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Executive Summary 

This document provides a summary of work carried out during the first 16 months of the eProcessor 

project in the context of WP4 , as an accompaniment to the first release of the O/S, boot environment, 

compiler, and performance tools.  

The eProcessor project has created the first version of an FPGA-based single-core system. However, as 

this work has been performed in parallel to the CPU development, we are not yet covering support for 

a full Linux OS in this document. Prerequisites for such a full Linux functionality are, e.g., support for 

atomic operations and virtual memory. Instead, for the first release, we have relied on three alternative 

platforms to create and validate the main low-level system software artifacts:  

(i) QEMU for facilitating tests of alternative Linux kernel configurations for the RISC-V architecture, 

including configurations with no MMU support;  

(ii) an FPGA-based single-core prototype for developing support for RISC-V Linux in an asymmetric 

multiprocessing configuration, based on the OpenAMP framework and using an older open-source 

RISC-V core;  

(iii) an FPGA-based prototype, coming from related work in the EPI project, for fleshing out bare-metal 

as well as full-Linux support for a vector-capable RISC-V architecture.  

 

The effort documented in this deliverable provides a solid basis for advanced Linux support on 

eProcessor prototypes. The bulk of our work so far is expected to work as-is on the upcoming prototypes 

of eProcessor, with some adjustments in low-level firmware and OS code to handle specific details of 

the initialization sequence for the processing core. It will also help us address eProcessor-specific 

aspects of the system, such as the boot cycle and the offloading to accelerators (since those are the 

functionalities that require special handling - otherwise a stock/vanilla kernel would suffice). 

 

Moreover, this document describes the work toward providing I/O peripherals support for eProcessor 

prototypes, in the form of a Companion FPGA that provides access to peripherals such as Ethernet, 
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SATA, USB, and PCIe. The Companion FPGA also serves as the board controller for the upcoming 

eProcessor microserver module, offering sophisticated power monitoring and management 

functionality. 

 

Finally, this document provides short updates on work in the following topic areas:  

● Compilers and runtimes, regarding work on the LLVM compilation toolchain and the OpenMP 

threading environment; 

● Efficient resource management, via an energy-aware task scheduler operating in a runtime 

environment based on LLVM and OpenMP; 

● Software support for fault tolerance, with a case study on the checkpointing of DNN models; 

● Performance monitoring and debug tools, including Extrae for trace capture, the gdb debugger, and 

DynamoRIO for dynamic binary instrumentation. 
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1. Introduction 

This document provides a summary of work carried out during the first 16 months of the eProcessor 

project in the context of WP4 , as an accompaniment of the first release of the O/S, boot environment, 

compiler, and performance tools.  

The eProcessor project has created the first version of an FPGA-based single-core system. However, as 

this work has been performed in parallel to the CPU development, we are not yet covering support for 

a full Linux OS in this document. Instead, for the first release, we have relied on three alternative 

platforms to create and validate the main low-level system software artifacts:  

 

(i) QEMU emulator for facilitating tests of alternative Linux kernel configurations for the RISC-V 

architecture, including configurations with no MMU support; 

(ii) an FPGA-based single-core prototype for developing support for RISC-V Linux in a asymmetric 

multiprocessing configuration, based on the OpenAMP framework and using an older open-source 

RISC-V core; 

(iii) an FPGA-based prototype coming from related work in the EPI project, for fleshing out bare-metal 

as well as Linux support for a vector-capable RISC-V architecture. 

 

These platforms and the work carried out on them are described in the remainder of this document. 

Moreover, this document describes the work towards providing I/O peripherals support for eProcessor 

prototypes, in the form of a Companion FPGA that provides access to peripherals such Ethernet, SATA, 

USB, and PCIe. The Companion FPGA also serves as the board controller for the upcoming eProcessor 

microserver module, offering essential power monitoring and management functionality. 

 

The associated low-level software artifacts for OS support and the I/O functionality (incl. essential 

configuration files and command scripts for initialization) have been collected on the project’s file-

sharing service. 

 

 
Figure 1: Overview of eProcessor hardware and software. 
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Figure 1 provides an outline of the overall hardware and software environment being developed in the 

eProcessor project. This document summarizes essential aspects of the low-level Linux-based system 

software, and provides a short introduction to other essential software stack elements: compiler 

toolchain, runtime systems, support for software-controlled fault tolerance via checkpointing, and 

debug support, system monitoring, and performance analysis tools.  

 

The effort documented in this deliverable provides a solid basis for advanced Linux support on 

eProcessor prototypes. The bulk of our work so far is expected to work as-is on the upcoming prototypes 

of eProcessor, with some adjustments in low-level firmware and OS code to handle specific details of 

the initialization sequence for the processing core. It will also help us address eProcessor-specific 

aspects of the system, such as the boot cycle and the offloading to accelerators (since those are the 

functionalities that require special handling and otherwise a stock/vanilla kernel would suffice). 

 

2. Operating system support 

We have worked with various low-level system software options across a series of platforms with 

RISC-V (64-bit) architectures to utilize the hardware that is not able to support fully operational Linux. 

We introduce three platforms of increasing complexity, and utilize them with various software 

environments, including bare-metal, RTOS, and Asymmetric Multiprocessing. 

 

2.1 Platforms 

For the development of a boot and system software stack for the eProcessor system, three platforms are 

utilized: .  

● QEMU: an open source emulator (with RISC-V support), which uses KVM for paravirtualization 

and is able to run a variety of operating systems. 

● Ariane SDV: We use the term Ariane-SDV (software development vehicle) to describe a Trenz 

Electronic FPGA development board1 with the open-source Ariane RISC-V processor on FPGA2. 

On the PS (Processing System) side of the development board, Ariane-SDV runs Linux on the ARM 

Cortex-A53 multicore processor, which is used for management, monitoring and control interface 

purposes. On the PL (Programmable Logic) side, where an Ariane (riscv64) core is programmed, 

different modes of operation (will be explained below) can be run. In order to run binaries on 

Ariane-SDV we have two options: 

○ The rvinit script (requires access to the Linux kernel’s /dev/mem  facility for direct 

read/write access to the entire memory space available to the kernel) that puts the RISC-V 

SoC on reset, writes the Zephyr binary in DRAM, and then sets the core’s first jump address 

before finally taking the SoC out of reset. 

○ The Ariane remoteproc driver (based on the Xilinx zynqmp_r5 driver) which does the same 

steps as rvinit, loading an ELF instead of a binary image, which may contain a resource 

table in order to be compatible with OpenAMP. 

● EPI-SDV: We use the term EPI-SDV (European Processor Initiative software development vehicle) 

to describe an x86 host which is connected, through PCIe, to an FPGA emulating the EPI project’s 

CPU (with the Avispado RISC-V core and other related IP blocks from the EPI project that make-

up the EPAC accelerator system) as seen in Figure 2. In order to load binaries on EPI-SDV, we run 

a script that first resets the FPGA by writing two registers over PCIe, then writes the binary to 

                                                   
1https://shop.trenz-electronic.de/en/TE0802-02-2AEV2-A-MPSoC-Development-Board-with-Xilinx-

Zynq-UltraScale-ZU2-and-LPDDR4 
2 https://github.com/lowRISC/ariane 

https://shop.trenz-electronic.de/en/TE0802-02-2AEV2-A-MPSoC-Development-Board-with-Xilinx-Zynq-UltraScale-ZU2-and-LPDDR4
https://shop.trenz-electronic.de/en/TE0802-02-2AEV2-A-MPSoC-Development-Board-with-Xilinx-Zynq-UltraScale-ZU2-and-LPDDR4
https://github.com/lowRISC/ariane
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DRAM (starting at the base address defined by the platform’s linker script), and finally initializes 

the EPAC environment, by writing to several configuration space addresses over SPI. 

