B Ref. Ares(2022)5774595 - 17/08/2022

Processor

D3.3

Initial porting of the use cases
Version 1.0

Document information

Work package WP3: Software Applications Use Cases, Specifications and Evaluation

Contract number 956702

Project website WWW.eprocessor.eu

Author(s) Vasilis Flouris (FORTH)

Sl Lluc Alvarez (B§C}), Arnau Bigas (BSC), Asaf Badouh (BSC), JeanMarg Philippe
(THALES), Christian Stollenwerk (UNIBI), Jens Hagemeyer (UNIBI), Nils Kucza (UNIBI)

Reviewer(s) Stefan Krupop (CHR)

Dissemination Level PU

Nature 6]

Contractual deadline 31/07/2022

This document may contain proprietary material of certain eProcessor contractors. The commercial use of any
information contained in this document may require a license from the proprietor of that information.

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 956702. The JU receives support from the
European Union's Horizon 2020 research and innovation programme and S pain, Sweden,
Greece, ltaly, France, and Germany.


http://www.eprocessor.eu/

Processor

D3.3 Initial porting of the use cases

Change Log

Version
0.1
0.2
1.0

Author(s) Comments and Description of change
FORTH, BSC, UNIBI, THALES Initial version with most of the technical content
FORTH, BSC, UNIBI, THALES Reviewed version

FORTH, BSC, UNIBI, THALES Final changes after internal review. Document
reviewed. Final version

This document is Public, and was produced under the eProcessor project (EC contract 956702).



Processor

D3.3 Initial porting of the use cases
Executive Summary

This deliverable releases the initial porting of the application use cases and the
microbenchmarks on the eProcessor architecture. This report starts by describing the main
Software Development Vehicles (SDVs) that have been used to start porting the software,
and then it describes the advances in the porting of the microbenchmarks and the application
use cases. The structure of this document is as follows:

Chapter 2 presents the QEMU SDV, which is an emulator-based system that is able to run a
complete Linux operating system, with libraries and applications on top of it.

Chapter 3 describes the FPGA SDV, which is an FPGA -based platform that runs the actual
eProcessor core. Currently, this SDV can run simple bare-metal applications.

Chapter 4 details the initial porting of the eProcessor microbenchmarks on the FPGA SDV,
including the required steps to adapt, compile and execute the microbenchmarks in this bare
metal environment.

Chapter 5, 6, 7, 8 and 9 discuss, respectively, the initial porting of the HPC, the
Bioinformatics, the DeepHealth Toolkit, the Smart Mirror, and the Surveillance Border Control
application use cases to the QEMU SDV. For each use case, its corresponding chapter
describes the adaptations done in the application cod e and in the compilation scripts, the
libraries that have been installed in the system to satisfy the dependencies of the applications,
and the tests done to verify the correctness of the porting process.

The work reported in this deliverable has been peformed by the WP3 “Software Applications
Use Cases, Specifications and Evaluation” under Task 3.4 “Profiling, benchmarking, analysis,
and tuning of applications use cases on the emulated RISC -V system”. This deliverable
contributes to the project milestone MS3 “Single -core Tapeout: Dissemination and
exploitation reports, Use -case applications, Single -core hardware and software (OS and
tools for FPGA emulation, chip RTL freeze, and verification, FPGA emulation, Tapeout, PCB,
first firmware and BSP release).” The work performed in this deliverable has been carried out
by the four partners that participate in Task 3.4. In particular, FORTH has contributed the
FPGA and the QEMU SDVs; BSC has contributed the initial porting of the microbenchmarks,
of the HPC use cases, of the Bioinformatics use cases, and of the DeepHealth Toolkit use
case; UNIBI has contributed the initial porting of the Smart Mirror use case; and THALES has
contributed the initial porting of the Surveillance Border Control use case.

Alongside this document, in this deliverable we do a software release of four files:

@ A set of scripts (YAAFRV) that automate the process of setting up and invoking the
QEMU SDV.

@® A system image for the QEMU SDV that contains the operating system, the libraries
required to run the application use cases, and the binaries and inputs of the
application use cases.

