipelined: true 3.8 9.7

Table 16: Speed-ups when number of Integer ALUs changes from 2 to 4

3.3.5 Floating Point Unit

The FP unit comprises of 3 types of units:

● FP multipliers (for single or double precision FP multiplications)
● FP divisors (for single or double precision FP divisions)
● FP ALUs (for all remaining FP operations)

Since the available microbenchmarks do not perform any (at least, significant) number of FP
divisions, we did not examine the FP divisors.

For the FP ALUs, the parameters that we vary are: the number of ALUs, latency, and whether they are
pipelined or not. Specifically:

● The values that we try for the number of ALUs are: 1, 2, and 4.
● The values that we try for latency are: 3, 4, and 5 clock cycles.
● The values that we try for pipelined are: false, and true.

Taking all different combinations for these values results in a total of 3 x 3 x 2 = 18 configurations for
the FP ALUs.

The naming convention that we use for these configurations is similar to the one for the Integer
ALUs:

 FP_ALU_c[# of ALUs]_l[latency]_p[1 if pipelined, 0 if not]

The following Figure 18 shows the running time for each microbenchmark across all 18 FP ALU
configurations.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 22

Figure 18: Running time for different FP ALU configurations

For the FP Multipliers, the parameters that we vary are: the number of Multipliers, latency, and
whether they are pipelined or not. Specifically:

● The values that we try for the number of Multipliers are: 1, 2.
● The values that we try for latency are: 6, 8, and 10 clock cycles.
● The values that we try for pipelined are: false, and true.

Taking all different combinations for these values results in a total of 2 x 3 x 2 = 12 configurations for
the FP Multipliers.

The naming convention that we use for these configurations is similar to the one for the FP ALUs:

 FP_mult_c[# of ALUs]_l[latency]_p[1 if pipelined, 0 if not]

The following Figure 19 shows the running time for each microbenchmark across all 12 FP
Multipliers configurations.

0

5

10

15

20

25

30

35

40

45

50
N

um
 C

yc
le

s
(M

)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 23

Figure 19: Running time for different FP Multipliers configurations

Speed-ups:

Going from 1 to 2 FP ALUs results in the following average and maximum speed-ups:

FP ALUs Configuration

1 FP ALU => 2 FP ALUs
Average Speedup (%)

Max Speedup (%)

Latency: 3, Pipelined: false 1.3 15.4
Latency: 3, Pipelined: true 0.1 1.5
Latency: 4, Pipelined: false 2.3 27.2
Latency: 4, Pipelined: true 0.1 1.6
Latency: 5, Pipelined: false 3.4 43.3
Latency: 5, Pipelined: true 0.1 1.6

Table 17: Speed-ups when number of FP ALUs changes from 1 to 2

Going from 2 to 4 FP ALUs results in the following average and maximum speed-ups:

FP ALUs Configuration

2 FP ALU => 4 FP ALUs
Average Speedup (%)

Max Speedup (%)

Latency: 3, Pipelined: false 0.1 2.2
Latency: 3, Pipelined: true 0.0 0.1
Latency: 4, Pipelined: false 0.2 3.2
Latency: 4, Pipelined: true 0.0 0.0
Latency: 5, Pipelined: false 0.6 8.4
Latency: 5, Pipelined: true 0.0 0.3

Table 18: Speed-ups when number of FP ALUs changes from 2 to 4

Going from 1 to 2 FP multipliers results in the following average and maximum speed-ups:

0

10

20

30

40

50

60
N

um
 C

yc
le

s
(M

)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 24

FP Multipliers Configuration

1 FP mult => 2 FP mult
Average Speedup (%)

Max Speedup (%)

Latency: 6, Pipelined: false 3.2 25.6
Latency: 6, Pipelined: true 0.1 1.1
Latency: 8, Pipelined: false 5.9 57.7
Latency: 8, Pipelined: true 0.1 0.9
Latency: 10, Pipelined: false 7.9 77.7
Latency: 10, Pipelined: true 0.1 0.8

Table 19: Speed-ups when number of FP Multipliers changes from 1 to 2

Changing the latency of FP multipliers from 10 to 8 clock cycles, results in the following average and
maximum speed-ups:

FP Multipliers Configuration

Latency 10 => Latency 8
Average Speedup (%)