      

      
Figure 2: EPI-SDV: connection between Host (x86) and the EPAC RISC-V, over PCIe. 

 

2.2 Modes of operation 

We have demonstrated four different modes of operation, each highlighting different aspects of 

prototype capabilities: Bare-metal code execution, Linux-nommu for a bare-bones Linux kernel 

environment without virtual memory, Zephyr RTOS for a task-based execution environment without 

virtual memory support, and Asymmetric Multiprocessing using the OpenAMP framework with 

coordination and data exchange between a Linux host and a companion processing element. In more 

detail, the modes of operation have the following characteristics: 

● Bare-metal: Bare metal programming is a low-level type of programming that is hardcoded to a 

system at the hardware level and operates without an abstraction layer or operating system (OS). It 

also interlinks with the hardware, considering the specific build of components. 

● Bare-metal on EPI-SDV: We need to change the rom base address on linker script and to assign the 

64 bit uart base address directly to the variable (uart_base) in common/uart.c, because the linker 

script does not support 64 bit addresses.  

● Linux-nommu: This is a configuration for running linux without virtual memory, in a single address 

space (kernel and applications). Linux runs on M-mode without supervisor (e.g opensbi) and it can 

be used by CPUs that lack MMU support. In order to run nommu linux on our system, we based 

our work on qemu riscv64 support, which uses the Uclibc compiler and runs busybox (with position 

independent code). 

● Linux-nommu on QEMU riscv64: In order to run linux nommu on qemu riscv64, one has to take 

the following steps: 

○ Use the custom yaafrv build automation tool to generate a RISC-V Linux binary image 

(with embedded initramfs).  

○ Then: cd to buildroot directory and change branch to “next”, which contains qemu_riscv64 

nommu configuration.  

○ After that, to run “make” command to build the Image and finally run the following 

command: “qemu-system-riscv64 -nographic -machine virt -cpu rv64,x-

v=true,vlen=128,elen=64,vext_spec=v0.7.1 -smp 1 -m 2G   -kernel Image  -bios Image -

append "root=/dev/vda ro"  -initrd rootfs.cpio”(see Figure P3). It should also be noted that 

the BIOSneeds also to be the Image (instead of opensbi), because linux runs on M-mode. 

In Figure P4, we see the execution of commands on nommu linux. 
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● Linux-nommu on EPI-SDV: In order to run linux nommu on EPI-SDV, we had to take the following 

steps. 

○ Use yaafrv, an automated flow created by FORTH for creating RISC-V Linux binary 

images, to generate a bootable Linux binary image (with embedded initramfs).  

■ Then: cd to buildroot directory and change branch to “next”, which contains 

qemu_riscv64 nommu configuration.  

■ Copy ./configs/qemu_riscv64_nommu_virt_defconfig to .config, in order to use it. 

Run make menuconfig(buildroot configuration) and enable 

initramfs(BR2_TARGET_INITRAMFS). 

○ The address map of the EPI-SDV is such that 64 bit addresses are required. In particular to 

set the correct base address for the kernel, the existing default value for the PAGE_OFFSET 

configuration in the arch/riscv/Kconfig had to be altered: 

From: config PAGE_OFFSET -> default 0x80000000 if 64BIT && !MMU  

To: config PAGE_OFFSET -> default 0x800000400000 if 64BIT && !MMU   

○ In order to run linux nommu on EPI-SDV, you need the linux kernel Image (without a 

bootloader or supervisor), the device tree (which you can produce with qemu command, 

e.g., qemu-system-riscv64 -nographic -machine virt -cpu rv64 -machine dumpdtb=virt.dtb) 

and a brom that initializes the hardware (and informs the linux of the device tree blob 

address) before the linux execution begins. We have to perform some minor modifications 

on the device tree, including changes in UART block, memory block and CPU frequency. 

○ In order to load linux nommu on EPI-SDV, we then need to execute the EPI-SDV boot 

script mentioned above. 

● Zephyr on qemu riscv64: Zephyr is a small real-time operating system (RTOS) for connected, 

resource-constrained and embedded devices (with an emphasis on microcontrollers) supporting 

multiple architectures and released under the Apache License 2.0.  

○ Zephyr includes a kernel, and all components and libraries, device drivers, protocol stacks, 

file systems, and firmware updates, needed to develop full application software. The 

Zephyr build system compiles and links all components of an application into a single 

application image that can be run on simulated hardware or real hardware.  

○ The RISCV64 QEMU board configuration is used to emulate the riscv64 architecture, 

which we also used as an example in order to run zephyr on other riscv64 systems (Ariane-

SDV, EPI-SDV). More instructions on how to build and run qemu on this platform can be 

found viA the link below:  

● Zephyr on Ariane-SDV: We run Zephyr on EPI-SDV, by the following steps: 

○ Clone the zephyr github repository.  

○ Then use the qemu-riscv_64 board configuration (zephyr/boards/riscv/qemu_riscv64) as a 

starting point, by copying and changing the directory and file names (we renamed our board 

as ariane). Our modifications focused mainly on the device tree (ariane.dts), which is 

needed for building the executables (ELF and binary).   

■ One of the main differences between the Ariane and qemu_riscv64 device trees is 

that Ariane uses 64-bit register addresses (#address-cells and #size-cells =2).  

■ The UART has different frequency and clock-speed, as well as registers and reg-

shift(2).  

■ The Ariane device tree has one core in cpu block, where qemu has 8.   

○ Moreover, in the “defconfig” configuration file we had to disable PMP 

(CONFIG_RISCV_PMP), because it does not work on Ariane. To produce a binary, we 

had to enable CONFIG_BUILD_OUTPUT_BIN, else only ELF is built. 

● OpenAMP on Ariane-SDV: 

○ OpenAMP is a framework that standardizes communication between Operating systems(in 

particular between Linux and RTOS/bare-metal or zephyr). The purpose is to use 

OpenAMP in order to control accelerators in FPGA, with the Linux side being the master 

that will initiate the experiments. 

○ We used the “OpenAMP Sample Application using resource table” zephyr application 

(with some modifications) for the Ariane (OpenAMP slave-side) and “rpmsg-sample-ping” 
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(the Linux master-side which was also modified in order to respond to the zephyr 

application). 

○ For the Linux OpenAMP application as our platform we used the zynqmp machine, with 

some modifications as detailed in the following. 

■ In order to use OpenAMP, we added some blocks to the device tree that linux uses, 

according to the OpenAMP manual.  In our case, the remote processor is not R5, 

but Ariane and we are not using either the zynqmp-ipi-mailbox or tcm memory, 

therefore we had to make some modifications as well(we need the vrings, 

vdevbuffer, rproc and a device that probes Ariane remoteproc driver). 

■ Each side (Zephyr and Linux) is using polling (instead of mailboxes that the vanilla 

code uses) in order to notify the other that a message has been sent. First we use 

the Ariane remoteproc driver which parses the elf, retrieves the information 

required for OpenAMP (e.g., vrings, vdevbuffer) in order to include them to the 

resource table and then start the remote processor (Ariane).  

■ After that, we start the OpenAMP user space application on Linux and both sides 

begin to exchange rpmsg messages (rpmsg is a component to OpenAMP for 

sending messages to remote processors).  

■ Due to the way memory addressing works between ARM Cortex A53 and Ariane, 

we had to add an offset (0x800000000000) on the shared memory components 

(vrings, vdevbuffer) at the side of Zephyr. The source and destination addresses of 

rpmsg endpoint need to be defined on both sides, as well as the resource table 

address (inside the Zephyr ELF) and the physical address in DRAM where the ELF 

will be loaded should be defined in the Linux user-space code. 