@® A snapshot of the repository of the application use cases that contains the source
code of the application use cases.

@® A microbenchmark that can be executed on the FPGA SDV.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 2



Processor

D3.3 Initial porting of the use cases

The four aforementioned files that accompany this document are uploaded to the B2DROP
repository of BSC, and can be accessed on the following link and password:

@ Link: https://b2drop.bsc.es/index.php/s/KtkNDRjdneGsLbQ
@ Password: 2PCz3fX9yN

This document is Public, and was produced under the eProcessor project (EC contract 956702).



Processor

D3.3 Initial porting of the use cases
Table of Contents

Executive Summary

Table of Contents

Introduction

QEMU SDV

FPGA SDV

Porting of the Microbenchmarks to the FPGA SDV

Porting of the HPC Use Cases to the QEMU SDV
Contents of the Use Case Repository and the Syste m Image

Porting of the Bioinformatics Use Cases to the QEMU SDV
Contents of the Use Case Repository and the System Image

Porting of the Deep Health Toolkit Use Case to the QEMU SDV
Installed Dependencies and Tests
Contents of the Use Case Repository and the System Image

Porting of the Smart Mirror Use Case to the QEMU SDV
Installed Dependencies and Tests
TensorFlow as the Backend
ROS2 as the Middleware
Node.js and Dependency Packages
Contents of the Use Case Repository and the System Image

Porting of the Surveillance Border Control Use Case to the QEMU SDV
Installed Dependencies and Tests
Contents of the System Image

Conclusions

This document is Public, and was produced under the eProcessor project (EC contract 956702).

o o0 B~ 0N

10
10

11
11

12
13
13

13
14
15
15
16
16

16
18
20

20



Processor

D3.3 Initial porting of the use cases
1.  Introduction

The effort required to port an application into a different architecture can vary from trivial to
very challenging. Some of the factors that contribute to the difficulty of the porting are:

@® The application’s dependence on specific hardware features (accelerators, sensors
etc).

@ The availability of hardware and emulators on which the software can be tested.

@ The maturity of the software ecosystem of the target architecture.

One of the goals of the eProcessor project is porting a set of selected applications to utilize
the eProcessor hardware resources as efficiently as possible. That means that the
applications should both be tuned for the specific microarchitecture and make use of the
accelerators of the platform. In this regard, the eProcessor application porting work is quite
challenging, since it requires understanding and utilizing novel hardware and compiler
features specifically designed for the eProcessor architecture.

Although the eProcessor ASIC is not yet available, some Software Development Vehicles
(SDVs) are being developed in the project with the aim of starting the porting of the software
as soon as possible. In particular, two SDVs are currently available: (i) the QEMU SDV, which
can emulate a complete system including Operating System (OS), libraries and applications,
and (ii) the FPGA SDV, which runs the real eProcessor core design, although currently it only
supports bare-metal applications. These platforms are described in detail in later chapters.
One of the key choices made for this porting effort is to have some provisioning for the
transition between different SDVs, such that as little work as possible will be replicated while
going from simpler to more complete platforms.

Regarding the maturity of the software environment of the RISC-V ecosystem, despite the
significant progress in the past years, there are a lot of software components, libraries and
tools that are still not available. For some context, the first functional version of the Firefox
browser was announced less than a year ago, while LibreOffice, the first office productivity
software available on RISC-V, was released a few days ago.

Given the above described challenges, limitations and choices, all eProcessor partners have
progressed towards porting their applications and microbenchmarks on at least one of the
SDVs. A summary of this progress is shown in Table 1 and is described in detail in the
following chapters of the document.

HiFive Unleashed & eProcessor eProcessor eProcessor
Unmatched boards QEMU SDV FPGA SDV ASIC
Microbenchmarks ported ported partially ported N/A
HPC use cases ported ported N/A N/A
Bioinformatics use cases ported ported N/A N/A
DeepHealth Toolkit ported ported N/A N/A
Smart Mirror Not targeted partially ported  N/A N/A
Border surveillance Not targeted partially ported  N/A N/A

Table 1: Progress of porting the application use cases to the different SDVs.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 5



Processor

D3.3 Initial porting of the use cases
2. QEMU SDV

QEMU is a free and open source machine emulator and virtualizer that supports a very wide
range of emulated target architectures, including RISC-V. In the eProcessor project we refer
to the QEMU SDV as QEMU running a complete machine in emulation mode, that is, running
a full Linux OS and applications on top of it. In Virtual Machine (VM) terminology this OS is
called the guest OS. In this mode of operation, both the guest OS and the applications
running require no knowledge of what is outside the VM.