Max Speedup (%)

of Multipliers: 1, Pipelined: false 4.1 23.3
of Multipliers: 1, Pipelined: true 1.9 14.7
of Multipliers: 2, Pipelined: false 2.4 14.8
of Multipliers: 2, Pipelined: true 1.9 14.8

Table 20: Speed-ups when FP Multipliers latency changes from 10 to 8 cycles

Changing the latency of FP multipliers from 8 to 6 clock cycles, results in the following average and
maximum speed-ups:

FP Multipliers Configuration

Latency 8 => Latency 6
Average Speedup (%)

Max Speedup (%)

of Multipliers: 1, Pipelined: false 4.6 29.6
of Multipliers: 1, Pipelined: true 2.1 17.2
of Multipliers: 2, Pipelined: false 2.3 17.4
of Multipliers: 2, Pipelined: true 2.0 17.4

Table 21: Speed-ups when FP Multipliers latency changes from 8 to 6 cycles

3.3.6 Load-Store Buffers

The following Figure 20 shows how varying the number of load and store buffers from 4 up to 32,
affected the running time. Each configuration contains the same number of load and store buffers, for
example, configuration lsq_4 contains 4 load buffer entries and 4 store buffer entries.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 25

Figure 20: Running time for different Load-Store buffers configurations

Speed-ups:

Changing the number of load & store buffer entries results in the following average and maximum
speed-ups:

Change Average Speedup (%) Max Speedup

(%)
Going from 4 to 8 load & store buffer entries 23.4 41.1
Going from 8 to 12 load & store buffer entries 6.2 22.0
Going from 12 to 16 load & store buffer entries 2.1 10.4
Going from 16 to 20 load & store buffer entries 0.5 6.4
Going from 20 to 32 load & store buffer entries 0.3 2.5

Table 22: Speed-ups when number of Load & Store Buffer Entries changes from 4 up to 32

3.3.7 Reorder Buffers

The following Figure 21 shows how varying the number of reorder buffer entries from 32 up to 256,
affects the running time.

0

5

10

15

20

25

30

35

40

45

lsq_4 lsq_8 lsq_12 lsq_16 lsq_20 lsq_32

N
um

 C
yc

le
s

(M
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 26

Figure 21: Running time for different Reorder buffers configurations

Speed-ups:

Changing the number of reorder buffer entries results in the following average and maximum speed-
ups:

Change Average Speedup (%) Max Speedup (%)
Going from 32 to 64 ROBs 6.4 11.5
Going from 64 to 128 ROBs 0.1 0.5
Going from 128 to 256 ROBs 0.0 0.0

Table 23: Speed-ups when number of Reorder Buffer Entries changes from 32 up to 256

3.3.8 Instruction Mix

The following Figure 22 shows the instruction mix, in millions of executed instructions across all
microbenchmarks (for a specific configuration, in this case l1c_1_4kB_2). The number of commited
instructions is fixed at 10 million for all the simulations that we run. However, the number of
executed instructions (“num_insts” in the figure) can be higher due to branch mispredictions and
speculative execution.

0

5

10

15

20

25

30

35

40

45

rob_32 rob_64 rob_128 rob_256

N
um

 C
yc

le
s

(M
)

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 27

Figure 22: Instruction mix

4. Simulation for Vector Accelerators

This section provides the results in the integration of the Out of Order core with a VPU. In this
deliverable we develop the first approach to build the simulation infrastructure required to take the
architectural decisions for the design of the eProcessor chip and the VPU integration. For this purpose
we used gem5, a simulator for computer architecture research, widely accepted in both academia and
industry.

4.1 Methodology

To simulate a single RISC-V core processor on the gem5 simulator we use an out of order CPU
microarchitecture model and a memory model that resembles an ARM A72. The parameters used for
this core are described in detail in Table 3.