● OpenAMP on EPI-SDV: We run OpenAMP between a x86 Linux host and Zephyr running on the 

EPI-SDV RISC-V core, similarly to the OpenAMP experiment on Ariane-SDV.  

○ We currently cannot load ELF executables on EPI-SDV; therefore, we fallback to loading 

a Zephyr binary, which however cannot contain the resource table of OpenAMP. We had 

to adjust the “OpenAMP Sample Application using resource table” Zephyr application in 

order to define all the required memory locations (esp. vrings, vdevbuffer). 

○ On the x86 Linux side, we are also using a modified version of “rpmsg-sample-ping” to 

respond to the Zephyr application (as we did with Ariane-SDV). We have used the Linux 

generic machine as our platform, with some modifications in order to use PCIe for memory 

accesses. 
 

The Appendix includes a number of screenshots from the experimental platforms, illustrating the modes 

of operation outlined above. 

 

2.3 Companion FPGA driver porting 

Besides the peripherals integrated into the eProcessor chip itself, there will be an FPGA on the 

microserver module named the “Companion FPGA”. This provides additional peripherals like, e.g., 1G 

Ethernet, USB, SATA, and PCIe. The FPGA selected is a Zynq Ultrascale+SoC that, besides the FPGA 

fabric (Programmable Logic, PL), also contains an ARM-based “Processing System” (PS) with lots of 

commonly used peripherals implemented as hard blocks. While some of the interfaces used for the 

eProcessor microserver module will be implemented in the PL (e.g., PCIe and 10G Ethernet), most of 

the others will be implemented using the hard blocks in the PS. As these peripherals are originally 

designed for use by the ARM cores in the processing system rather than by an external processor, it was 

unclear whether utilizing them from the eProcessor would work without major changes. Therefore, a 

test system using an external processor implemented in the PL was set up, see Figure 3. 
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The interrupts of the peripherals are typically connected to an internal interrupt controller accessible by 

the ARM processor. However, the interrupt lines can also be connected to the FPGA fabric 

(Programmable Logic, PL) via an “Export function” in Xilinx Vivado, and can be connected to an 

interrupt controller implemented in the PL and accessible by the eProcessor. 

 

 
Figure 3: Block design of the test system for the companion FPGA, implemented in Xilinx Vivado. 

After being able to boot Linux on that processor (which required some fixes on its own), the peripherals 

to be tested were added to the Device Tree one by one. For most drivers, it was sufficient to modify the 

“Kconfig” configuration to allow building them on non-Xilinx platforms. However, some drivers 

depend on a “Xilinx Zynq MPSoC firmware interface” to be able to control some reset lines, clock- and 

power domains. This driver needs to communicate with the Platform Management Unit (PMU), a small 

co-processor included in the MPSoC, as the PMU Firmware running there has exclusive access to these 

signals. Normally, this is done by calling the “ARM Trusted Firmware” running on the ARM processor 

via an SMC (Secure Monitor Call) or HVC (Hypervisor Call) instruction. The Trusted Firmware then 

either interprets the call by itself or forwards it to the PMU Firmware using the IPI (Inter Processor 

Interrupt) Mailbox built into the SoC, see Figure 4. 

 

As the SMC or HVC mechanisms as well as the ARM Trusted Firmware are not available for the 

eProcessor, the Xilinx firmware driver was modified to also be able to directly access the IPI Mailbox 

via register writes that are normally done in the Trusted Firmware. As only the communication 

mechanism was extended, some parts of the code normally running in the Trusted Firmware 

environment needed to be ported into the driver so that these calls (e.g., getting version information) 

also succeeded. The peripherals listed in Table 1 have been tested with the modified firmware driver.  

 

The Linux Kernel repository with the changes to the drivers so far tested can be found at 

https://gitlab.bsc.es/eprocessor/linux   in the “microblaze_peripheral_test” branch. 

https://gitlab.bsc.es/eprocessor/linux
https://gitlab.bsc.es/eprocessor/linux
https://gitlab.bsc.es/eprocessor/linux


D4.1: Release of the O/S, boot environment, compiler, and performance tools 
for the FPGA-based single core system 

 

 

This document is Public and was produced under the eProcessor project (EC contract 956702).          10 

 
Figure 4: PMU Firmware communication. Dashed box: ARM use case, Solid box: eProcessor case. 

 

 
Table 1: PS peripherals tested for access from external Processor. 

Peripheral Status 

DDR (PS) OK 

Low speed IFs (UART, I2C, SPI, GPIO) OK 

1 GB Ethernet OK 

SD-Card / eMMC OK 

USB 2/3 Mostly working 

SATA Peripheral accessible, no SATA link yet due to 

3rd party issue 

GPU / DisplayPort Pending 

 

3. Operating system support 

Work in WP4 includes the development of resource management with energy awareness, for 

multithreaded workloads using the OpenMP runtime environment. 

3.1 Extensions in ERASE (EneRgy Aware SchedulEr) 
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ERASE3 is an energy-aware task scheduler, developed by Chalmers, and implemented in the XiTAO 

runtime4. ERASE relies on power profiling, performance modeling and core activity tracing to achieve 

energy-efficient mapping of tasks, improving the energy consumption of task-based applications. The 

initial implementation of ERASE in XiTAO is based on (1) online history-based prediction of the 

execution time of tasks, and (2) offline power profiling on different core types, and numbers of cores.  

 

We are currently working towards extending the model building component on top of ERASE. In 

particular, we are implementing performance models, as well as power models for the CPU and the 

memory components, which are able to predict performance and power, given more dimensions as 

input, namely the CPU core type, numbers of cores, CPU frequency and memory frequency. Models 

with higher predictive ability will be able to improve the energy efficiency decisions of the scheduler. 

We have validated our models on execution scenarios where resources are not shared between tasks. 

As a next step, we will develop models which take into account resource sharing (e.g. sharing memory). 

3.2 ERASE in LLVM-OpenMP 

As a step to achieve energy efficiency in widely adopted runtimes, we have implemented ERASE in 

OpenMP, focusing on kmp5, the OpenMP implementation in LLVM. The techniques developed in 

ERASE focus on task-based applications. The LLVM OpenMP runtime implements the tasking model 

with a set of local queues, one per thread, offering lower scheduling overheads than the equivalent 

implementation in libgomp6. Additionally, the design concept of local queues is a better fit for the 

implementation of ERASE, which has originally been developed within the XiTAO runtime.  

 

The first prototype of ERASE in LLVM OpenMP implements the basic concepts of ERASE. The goal 

of ERASE is to achieve the reduction of the energy consumption of task-based applications. To achieve 

this, ERASE relies on predictive models. In detail, ERASE monitors and predicts the execution time of 

each task online. In the original implementation of ERASE in XiTAO, performance modeling is history-

based. In the OpenMP implementation of ERASE, we additionally support online monitoring of the 

performance characteristics of the various tasks using perf7, and combine the collected metrics into 

interpolation models that comply with PMNF8. Models can be built either online or offline, with the 

latter showing better accuracy. The two main techniques in ERASE leverage predictive modeling, as 

follows: 

● Task moldability. In LLVM OpenMP, task moldability is implemented with the taskloop work-

sharing construct in OpenMP. The taskloop construct splits the iterations of a loop into individual 

tasks. To achieve energy efficiency, the scheduler, encountering the taskloop pragma, determines 

how many tasks the loop will be split into, depending on the core cluster and core width, i.e. the 

execution place. 