This execution environment provides all IS A-specific interfaces for the functional porting of
applications that do not require specific hardware components. In the case of RISC-V there
are some caveats to providing such an environment that matches the eProcessor hardware
design. One such detail is that, at the beginning of the project, there was no ratified version
of the vector extension for RISC-V, and the version of the extension that was used for the
vector processor has now been superseded by later ones. This requires a specific version of
QEMU, other than the mainline, which implements the same version of the ISA vector
extension as the one that is being implemented in the project.

For those reasons, and for simplifying and accelerating the work of the software engineers
tasked with porting, we have developed a tool called YAAFRV (Y et Another Automation For
Riscv-V), which automates the process of fetching and building all the required components
of the QEMU SDV, and which automatically applies as many eProcessor specific changes as
can be captured in this manner. The operation of YAAFRV is sketched in Figure 1.

Gentoo Image

pno syl woy payolel shew cojuss

Binaries and scripts required
to run an instance of the QEMU SDV

/bootstrap.sh
/gentoo-RunCQEMU sh ’ n 1 </>

10
— =\

Figure 1. YAAFRV downloads, configures and builds all requred components fo instantiate
the QEMU SDV.

Once YAAFRV is cloned, the user needs to perform the following steps:

! https://gitlab.bsc.es/eprocessor/ep-sw-reference/yaafrv

This document is Public, and was produced under the eProcessor project (EC contract 956702). 6



Processor

D3.3 Initial porting of the use cases

> /bootstrap.sh —clean-ubuntu # assuming a debian/ubuntu distribution
> # replace the smaller default gentoo qcow2 image with the one from b2drop
>./gentoo-RunQEMU.sh

The above steps should get the QEMU SDV running with the latest Gentoo system image
used by the partners.

The Gentoo linux image, referenced above, has beerbuilt for the purpose of the initial porting
work of eProcessor applications. One of the most important characteristics of this Gentoo
image is that it is meant to be transferable between SDVs (e.g, from the QEMU SDV to the
FPGA SDV). The fetching of this image is also handled by YAAFRV. Having and maintaining
such an image means that, when the hardware design of eProcessor has matured enough
so that the FPGA SDV is able to run a full Linux OS, the transition between the QEMU and
the FPGA SDVs will be seantess, keeping the same Linux kernel, filesystem, system libraries,
etc. This capability of moving the particular QEMU image into different RISC-V platforms has
already been tested successfully.

After the installation of the emulation environment, some cus tomization steps have been
done to use the Gentoo linux image for software deployment:

@® Resizing of the QEMU disk image
@ Customization of the run script
O 8 CPU cores utilization (maximum amount of 8 is hardcoded in QEMU)
O 24 GB RAM ttilization
O Dynamic Memory ballooning to free unused memory on host demand
O Forwarding of an SSH connection to enable connection for multiple users
@® Configuration of Gentoo users and sudo permissions
@ Configuration of the SSH service, including X tunneling, for remote co nnections
@ Update of the Gentoo distribution
@ |Installation of software tools and dependencies via package manager

3. FPGASDV

Although the QEMU SDV provides many of the architecture-specific interfaces required to
port the eProcessor applications (i.e. user-space code), it does not expose to the software
developer any of the eProcessor-specific system platform features. In particular, QEMU does
not model microarchitecture, peripherals, system level organization, etc. Therefore, an SDV
more closely approximating the eProcessor system platform is required, both for utilizing
project-specific features and for understanding and tuning the performance of the
applications.