Parameter name Default value Description
--numROBEntries 128 Number of reorder buffer entries
--numPhysIntRegs 128 Number of physical integer registers
--LQEntries 48 Load Queue entries
--SQEntries 48 Store Queue entries
--fetchWidth 2 Fetch width
--fetchBufferSize 16 Fetch buffer size in bytes
--dispatchWidth 2 Dispatch width
--commitWidth 8 Commit width

0
2
4
6
8

10
12
14
16
18

09
53

_s
w

_c
om

pu
te

_b
an

de
…

09
33

_s
w

_c
om

pu
te

_b
an

de
…

09
30

_s
w

_c
om

pu
te

_b
an

de
…

09
98

_s
w

_c
om

pu
te

_b
an

de
…

09
26

_s
w

_c
om

pu
te

_b
an

de
…

10
00

_s
w

_c
om

pu
te

_b
an

de
…

09
97

_s
w

_c
om

pu
te

_8
63

8
10

00
_s

w
_c

om
pu

te
_8

36
07

05
_a

ffi
ne

_w
av

ef
ro

nt
s_

c…
07

88
_a

ffi
ne

_w
av

ef
ro

nt
s_

c…
06

06
_a

ffi
ne

_w
av

ef
ro

nt
s_

c…
07

89
_a

ffi
ne

_w
av

ef
ro

nt
s_

c…
05

95
_a

ffi
ne

_w
av

ef
ro

nt
s_

c…
09

65
_c

on
j_g

ra
d_

3
09

82
_c

on
j_g

ra
d_

7
05

66
_v

ra
nl

c_
42

05
96

_v
ra

nl
c_

38
05

59
_f

ftz
2_

36
00

6
05

94
_r

an
k_

1
05

16
_r

es
id

_2
16

05
15

_a
di

_8
5

06
21

_a
di

_2
21

N
um

 In
st

r
(M

)

Commited_insts

Num_insts

Branches_insts

Load_insts

Store_insts

MEM_insts

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 28

--wbWidth 8 Writeback width
--decodeWidth 2 Decode width
--issueWidth 8 Issue width
--renameWidth 3 Rename width
--squashWidth 12 Squash width
--cache_line_size 64 Cache line size in bytes
--l1ic_size 48Kb L1 Instr cache size
--l1ic_assoc 3 L1 Instr cache associativity
--l1ic_mshrs 4 L1 Instr cache MSHRs (max

outstanding requests)
--l1ic_latency 1 L1 Instr cache latency
--l1dc_size 32Kb L1 Data cache size
--l1dc_assoc 2 L1 Data cache associativity
--l1dc_mshrs 16 L1 Data cache MSHRs (max

outstanding requests)
--l1dc_latency 2 L1 Data cache latency
--l2c_size 256kB L2 cache size
--l2c_assoc 16 L2 cache associativity
--l2c_latency 12 L2 cache latency
--rdwr_count Number of read-write ports
--ALU_count 4 Number of Integer ALUs
--ALU_opLat 1 ALU latency
--ALU_pipelined True ALU pipelined
--mult_count 1 Number of Integer Multipliers
--mult_opLat 4 Integer Multiplier latency
--mult_pipelined True Integer Multiplier pipelined
--div_count 1 Number of Integer Dividers
--div_opLat 9 Integer Divider latency
--div_pipelined True Integer Divider pipelined
--FP_ALU_count
--FP_ALU_opLat
--FP_ALU_pipelined
--FP_mult_count
--FP_mult_opLat
--FP_mult_pipelined
--FP_div_count
--FP_div_opLat
--FP_div_pipelined

3
1
True
2
3
True
2
64
True

Number of FP ALUs
FP ALU latency
FP ALU pipelined
Number of FP Multipliers
FP Multiplier latency
FP Multiplier pipelined
Number of FP Dividers
FP Divider latency
FP Divider pipelined

Table 24: gem5 configuration parameters

Following is an example of the standard command used to compile the benchmarks:

$ $LLVM/bin/clang++ --target=riscv64-unknown-elf -march=rv64g -mepi -O2 -
DUSE_RISCV_VECTOR -o kernel.e kernel.cc

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 29

And the next is an example of the command that was used to run the resulting executable with gem5
for one of the configurations:

$./build/RISCV/gem5.opt configs/example/se.py -c $APPS/kernel.e --cpu-type
DerivO3CPU --caches --l2cache --cacheline_size 64 --l1i_size 32kB --
l1d_size 32kB --l2_size 256kB --l2_assoc 16 --l1i_assoc 4 --l1d_assoc 4 --
num-l3caches 0 --sys-clock 2GHz

Since the simulations in gem5 take a long time to execute, we reduced the L2 cache size in order to
force the simulations to stress the memory system and thus we can obtain meaningful results even for
medium size datasets. This means that instead of simulating an input of 256 millions of elements to
stress the memory, we can simulate only 2 millions to get our results.