● Task-type aware execution.  In combination with task moldability, ERASE examines task 

properties to determine the optimal execution place for each task. Using monitoring and 

                                                   
3 Chen, Jing, Madhavan Manivannan, Mustafa Abduljabbar, and Miquel Pericas. "ERASE: Energy efficient task 

mapping and resource management for work stealing runtimes." ACM Transactions on Architecture and Code 

Optimization (TACO) 19, no. 2 (2022): 1-29. 
4 XiTAO Runtime [Online]. Available: https://github.com/CHART-Team/xitao 
5 LLVM, “Openmp* runtime library,” 2015. [Online]. Available: https://openmp.llvm.org/  
6 GNU libgomp [Online]. Available: https://gcc.gnu.org/onlinedocs/libgomp/ 
7 Linux perf [Online]. Available: https://perf.wiki.kernel.org/index.php/Main_Page  
8 Calotoiu, Alexandru, David Beckinsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin Schulz, and Felix Wolf. 

"Fast multi-parameter performance modeling." In 2016 IEEE International Conference on Cluster Computing (CLUSTER), 

pp. 172-181. IEEE, 2016. 

https://github.com/CHART-Team/xitao
https://openmp.llvm.org/
https://gcc.gnu.org/onlinedocs/libgomp/
https://perf.wiki.kernel.org/index.php/Main_Page
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predictive modeling, the scheduler creates and fills a performance table for each task type, to 

make informed decisions on task placement. 

 

The implementation can be found at: https://b2drop.bsc.es/index.php/s/mccEy6oSw6cE5fL. We have 

successfully compiled and executed this version of the runtime on the eProcessor QEMU image, noting, 

however, that only the version of the runtime that relies on the history-based online performance 

modeling is available, due to the absence of perf. 

 

We have extensively tested the implementation of ERASE in OpenMP on NVIDIA JETSON TX2 (an 

Arm-based development system), where we have found ERASE-OpenMP to achieve an average of 7% 

reduction in energy consumption across benchmarks of the PARSEC and BOTS suites, with a 

maximum energy reduction of 15%.  

 

Next steps regarding the implementation of ERASE in OpenMP include:  

 Optimizing the current implementation, in terms of instruction and memory footprint; 

 Improving the modeling methodology, to achieve accurate performance modeling with online 

model creation; 

 Validating the functionality of ERASE-OpenMP on eProcessor SDVs. 

 

Our initial evaluation of ERASE on alternative platforms has demonstrated that it can achieve a 

reduction of more than 30% in the energy consumption of task-parallel applications. ERASE targets the 

final multicore eProcessor platform, where we expect that we will be able to achieve similar and higher 

energy savings, exploiting the eProcessor platform's knobs for frequency and cache management. 

4. Software support for fault tolerance 

Work in WP4 includes the development of software-based fault-tolerance techniques, based on 

application-directed checkpointing. This section provides an overview of a multi-level checkpointing 

library for HPC, and a case study focused on large-scale DNN training.  

 

4.1 Optimizing the checkpointing of DNN models 

Deep learning is an emerging machine learning technique that has had impressive results when tackling 

problems in a variety of fields, such as medical image analysis, computational biology and natural 

language processing. Powerful DL models have been developed in order to solve complex problems. 

However, these models tend to have a large amount of parameters. A light-weight model such as 

MobileNet, which has been optimized to run in low power devices, has over 4 million parameters. The 

widely known ResNet50 model, used a lot in academia, has over 25 million parameters. However, for 

very complex problems, these models might not produce good enough results. Google’s GPT is an 

extremely powerful DL model for unsupervised learning, and has a total of 175 billion parameters. 

 

The training of large models is a very time-consuming task, taking from hours to weeks in a single 

machine. Because of this, large-scale training approaches have been developed, distributing the training 

work across several machines. This has put DNN training in close relation with HPC environments. 

Fault tolerance is crucial in HPC environments, where large quantities of components are used, which 

harshly reduces the overall MTBF of the system. Checkpoint-Restart is a widely known fault tolerance 

https://b2drop.bsc.es/index.php/s/mccEy6oSw6cE5fL
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technique used in HPC. Moreover, it is also used in DNN training not only for fault tolerance, but also 

for optimization techniques such as transfer learning and hyper-parameter tuning. As such, it makes 

sense that large-scale DNN training in HPC environments would also use these checkpointing 

techniques. While common DNN frameworks9,10 provide the ability to checkpoint, it was not developed 

with large-scale operation in mind. As such, they simply perform a checkpoint of the entire model in a 

single storage medium. On the other hand, state-of-the-art checkpoint libraries in HPC11,12,13 are not 

optimized for performing checkpoints of DNN models. This is because in most cases the DNN model 

data is synchronized across all training processes before checkpointing, which causes all checkpoints 

to be identical. As such, performing the entire checkpoint in all processes is very inefficient and 

wasteful. 

 

In order to obtain the benefits of HPC checkpointing while also handling DNN models efficiently, we 

developed PyFTI. PyFTI is a python module that works over FTI13, a multi-level checkpointing library 

for HPC. While PyFTI works as a python binding module for FTI, it also provides optimizations for 

checkpointing DNN models. It currently supports Tensorflow and PyTorch frameworks. PyFTI takes 

advantage of the fact that DNN model data is identical at the time of checkpoint, and splits this data 

across processes. This technique is especially beneficial when performing local checkpoints. Since 

every individual machine has its own local storage, this technique leverages the bandwidth of each local 

storage device. We can observe an example of this in Figure 5. In this example, the total amount of 

model data to be checkpointed is 1 GByte, and the training is distributed across 8 nodes. With the 

standard checkpoint procedure of most DNN frameworks, a single process writes the entirety of the 

model to storage. On the other hand, with a partitioned strategy, every node only performs a checkpoint 

of a portion of the DNN model, significantly increasing the overall I/O bandwidth of the system. It is 

important to note that this comes at the cost of additional communication in the case of recovery, 

although its overhead is minor. 

 

                                                   
9 Tensorflow [Online]. Available: https://www.tensorflow.org/  
10 PyTorch [Online]. Available: https://pytorch.org/ 
11 A. Moody, G. Bronevetsky, K. Mohror and B. R. d. Supinski, "Design, Modeling, and Evaluation of a 

Scalable Multi-level Checkpointing System," SC '10: Proceedings of the 2010 ACM/IEEE International 

Conference for High Performance Computing, Networking, Storage and Analysis, 2010, pp. 1-11, doi: 

10.1109/SC.2010.18. 
12 B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror and F. Cappello, "VeloC: Towards High Performance Adaptive 

Asynchronous Checkpointing at Large Scale," 2019 IEEE International Parallel and Distributed Processing Symposium 

(IPDPS), 2019, pp. 911-920, doi: 10.1109/IPDPS.2019.00099. 
13 L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama and S. Matsuoka, "FTI: High performance Fault 

Tolerance Interface for hybrid systems," SC '11: Proceedings of 2011 International Conference for High Performance 

Computing, Networking, Storage and Analysis, 2011, pp. 1-12, doi: 10.1145/2063384.2063427.  

https://www.tensorflow.org/
https://pytorch.org/
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Figure 5: Example of execution with different checkpoint strategies on local storage. 

 

4.2 Saving modes in PyFTI 

We have developed different modes in which to checkpointing data. Those techniques can be grouped 

into 3 types: non-partitioning, raw-partitioning and list-partitioning. 

 Non-partitioning: as the name implies, those techniques do not split the checkpoint data between 

processes. This is the standard behavior when the data cannot be assumed to be the same across all 

processes. 

 Raw-partitioning: the data is partitioned at a byte level, after serialization. This has the advantage 

of distributing the checkpoint data equally between processes, but has the disadvantage of having 

to perform the serialization of the entire object on each process.  