In this deliverable we use the FPGA SDV developed in WP6 under the task T6.3 “"FPGA
emulation of the single core system”. The FPGA SDV has been recently released as part of
the deliverable D6.3 “FPGA emulation of single-core system”. This FPGA SDV provides early
access to the features of the eProcessor architecture, overcoming the aforementioned

This document is Public, and was produced under the eProcessor project (EC contract 956702). 7



Processor

D3.3 Initial porting of the use cases

limitations of the QEMU SDV. The use of an FPGA allows the rapid deployment of software
to the latest hardware designs and enables the software engineers to access features as
soon as they are ready (rather than having to wait for the ASIC implementation). This makes
the FPGA SDV an ideal platform for porting software for such targets.

Although much progress has been made in the hardware components of eProcessor
(specifically in WP5), at the time of preparing this deliverable the FPGA SDV does not yet
have some of the critical features required to run a full Linux OS. Although the FPGA SDV is
capable of running a variety of bare -metal applications, at the moment it is not yet a viable
platform for porting and evaluating the full application use cases, as they rely on O8nanaged
functionalities.

Still, the currently available platform on  the FPGA SDV is usable for porting the simpler
microbenchmarks, as we demonstrate next. Through the process of porting, feedback on
feature prioritization is given to the hardware designers, hence aiding in the progress and
maturation of the overall system platform.

4. Porting of the Microbenchmarks to the FPGA SDV

A crucial aspect of the design of a processor is adjusting its microarchitectural parameters
according to the requirements of the applications that the processor targets. However, in the
early stages of the development of a processor, it is not feasible to use real applications or
large benchmarks, because pre-silicon RTL simulations are extremely time consuming and
different parts of the processor are designed and tested in isolation. As a result, the
microbenchmarks used during this process have to stress only specific parts of the design
while being representative of the applications of interest.

In the previous deliverable D3.2 “Microbenchmark suite to drive design decisions” we
released the suite of microbenchmarks for the eProcessor project. These microbenchmarks
are representative of the HPC, Bioinformatics and Al application use cases of interest for the
project. The microbenchmarks target specific elements of the eProcessor architecture such
as the CPU, the vector accelerator, and the Al accelerator, and they were initially tested on
different SDVs such as the HiFIVE Unleashed and Unmatched boards, the Gem5 simulator,
and the QEMU SDV.

For this deliverable we have focused on doing an initial porting of the microbenchmarks to
the FPGA SDV. In particular, the microbenchmarks have been adapted to fulfill the specific
requirements of the FPGA SDV, especially regarding the memory layout that is defined by
the FPGA infrastructure. To this end, the following steps have been performed:

@® Compiling the original benchmarks with a specific memory layout that is defined by
the FPGA infrastructure.

@® Using the ChopStiX? methodology to extract microbenchmarks from the new binaries.
This generates microbenchmarks with the same memory layout as the original
benchmark. Thus, the code and data sections that belong to the benchmark fulfill the
requirements of the memory layout defined by the FPGA SDV. However, some code

2 https://github.com/IB M/chops tix

This document is Public, and was produced under the eProcessor project (EC contract 956702). 8



Processor

D3.3 Initial porting of the use cases

and data sections belonging to the stack and to shared libraries cannot be mapped
to specific memory addresses in the previous compilation step, so they do not fulfill
the requirements of the memory layout defined by the FPGA SDV.

@® Re-mapping the code and data sections belonging to the stack and to shared libraries
to memory addresses that fulfill the requirements of the memory layout defined by the
FPGA SDV.

After performing these steps, the resulting binaries can be successfully executed on the
FPGA SDV and on the Spike RISC-V ISA simulator. Figure 2 shows the output of a
microbenchmark extracted from the Rank function of the IS benchmark from the NAS
benchmark suite running on the FPGA SDV. The microbenchmark shows a ‘Hello World from
eProcessor’ message and then it executes the Rankfunction in a loop with a configurable
number of iterations (2 in this example). For each iteration of the loop, the microbenchmark
shows a ‘Start’ message, the contents of the mcause and the mepc registers (values 0 in the
figure, which means the execution has finished without errors), an ‘End’ message, and the
number of cycles spent in the execution of the function (94764086 and 58566086 cycles
spent in the first and in the second iteration, respectively).

from

Figure 2. Oulput of a microbenchmark running on the FPGA SDV.