4.2 Experimental Results

We perform our first simulations on a model of an out of order RISC-V core. During this deliverable
we perform the Axpy kernel from the RIVEC benchmarks2, changing the type of data from float to
integer. This change was required because the support for floating point instructions is still work in
progress. For this analysis we use three sizes of datasets, from 256 thousand data to 2,56 millions of
integer numbers, and we cover vector lengths from 8 to 64 elements per vector. Since Axpy is a
memory-bound kernel, a marginal speed-up increase is obtained as the vector lane size increases.

The results are shown next, in Figure 23:

Figure 23: Number of cycles executed for scalar and for different configurations of vector lengths 8,
16, 32 and 64.

2 “Rivec benchmark suite,” https://github.com/RALC88/riscv-vectorizedbenchmark-suite, accessed:
2022-03-30.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 30

In Figure 24, we show the number of executed instructions for the axpy kernel. We take the number
of instructions executed for scalar axpy as a baseline and then we present the number of times that the
number of cycles are reduced. For example, for the VL = 8 the number of executed instructions
reduces by 6 times, for VL = 16 the number of executed instructions reduces by 16 times, for VL = 32
the number of executed instructions reduces by 24 times and finally for VL = 64 the number of
executed instructions reduces by 48 times.

Figure 24: Number of executed instructions taking the scalar number of executed instructions as
baseline.

5. Concluding Remarks and Next Steps

In this report we presented the simulation infrastructure that we developed, as well as the results that
we received from the simulations that will be used to drive the architectural design decisions for the
eProcessor chip.

Concerning the simulations of the scalar core, we explored how different microarchitecture
component sizing decisions affect the overall runtime of a set of representative microbenchmarks.

Concerning the simulations of the vector accelerators, this first approach of the integration of the VPU
to the OoO RISC-V established the first step to the integration of the whole RISC-V vector extension.
The integration of the VPU will allow better architectural decisions in the design of both the VPU and
the core. The main important achievements in this deliverable are listed below:

1. Support for the decoding of vector instructions.
2. Support for basic vector memory operations such as loads and stores with unit strided.
3. Support for fundamental vector arithmetic operations such as multiplication, addition, etc.
4. Add templates to include more core models besides the already supported DerivO3, Atomic

and Minor.

D6.2 Simulation infrastructure and early architectural explorations

This document is Public, and was produced under the eProcessor project (EC contract 956702). 31

Upcoming tasks for the scalar core simulations include:
1. Use a wider range of microbenchmarks from more domains
2. Run some simulations in Full-system emulation mode, i.e. with OS code
3. Explore more architectural components, such as branch predictor and others
4. Enhance gem5 configuration to better match the evolving core from Cortus

Upcoming tasks for the VPU simulations include:

1. Extend the vector decoder to cover the RISCV vector extension.
2. Support for more types of instructions.
3. Add the eProcessor core model as the OoO model integrated to the VPU.
4. Execute and Analyze more benchmarks from the RIVEC suit.

6. List of Abbreviations

ALU: Arithmetic-Logic Unit
Atomic: gem5 core model used to generate checkpoints and simulate in functional
level.
DerivO3: gem5 core model of a generic Out of Order core.
FP: Floating Point
HPC: High Performance Computing
ISA: Instruction Set Architecture
Minor: gem5 core model of a generic in order core.
MSHR: Miss Status Holding Register
NAS: NASA Advanced Supercomputing
OoO: Out of Order.
RIVEC: is a suite of benchmarks that focuses on vector microarchitectures;
nevertheless, it can be used as well for Multimedia SIMD microarchitectures.
SIMD: Single Instruction Multiple Data.
VL: Vector Length
VPU: Vector Processing Unit.

	Contents
	1. Summary
	2. The gem5 simulator
	3. Simulations for Scalar Core
	3.1 Benchmark Suite
	3.2 Methodology
	3.3 Results
	3.3.1 L1 Caches
	3.3.2 L2 Cache
	3.3.3 L1 and L2 Caches Line Size
	3.3.4 Integer Unit
	3.3.5 Floating Point Unit
	3.3.6 Load-Store Buffers
	3.3.7 Reorder Buffers
	3.3.8 Instruction Mix

	4. Simulation for Vector Accelerators
	4.1 Methodology
	4.2 Experimental Results

	5. Concluding Remarks and Next Steps
	6. List of Abbreviations