 List-partitioning: the data is partitioned at an index level. That is, each process extracts a certain 

number of elements of the list and serializes them individually. This reduces the serialization cost, 

as each process only serializes the data that they need to save. However, properly distributing the 

data between processes may prove difficult if the list has elements with large size differences, and 

can end up with imbalance. In order to alleviate this imbalance, two different selection techniques 

have been developed: 

o Fast: each process gathers a specific number of elements purely based on the index count. 

This is ideal when the elements in the list have a similar size. 

o Weighted: the number of elements is selected taking in consideration an estimation of the 

size of each element. This selection technique has slightly more computation overhead, but 

substantially reduces the size imbalance of the checkpoint data. 

In the Appendix, we present an evaluation case study comparing these saving modes offered by PyFTI. 

 

4.3 Follow-up work on PyFTI 

We are currently working on developing a flexible testbench that allows us to test new PyFTI features 

and perform exhaustive performance evaluation. This testbench currently allows us to verify the 

correctness of all Tensorflow and PyTorch modes, along with comparing them with executions without 

checkpointing and with standard checkpoints from the respective framework. It also allows us to specify 

which dataset, model and optimizer we want to use, along with other options such as asynchronous 

checkpointing. We have recently added support for Imagenet dataset in both frameworks, and we are 
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soon going to perform a thorough performance evaluation with all the features that we have 

implemented so far. 

 

 

5. Compilers and Runtimes 

In this section, we outline work carried out in WP4 towards compiler support (with the LLVM 

toolchain), computation offloading, and OpenMP runtime optimization. 

 

5.1 LLVM-based Compiler 

[ Repository link: https://gitlab.bsc.es/eprocessor/eprocessor-llvm ] 

 

The LLVM-based compiler developed in the EPI SGA1 project, can be used in the platform of 

eProcessor. A key feature of the compiler toolchain from the EPI SGA1 project is that it supports the 

generation of RISC-V vector instructions, including via intrinsics (currently adhering to v.0.7.1 of the 

V-ISA standard from RISC-V International). However, eProcessor has additional requirements not 

covered in the EPI project. Those include the ability to execute vector computation with small element 

sizes: these small element sizes include integers of 4 and 2 bits, and floating point types of 16-bits (IEEE 

754 Binary16 and Google’s bfloat data types) and 8-bits. The 8-bit floating types are non-standard but 

in internal discussion with the hardware implementers, two formats (with the same structure as the IEEE 

754 binary formats of sign-exponent-mantissa) have been chosen: 1-3-4 and 1-5-4. 

 

In order to have the compiler ready along with the hardware implemented in eProcessor, we have been 

extending the EPI SGA1 compiler for the RISC-V Vector Extension (RVV) 0.7.1. Support for IEEE 

754 Binary16 is already available in the compiler. Now the work is focusing on implementing bfloat. 

To accommodate the alternate 16-bit format of bfloat with RVV, we have been in contact with the 

hardware implementers, who have agreed to include an extra bit in the vtype (vector type) register of 

RVV to designate the alternative format. Assembly and code generation support will use this bit for 

bfloat and the 1-5-4 format.  

 

5.2 Computation offloading for off-chip CNN accelerator 

One of the major results of the eProcessor project will be the ability of the computing infrastructure 

(hardware and software) to efficiently offload CNN (Convolutional Neural Network) computations to 

off-chip accelerators. This is an important feature since this computing paradigm is heavily found in 

HPC systems. In the eProcessor project, the surveillance border control use case aims to illustrate this 

idea by enabling the hybrid execution of an application on the eProcessor RISC-V processor and an 

existing off-chip CNN (Convolutional Neural Network) accelerator implemented on an FPGA board.   

Figure 6 shows the eProcessor chip linked with an FPGA board thanks to a chip-to-chip link and also 

the partitions between the different software flows. 

 

The CNN application will be partitioned into hardware-accelerated parts (implemented using 

Keras/Tensorflow frameworks and a dedicated firmware generator) which will be computed on the off-

chip accelerator and software-parallelized (via OpenMP) parts which will run on the eProcessor chip. 

Firmware management, communications and synchronizations between the host processor and the 

CNN-off-chip accelerator are currently done using a custom API (Application Programming Interface). 

The efficient exploitation of the off-chip accelerator requires modifications of this API, especially since 

the link between the eProcessor chip and the off-chip accelerator will use a memory coherent 

https://gitlab.bsc.es/eprocessor/eprocessor-llvm
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infrastructure, as depicted in Figure 6. The communications between the host and the off-chip 

accelerator are meant to be simplified since data exchanges will rely on the internal coherency 

infrastructure of the eProcessor chip and a specific coherency infrastructure on the FPGA board side 

that will be designed in WP6 during the next period of the project. 

 
Figure 6: Overview of the hybrid accelerated execution of the CNN application (surveillance border control). 

Plans for this FPGA-based infrastructure were documented in deliverable D3.1. At the time of writing 

this deliverable, deeper insights on the existing APIs regarding the off-chip CNN accelerator were 

gathered. Once the work on the coherency infrastructure will be sufficiently advanced, real 

implementations will start. More details are to be provided in upcoming runtime-focused deliverables, 

namely D4.3 and D4.4. 

5.3 Dead block identification in the OpenMP runtime 

Research has shown that last level caches (LLCs) are typically underutilized because a large portion of 

the blocks are dead (i.e. will not be used before eviction). In the eProcessor project CHALMERS is 

working on developing software and hardware mechanisms that permit efficient utilization of the LLC 

by identifying and evicting dead blocks early thereby improving cache utilization. More specifically, 

this involves implementing a static/dynamic dead-block management (DBM) technique that can 

accurately identify dead blocks, communicate information about such blocks to the LLC and 

accommodate mechanisms in hardware that can facilitate eviction of such blocks from the LLC. We 

estimate14 that DBM can lead to an average reduction in LLC misses of more than 23% when compared 

to a baseline system without dead block management. Note that in the context of this project dead-block 

identification and eviction will be implemented at the granularity of address regions, as supported in 

many of today's task-parallel programming models like OpenMP. In this document we describe the 

software mechanisms we have incorporated in the LLVM OpenMP runtime system to enable detection 

of dead regions. Details regarding appropriate hardware-software interfaces that will be used to 

communicate this information to the LLC and how this information is leveraged to facilitate eviction 

of dead blocks are presented as part of a separate work package (WP5, T5.3). 

 

In order to understand how we extend the LLVM OpenMP runtime system with support for detecting 

dead regions we first need to provide an overview about how the runtime system utilizes dependency 

                                                   
14 M. Manivannan, V. Papaefstathiou, M. Pericas and P. Stenstrom, "RADAR: Runtime-assisted dead region management for 

last-level caches," 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2016, pp. 644-

656, doi: 10.1109/HPCA.2016.7446101. 
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annotations (address regions accessed by a task marked using in and out depends clause) to establish 

inter-task dependencies and construct a task directed acyclic graph (DAG). The runtime system 

establishes dependencies among sibling tasks by letting a master thread first generate tasks in program 

order. Tasks which do not have any dependencies are released to the ready queue for execution in an 

out-of-order manner while tasks which have unresolved dependencies are held until their dependencies 

are resolved.  Worker threads pick up tasks from the ready queue for execution. As part of the task 

initialization process the runtime instantiates a dependency node (DAG node) corresponding to each 

task. For each of the regions accessed by the task, an entry is created in the dependency hash data 

structure which tracks the other dependency nodes that read and/or write to this specific address region 

(in case an entry for the region does not already exist) . In case a dependency entry for an address region 

already exists, the dependency node representing the task that is currently being instantiated is marked 

as a successor for the other dependency node (task) that will update the specific address region. In 

addition a reference counting mechanism, is used by successors to identify the number of predecessors 

it depends on. After each task finishes execution, the predecessor count for each of its successors is 

decremented by one. Once the predecessor count reaches zero the successor dependency node can be 

deemed to not have any unresolved dependencies and is released to the ready queues for execution. 