At the moment of writing this deliverable, we have successfully ported one microbenchmark
extracted from the Rankfunction of the IS benchmark from the NAS benchmark suite. We
are currently working on upgrading the ChopStiX infrastructure to automate the
aforementioned steps that need to be performed to port the HPC and Bioinformatics
microbenchmarks that were delivered in deliverable D3.2 “Microbenchmark suite to drive
design decisions” to the FPGA SDV. Once we introduce the necessary changes in ChopStiX,
we will re-generate the microbenchmarks and update the microbenchmark repository. This

This document is Public, and was produced under the eProcessor project (EC contract 956702). 9



Processor

D3.3 Initial porting of the use cases

will result in a set of 200 microbenchmarks that stress the CPU and the eAccelerator on the
FPGA SDV and help drive microarchitectural design decisions.

Alongside this document we release a compressed file that contains the binary of the
microbenchmark extracted from the Rank function of the IS benchmark from the NAS
benchmark suite. The compressed file is available in the B2ZDROP repository.

5. Porting of the HPC U se Cases to the QEMU SDV

The NAS Parallel Benchmarks (NPB)** are used in the eProcessor project as HPC use cases.
The NPB are widely used to evaluate the performance of high-end parallel systems. This
benchmark suite consists of eight individual benchmark problems with special focus on
computational aerophysics, although most of the benchmarks have much broader relevance,
since they are typical of many real-world scientific computing applications. The eight
problems consist of five kernels (CG, EP, FT, IS and MG) and three simulated Computational
Fluid Dynamics (CFD) applications (BT, LU and SP). On one hand, the five kernels are
relatively compact problems that emphasize a particular type of numerical computation.
Compared to the simulated CFD applications, they can be ported fairly readily and provide
insight as to the general levels of performance that can be expected on these specific types
of numerical computations. On the other hand, the three simulated CFD applications usually
require more effort to implement, but they are more indicative of the types of actual data
movement and computation required in state-of-the-art CFD application codes, and in many
other three-dimensional physical simulations, as well. By comparison, the simulated CFD
applications require data structures and implementation techniques in three physical
dimensions, and thus are more typical of real scientific applications.

For this deliverable we have ported the NPB to the QEMU SDV. To do that, we have
downloaded the source code of the benchmarks, we have copied them in the system image,
and we have compiled them normally. The compilation has not required any modifications to
the source code of the benchmarks, nor any modification to the compilation scripts, nor the
installation of any external library. To test the portis successfully working, we have executed
all the benchmarks of the NPB with input class W and we have observed that they all finish
with a successful result, as reported by the benchmarks.

5.1 Contents of the Use Case Repo sitory and the System Image

Alongside this document we release the source code and the binaries of the whole NPB port.
The source code can be found in the repository of the application use cases, in the HPC
folder, which also contains instructions on how to compile and execute the benchmarks. The
binaries of the benchmarks can be found in the system image, in the /opt/npb folder, which
contains the binaries of all the benchmarks with input set classes S, W and A, as well as

* https://www.nas.nasa.gov/software/npb.html

4 Bailey, David H., Eric Barszcz, John T. Barton, David S. Browning, Robert L. Carter, Leonardo
Dagum, Rod A. Fatoohi et al. "The NAS parallel benchmarks summary and preliminary results." In
Supercomputing'91: Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pp.
158-165. IEEE, 1991.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 10



Processor

D3.3 Initial porting of the use cases

instructions on how to execute th e binaries. Both the repository of the application use cases
and the system image are available in the B2DROP repository.

6. Porting of the Bioinformatics Use Cases to the QEMU
SDV

In recent years, advances in next-generation sequencing technologies have enabled the
proliferation of Bioinformatics applications that guide personalized medicine. These
applications have an enormous computational cost due to the large amount of genomic data
they process, so they have become a common workload in HPC systems and, at the same
time, an important target for accelerators. In the eProcessor project, we use 4 Bioinformatics
applications as use cases representative of different stages of typical genomic pipelines:

@® The Smith-Waterman-Gotoh (SWG) is a dynamic programming algorithm that
computes the pairwise alignment of two DNA sequences using affine gap penalties.

@® The Banded Smith-Waterman-Gotoh (BSWG) is the banded version of the SWG
algorithm, which implements a heuristic approach towards reducing the
computational complexity of the original algorithm.

@ The Wavefront Alignment (WFA) pairwise alignment proposes an alternative encoding
of the dynamic programming matrix and an efficient algorithm to compute partial
alignments with an increasing score. As a result, it computes the cells of the dynamic
programming matrix by increasing score and only needs to compute a minimal
number of cells to find the optimal alignment.

@® The FM-index (Full-Text Index in Minute Space) search is one of the most common
data structures used within aligners and metagenomics classification tools. This data
structure is used in search algorithms to identify the exact-matching locations of short
sequence substrings (called seeds) within a reference genome.

For this deliverable we have ported the Bioinformatics benchmarks to the QEMU SDV. To do
that, we have downloaded the source code of the benchmarks and we have copied them in
the system image. Then we have adapted the code to work on RISC-V, as the original source
code of the benchmarks includes intrinsics to use x86 SIMD instructions. After removing the
intrinsics we have been able to compile the benchmarks, without any modification to the
compilation scripts nor installing any external library. To test the portis successfully working,
we have executed all the benchmarks with the example inputs that the benchmarks
incorporate and we have observed that they all finish with a successful result, as reported by
the benchmarks.

6.1 Contents of the Use Case Reposito ry and the System Image

Alongside this document we release the source code and the binaries of the four
Bioinformatics benchmarks. The source code can be found in the repository of the
application use cases, in the Bioinformatics folder, which also contains instructions on
how to compile and execute the benchmarks. The binaries of the benchmarks can be found
in the system image in different folders, one per benchmark: /opt/sw, /opt/bsw,
/opt/wfa, and /opt/fmindex. These four folders contain the binaries of the benchmarks,

This document is Public, and was produced under the eProcessor project (EC contract 956702). 11



Processor

D3.3 Initial porting of the use cases

input datasets, and instructions on how to execute the binaries. Both the repository of the
application use cases and the system image are available in the B2DROP repository.

7. Porting of the Deep Health Toolkit Use = Case to the
QEMU SDV

The DeepHealth Toolkit®> is a software ecosystem developed in the DeepHealth European
project. Its main goal is to provide open-source libraries for Al and computer vision that can
be leveraged by medical applications.

The European Distributed Deep Learning (EDDL) library is an optimized tensor library for
distributed deep learning. The library is built around the concept of tensor and offers many
functionalities with a device-independent interface, enabling a strong decoupling between
the network training logic and the hardware implementation. This way, the EDDL library offers
tailored implementations that can be efficiently executed on general CPUs, Graphics
Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), or distributed systems.

The European Computer Vision Library (ECVL) facilitates the integration and exchange of
data between existing state-of-the-art Computer Vision (CV) and image processing libraries.
Moreover, it provides new high-level CV functionalities thanks to accelerated versions of
some CV algorithms commonly employed in conjunction with deep learning algorithms. The
algorithms of ECVL are adapted to hardware accelerators (i.e., GPUs and FPGAs) in a user-
transparent way. To this end, the Hardware Abstraction Layer (HAL) hides hardware specific
implementations of image manipulation functions, and the user only decides which device
should be used for the computation and then calls a common Application Programming
Interface (API) that offloads the work to the specified hardware devices.

The DeepHealth toolkit provides a set of use cases that apply deep learning techniques for
automatic medical diagnosis. In the eProcessor project we use the Skin Lesion Classification
use case, which targets improving melanoma diagnoses and reducing melanoma mortality
by facilitating the application of digital skin imaging technologies. To do so, this use case
performs a classification of sample images using a VGG16 deep learning model. The
classification task has two parts, training and inference, and uses the International Skin
Imaging Collaboration (ISIC) dataset. The ISIC 2019 dataset contains 25,311 images that add
up to 9.8 Gigabyte of storage for training across eight different categories (i.e., classes). The
dataset is divided into three subsets of images: 19,330 for training, 1,000 for validation, and
5,001 for testing. The dimensions of the images vary, but all the images are larger than
224x%224 with three colors (i.e., channels).