 

In order to enable dead block detection in the runtime system we incorporate two simple changes to the 

dependency tracking mechanism used in the runtime system. Firstly we make changes to the 

dependency node data structure by adding additional information about the region base address and the 

offset accessed by each task. Currently, this information is available during task initialization step but 

is lost once initialization finishes and a dependency node is created. Adding this information helps us 

to easily identify the regions accessed just using information about the dependency node. Secondly, we 

augment each dependency hash table entry with a reference counter. The reference counter is 

incremented during dependency node initialization  (__kmp_process_deps function) and is 

decremented when a task finishes execution and releases its dependencies (__kmp_release_deps 

function). When the reference count for a task reduces to zero the runtime system can infer that all the 

tasks that access a specific region have finished execution. Consequently the runtime utilizes this event 

as an appropriate point to signal to the hardware that the specific address region is not expected to be 

reused in the near future and can be marked as candidate for dead block eviction. 

  

We have tested our implementation using several microbenchmarks each representing a different task 

DAG and with a representative kernel like SparseLU. Across the different test cases we have tested the 

implementation is able to correctly identify the last reuse of address regions in the application 

accurately. As a next step, we plan to extensively test our implementation with a broader set of 

microbenchmarks and kernels boasting complex task DAGs, integrate the changes to the runtime and 

generate traces for LLC accesses with and without dead region hints which can then be fed to the 

verification framework that we are developing as part of WP5. This would enable us to measure the 

potential benefit that DBM can provide in terms of reducing the LLC miss rate for real kernels. 

 

 

 

6. Tools for debugging and monitoring 

This section outlines work in WP4 related to tool support enabling debugging, performance monitoring 

and analysis, and power monitoring. 

 

6.1 Extrae (trace capture)  

We have successfully ported Extrae to the RISC-V architecture, allowing it to capture the parallel 

activity of the application, including references to the used runtimes. We also have developed an 
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interface to read user accessible hardware counters, leaving it prepared to easily add the configurable 

counters requiring a higher access privilege. These improvements have been successfully tested on 

commercial SiFive boards (Unleashed and Unmatched), and initially deployed on an internally 

available development board. Changes in Extrae are already published in the main branch, available at 

https://github.com/bsc-performance-tools/extrae. The source code for the interface to read hardware 

counters, still under development, is also available at https://github.com/bsc-performance-tools/riscv-

hwc-interface. 

 

The following two figures illustrate timelines captured with Extrae and visualized with Paraver tool for 

an execution of the LULESH microbenchmark: (i) MPI activity (in Figure 7), and (ii) sampled functions 

(in Figure 8). 

 

  
 

 
Figure 7: Paraver timeline showing the MPI activity of 10 iterations of the LULESH microbenchmark. 

 

  
Figure 8: Paraver timeline showing the sampled functions using a frequency of 10ms. 

 

  
Figure 9: Number of instructions and number of cycles for each computation phase of LULESH. 

Once access to privileged performance counters is available on eProcessor prototypes, we will extend 

Extrae and the interface to allow selecting which counters to read and write them into a Paraver tracefile 

to visually analyze and correlate them with the activity of the application. 

 

6.2 GDB (debugger) 

Following the work plan set in eProcessor Deliverable 3.1, we have successfully installed and tested 

gdb binary utility on the QEMU image of eProcessor. Native gdb testing is successful, while the 

testsuite of gdb shows high readiness to deploy. We are continuously working through failing tests in 

the gdb testsuite to ensure full functionality of the tool. A current snapshot of gdb, as deployed on 

QEMU, can be found at: https://b2drop.bsc.es/index.php/s/EN5XerJYjHeXeAH.  

https://github.com/bsc-performance-tools/extrae
https://github.com/bsc-performance-tools/riscv-hwc-interface
https://github.com/bsc-performance-tools/riscv-hwc-interface
https://b2drop.bsc.es/index.php/s/EN5XerJYjHeXeAH
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Next steps include (i) extending gdb with eProcessor vector instructions and CSRs, and (ii) using gdb 

with eProcessor applications, to increase the coverage of the testing process. 

6.3 DynamoRIO (dynamic binary instrumentation) 

DynamoRIO is a dynamic binary instrumentation tool, which allows monitoring and dynamically 

altering the behavior of a binary at execution time. It consists of three main elements:  

 Core binary instrumentation mechanism; 

 DynamoRIO API, which exposes the core functionality to application developers; 

 Set of tools (debugging, simulation, tracing, code coverage, etc) built upon the core mechanism.  

 

Currently the RISC-V porting of DynamoRIO is in progress. The build scripts and part of the instruction 

set encoding, have been ported, within the eProcessor project. Over the past months though, there has 

been a lot of activity in the DynamoRIO community of developers, towards porting the tool for the 

RISC-V architecture. This activity has materialized, with a few patches already committed. Given this 

opportunity, the eProcessor members working on porting DynamoRIO have already reached out to the 

corresponding developer community and have started collaborating with the community developers, in 

order to achieve the best outcome without duplication of effort. 

6.4 Power monitoring 

The Companion FPGA will also be used as the board controller for the eProcessor microserver module. 

A bare metal firmware will be running on one of the Cortex-R5 cores of the RPU (see Figure 4), 

managing, e.g., power sequencing of the eProcessor chip in response to external COM-HPC control 

signals. The firmware will also monitor voltage levels and the current consumption of a multitude of 

power rails on the eProcessor microserver module. Temperature sensors on the module as well as in the 

eProcessor itself will also be monitored. Table 2 shows the voltage rails of the eProcessor as well as 

those of the Companion FPGA that are currently planned to be monitored. Some of them will only be 

checked for a valid voltage level (“Power Good”), while the others will be connected to the internal 

ADC of the Companion FPGA to measure voltage and current. The FPGA’s ADC has a maximum 

sample rate of 1 MSPS that will be shared between active measurement channels. 

 
Table 2: Voltage rails of eProcessor and Companion FPGA to be monitored. 

Rail Voltage Measurement 

   

eProcessor 

CORE_1 0.9 V Voltage, Current 

(individually for each sub-rail) 
CORE_2 

ACCEL 

NOC, C2C 

DDR 1.2 V Voltage, Current 
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DDR DLL 3.3 V Power Good 

C2C AVDD 0.9 V Voltage, Current 

C2C AVDDIO 1.8 V 

LVDS 1.8 V Power Good 

I/O 

PLL 3.3 V Power Good 

Module input 12 V Voltage, Current 

Companion FPGA 

CORE 0.85 V Voltage, Current 

CORE AUX 1.8 V Power Good 

DDR (2x) 1.2 V Voltage, Current 

C2C AVCC 0.9 V Voltage, Current 

C2C AVTT 1.2 V 

C2C AUX 1.8 V 

LVDS 1.8 V Power Good 

I/O 1.8 V, 3.3 V Power Good 

 

It is currently planned to have monitoring data available in two modes of operation: For regular 

monitoring tasks, which only require a relatively low update rate, the firmware will have a running 

average of the voltages and currents of the diverse power rails. To facilitate more fine-grained power 

measurements, e.g., for characterizing computational kernels, it is envisioned to implement an 

“oscilloscope mode” where a certain amount of data can be captured after a trigger event with a much 

higher sampling rate. Captured data can then afterwards be downloaded for analysis. 

 

To integrate the regular monitoring with Linux, it is currently planned to implement a hardware 

monitoring driver, thus making the averages accessible in the /sys/class/hwmon/ hierarchy. For 

communication with the management firmware in the RPU an Xilinx LogiCORE IP Mailbox will be 

instantiated in the PL so that both processors can access it. The kernel sources already include a Linux 

driver for this Mailbox type. 

 

The COM-HPC standard (to which the eProcessor microserver module will adhere to) also allows for 

out-of-band management via IPMI over dedicated IPMB pins or over Ethernet. It is foreseen to expose 

the high-speed measurements via this IPMI interface directly from the management firmware in the 

RPU. But also the regular monitoring data can be exposed as IPMI sensors. This way, the sensor data 
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can be used by both: The OS running on the eProcessor (by using e.g., the “ipmitool” program) or an 

external management system on the carrier where the eProcessor microserver module will be installed. 

 

7. Concluding remarks 

This document provides a summary of work carried out in the context of WP4, as an accompaniment 

of the first release of the O/S, boot environment, compiler, and performance tools. 

The effort documented in this deliverable provides a solid basis for advanced Linux support on 

eProcessor prototypes when the main core matures to the point of running Linux becomes feasible. The 

bulk of our work so far is expected to work as-is on the upcoming prototypes of eProcessor, with some 

adjustments in low-level firmware and OS code to handle specific details of the initialization sequence 

for the processing core.  It will also help us address eProcessor specific aspects of the system, such as 

the boot cycle and the offloading to accelerators (since those are the functionalities that require special 

handling and otherwise a stock/vanilla kernel would suffice).  

Follow-up work will be tracking the maturation of essential eProcessor hardware blocks (esp. of the 

main processing core), with the aim to finalize the support for a full Linux OS environment. This follow-

up work is to be reported in D4.3 (“Release of the O/S, boot environment, compiler and performance 

tools for the single-core fabricated design” - due by M21). 
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8. Appendix 

In this Appendix we provide (i) screenshots from the work on OS support, and (ii)  evaluation results 

from a case study in the topic areas of software-based fault tolerance. 

 

8.1 Screenshots from misc. operating modes on available platforms 

 

 

 
Figure 10: Screenshot of Dhrystone benchmark run on EPI-SDV. 
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Figure 11:  Screenshot of nommu linux booting on qemu-riscv64. 

 

 
Figure 12: Screenshot of meminfo output in nommu linux  running on  qemu-riscv64. 
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Figure 13: Screenshot of nommu-linux running BusyBox on EPI-SDV. 
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Figure 14: Screenshot of a Zephyr compression application, being build and then executing on qemu riscv64 

emulator. 

 

 
Figure 15: Screenshot of philosophers dining problem Zephyr application running on Ariane-SDV using remoteproc. 
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Figure 16: Screenshot of thread synchronization Zephyr application running on Ariane-SDV, via rvinit. 
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Figure 17: Screenshot of Zephyr shell application on EPI-SDV, which runs build-in (e.g devmem) as well as user-

defined commands. 
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Figure 18: Screenshot of OpenAMP ping pong experiment on Ariane-SDV between Linux (top-half) and Zephyr 

(bottom-half). 

 

8.2 Evaluation of alternative PyFTI saving modes  

Experiment setup 

We have made resilience and performance evaluations using the Tensorflow framework. PyTorch 

support has been added recently, so we still do not have a proper evaluation using this framework.  

 

In the first part of the experiments, we verify the correctness and reliability of our PyFTI module. That 

is, we make sure that PyFTI is functional and that its recovered execution has comparable accuracy to 

a normal execution, even under worst case scenarios. In order to do that, we perform two different 
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experiments. The first one consists of the training of a MobileNet model with the cifar10 dataset. A 

total of 6 executions are performed, 3 normal executions and 3 executions using the PyFTI module. In 

order to account for the mentioned worst case scenario, the PyFTI executions will simulate a failure 

after every epoch, and recover from there afterwards. All executions train for a total of 15 epochs. A 

second experiment is added for completeness. The executions train a DenseNet121 model using the 

cifar100 dataset. A total of 3 executions are performed, one being a normal execution and the other two 

being worst case scenarios for PyFTI and Tensorflow checkpoint executions. Like in the previous 

experiment, the executions train for 15 epochs. 

 

The first experiment is performed without any control of the randomness. That is, every execution starts 

with different random seeds and there is greater potential for variance in the results. On the other hand, 

the second experiment is performed with as much randomness control as Tensorflow allows us. This 

difference in experiment methodologies is applied so that we can observe the behavior of our PyFTI 

module in both equally relevant scenarios. As performance is not a factor when evaluating functionality 

and resilience, these experiments are performed on a local machine using Horovod with 4 MPI ranks. 

 

The second part of the experiments is performed in the CTE-Power cluster from Marenostrum 4 

Supercomputer. It is a cluster of 52 nodes, each node containing the following hardware: 

 

- 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4 threads/core, 160 

threads per node) 

- 512GB memory in 16 dimms x 32GB @ 2666MHz 

- 2 x SSD 1.9TB as local storage 

- 2 x 3.2TB NVME 

- 4 x GPU NVIDIA V100 (Volta) with 16GB HBM2 

 

All nodes have access to a general parallel file system (GPFS) via a fiber link of 10 Gbps, and all nodes 

are connected through an Infiniband interconnection network. For this experiment we use 32 ranks, 

with a total of 8 nodes and 4 ranks per node. Each rank has dedicated access to a GPU. The experiment 

consists in the training of a ResNet152 model with the cifar100 dataset during an execution without 

checkpointing, an execution using Tensorflow checkpoints and several other executions with different 

PyFTI saving modes. For standard Tensorflow checkpoints, we choose the GPFS as our storage 

medium, since it only supports a single checkpoint location. For PyFTI checkpoints, we choose the 

NVME drives as our local storage medium, and the GPFS for our global storage medium. 

Evaluation 

The results of the first resiliency experiment are shown in Figure 19. As we can observe, while each 

execution has its own unique learning progression due to the lack of randomness control, the accuracy 

ends up converging to similar values. Even the first PyFTI execution (Recovery 1), which seems to 

suffer from a slow start, has accuracy values very similar to other executions from epoch 10 onward. 
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Figure 19: Comparison of a normal execution with PyFTI executions while recovering at every epoch, with no 

randomness control. 

The results of the second experiment are shown in Figure 20. We can immediately notice a much smaller 

variance in comparison to the previous experiment, thanks to controlling the random seeds of the python 

modules. However, we were not able to provide deterministic restarts, so accuracy values still differ 

slightly. With these experiments, we can conclude that PyFTI provides strong resiliency to DL 

applications even in worst case scenarios, in which the applications fail frequently. 

 

 
Figure 20: Comparison of a normal execution of PyFTI while recovering at every epoch, with randomness control. 

The results of the performance evaluation, specifically overhead analysis, are shown in Figure 21. We 

can immediately notice that the non-partitioning saving mode generates a lot of overhead in 

comparison to any other execution. This is because this mode does not assume that the checkpoint data 

is the same for all ranks, and thus performs a complete serialization and storage of the data for each 

rank. While this should be the standard behavior in many applications, it is very inefficient in an 

environment where we know that all the checkpoint data is the same at the moment of performing a 

checkpoint. This shows the clear need for optimizations that reduce the checkpoint overhead in these 

scenarios, which are very common in machine learning applications. 
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Figure 21: Checkpoint overhead analysis when training ResNet152 using cifar100 dataset. 

We can see a substantial reduction of the overhead with the PyFTI partition-based saving modes, even 

compared to standard Tensorflow checkpoints. This is within our expectations, as the standard 

Tensorflow checkpoints are performed in a single storage location (in the GPFS), while PyFTI leverages 

NVME storage with reliability techniques in several checkpoint levels, only flushing data to the GPFS 

in the last checkpoint level. Furthermore, our checkpoint partitioning techniques allow for faster parallel 

checkpoint writes and the reduction of computational workloads assigned to some checkpoint levels. 

 

Performance differences between raw-partitioning, list-partitioning fast and list-partitioning 

weighted modes are not as obvious. In fact, we argue that none of these modes are strictly better than 

others, but rather work better in certain scenarios. In our experiment, for example, the list-partitioning 

fast mode does not seem to provide any improvement over raw-partitioning mode. This is likely 

because, while it saves computation time in the serialization, it ends up with a poor checkpoint data 

distribution across ranks, worsening the I/O write performance. On the other hand, list-partitioning 

weighted mode handles the data distribution in a smarter way, so we can appreciate a slight overhead 

reduction. In summary, we can see overheads as low as 2.7%, 2.3x less overhead than standard 

Tensorflow checkpoints. 

 

 

9. List of Abbreviations 

AHB Advanced High-performance Bus 

AI Artificial Intelligence 

ALU Arithmetic Logic Unit 

AMAT Average Memory Access Time 

API Application Programming Interface 

ASCII American Standard Code for Information Interchange 

ASIC Application Specific Integrated Circuit 

ASID Address Space IDentifier 
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ATPG Automatic Test Pattern Generation 

AXI Advanced eXtensible Interface 

BIST Built-In Self-Test 

BRAM Block Random Access Memory 

BSD Berkeley Software Distribution 

BSP Board Support Package 

BTB Branch Target Buffer 

C2C Chip-to-Chip 

CCI Cache Coherent Interconnect 

CDB Common Data Bus 

CFD Computational Fluid Dynamics 

CHI Coherent Hub Interface 

CI/CD Continuous Integration / Continuous Delivery 

CLIC Core Local Interrupt Controller 

CLINT Core-Local INTerrupter 

CMO Cache Management Operation 

CNN Convolutional Neural Network 

COM Computer On-Module 

CPU Central Processing Unit 

CRC Cyclic Redundancy Check 

CSR Control and Status Register 

CTG Compatibility Test Generator 

CUPs Cell Updates Per Second 

CV Computer Vision 

DAG Direct Acyclic Graph 

DDI DNS/DHCP/IPAM 

DDR Double Data Rate 

DFS Dynamic Frequency Scaling 
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DFT Discrete Fourier Transform 

DFT Design For Testing 

DMA Direct Memory Access 

DMAR Direct Memory Access Remapping 

DNA DeoxyriboNucleic Acid 

DP Double Precision (floating-point) 

DRAM Direct Random Access Memory 

DRC Design Rule Check 

DSP Digital Signal Processor 

DV Design and Verification 

E-ATX Extended Advanced Technologies eXtended 

EAPI Embedded Application Programming Interface 

ECC Error Correcting Codes 

ED2P Energy-Delay Square Product 

EDP Energy-Delay Product 

ELF Executable and Link Format 

eMMc embedded MultiMedia card 

EPI European Processor Initiative 

FCBGA Flip-Chip Ball Grid Array 

FDSOI Fully Depleted Silicon-On-Insulator 

FF Flip-Flop 

FFT Fast Fourier Transform 

FIFO First In First Out 

FIT Failures-In-Time 

FLOPS Floating-Point Operations Per Second 

FMA Fused Multiply-Add 

FP Floating-Point 
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FPGA Field-Programmable Gate Array 

FPS Frames Per Second 

FPU Floating-Point Unit 

FSM Finite State Machine 

gdb GNU Debugger 

GDSII Graphic Design System II stream format 

GLS Gate Level Simulation 

GPIO General-Purpose Input/Output 

GPU Graphics Processing Unit 

HAL Hardware Abstraction Layer 

HBM High Bandwidth Memory 

HLS High-Level Synthesis 

HMI Human Machine Interface 

HPC High-Performance Computing 

HPDA High-Performance Data Analytics 

HPM Hardware Performance Monitoring 

HPM Hardware Performance Monitoring 

I/O Input/Output 

I2C Inter-Integrated Circuit 

IC Integrated Circuit 

IoT Internet of Things 

IOVA Input/Output Virtual Address 

IP Intellectual Property 

IPC Instructions Per Cycle 

ISA Instruction Set Architecture 

ISG Instruction Sequence Generator 

KPI Key Performance Indicator 
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LD/ST Load/Store 

LF/s Left-First mappings per second 

LR Load Reserved 

LRU Least Recently Used 

LSQ Load/Store Queue 

LT Link Traversal 

LUT LookUp Table 

LVCMOS Low-Voltage Complementary Metal Oxide Semiconductor 

LVDS Low-Voltage Differential Signaling 

LVS Layout Versus Schematic 

MAC Multiply ACcumulate 

MAC Medium Access Control 

ML Machine Learning 

MMU Memory Management Unit 

MPI Message Passing Interface 

MPKI Misses Per Kilo Instruction 

MPW Multi Project Wafer 

NIC Network Interface Controller 

NoC Network on-Chip 

NUCA Non-Uniform Cache Access 

OoO Out-of-Order 

OS Operating System 

P&R Place and Route 

PC Program Counter 

PCB Process Control Block 

PCIe Peripheral Component Interconnect express 

PDE Partial Differential Equation 
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PE Processing Element 

PHY PHYsical layer 

PICMG PCI Industrial Computer Manufacturers Group 

PL Programmable Logic 

PLIC Platform-Level Interrupt Controller 

PLL Phased Lock Loop 

PMA Physical Memory Attributes 

PMC Performance Monitoring Counter 

PMP Physical Memory Protection 

PMP Physical Memory Protection 

PMU Performance Monitoring Unit 

PS Processor System 

PTE Page Table Entry 

PTW Page Table Walker 

QoS Quality of Service 

QSPI Quad Serial Peripheral Interface 

RAS Return Address Stack 

RAT Register Alias Table 

RDAM Remote Direct Memory Access 

RECS Resource Efficient Computing and Storage 

ReLU Rectified Linear Unit 

RNA RiboNucleic Acid 

ROM Read-Only Memory 

RTL Register-Transfer Level 

RU Rack Units 

RVV RISC-V Vector Extension 

RVWMO RISC-V Weak Memory Ordering 
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S-NUCA Static Non-Uniform Cache Access 

SA Switch Allocation 

SATA Serial Advanced Technology Attachment 

SATP Supervisor Address Translation and Protection 

SC Store Conditional 

SDV Software Development Vehicle 

SECDED Single Error Correction Double Error Detection 

SerDes Serializer/Deserializer 

SIMD Single Instruction Multiple Data 

SO-DIMM Small Outline Dual In-line Memory Module 

SoC System on-Chip 

SPI Serial Peripheral Interface 

ST Switch Traversal 

STA Static Timing Analysis 

SV System Verilog 

SVA System Verilog Assertions 

TLB Translation Lookahead Buffer 

TSO Total Store Order 

UART Universal Asynchronous Receiver Transmitter 

UI User Interface 

ULL Ultra-Low Leakage 

UPF Unified Power Format 

URAM Ultra Random Access Memory 

USB Universal Serial Bus 

UVM Universal Verification Methodology 

VC Virtual Channel 

VIP Verification Intellectual Property 
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VLEN Vector LENgth 

VLSQ Vector Load/Store Queue 

VPN Virtual Page Number 

VPU Vector Processing Unit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