5 Cancilla, Michele, Laura Canalini, Federico Bolelli, Stefano Allegretti, Salvador Carrién, Roberto
Paredes, Jon A. GOmez et al. "The DeepHealth Toolkit: a unified framework to boost biomedical
applications." In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9881-
9888.

IEEE, 2021.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 12



Processor

D3.3 Initial porting of the use cases
7.1 Installed Dependencies and Tests

For this deliverable we have ported the DeepHealth toolkit to the QEMU SDV. To do that, we
have downloaded the source code of the libraries and the use cases and we have copied
them in the system image. Then we have adapted the compilation scripts to work on the
QEMU SDV, as CMake was not detecting some C++17 libraries, although the backend
compiler was detecting them. After fixing this issue we have installed the external libraries
that are required by the DeepHealth Toolkit, which are specified in Table 2.

Name Version Status Note

OpenCV 4.6.0 Installed Installed via package manager
Eigen 3.4.0-r1 Installed Installed via package manager
libpng 1.6.37-r2 Installed Installed via package manager
openjpeg 2.5.0-r2 Installed Installed via package manager

Table 2: Libraries needed by the DeepHealth Toolkit use case.

To test the port is successfully working, we have executed the skin lesion use case. To do
so, we have copied the ISIC dataset in the system image and we have run the use cases with
a subset of the whole dataset, including 200 images for training, 200 images for validation,
and 200 images for testing.

7.2 Contents of the Use Case Repository and the System Image

Alongside this document we release the source code and the binaries of the DeepHealth
Toolkit application use case. The source code can be found in the repository of the
application use cases, in the DeepHealth folder, which also contains instructions on how to
compile and execute the application. The binaries of the benchmarks can be found in the
system image, in the /opt/deephealth folder, which contains the binaries of all the
libraries, the binary of the application use case, the ISIC dataset, and instructions on how to
execute the application. Both the repository of the application use cases and the system
image are available in the B2DROP repository.

8. Porting of the Smart Mirror Use Case to the QEMU
SDV

The smart home use case is centered around a smart mirror, which is based on the open
source MagicMirror project, as introduced in deliverable D3.1 “Use cases definition,
requirements and specifications reports”. The smart mirror supplements the user interface
(Ul) of an intelligent mirror with detection and recognition modules in order to show
personalized information. Those detections and recognitions consist of object and gesture
detection and face recognition, which are key in most smart home applications where
resident interactions are required. The outline of the structure is shown in Figure 3.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 13



Processor

D3.3 Initial porting of the use cases

ROS/ROS2 “

| L2

- Efficientnet
Trained with WiderFace

Sort Tracker

(Kalman Filter +

Sort Tracker
(Kalman Filter +
Hungerian Algorithm)

Hungerian Algorithm)

Face Recognition

SEME
Network for
Detection Identification

Object|Detection

Gesture

Webstream ROS2 Bridge

W o Person I Decision

Bl Peripheral Input Recognition Maker
[l Combinatorial Logic MagiCMirrorz

& &

Display Smart Home Messages from/
to other devices

Figure 3. Overview of the Smart Mirror architecture.

The computation of the neuronal networks is curre ntly wrapped in ROS2 nodes, which are
listening to an image topic, calculating the detections or recognitions, and publishing the
results in JSON format to the output topic. This enables easier interchangeability and rapid
prototyping. The MagicMirror appl ication is also equipped with a ROS2 interface and uses
the published information. The gesture and object detections are based on YOLOv4 and
implement tracking with the help of a Kalman Filter and a Hungarian algorithm (called sort
algorithm). The face rec ognition is subdivided into two steps, the first step finds faces in
images and also tracks them using a sort algorithm. The tracked faces are periodically
published (every 500 ms) and recognized in the second step using a Siamese network and
stored face embeddings of known users.

In order to port the Smart Mirror application to eProcessor, the approach is to first run all
detections and recognitions on the developed accelerator, using it as a co -processor in the
first step and subsequently work on all dep  endencies to run the full smart mirror on the
eProcessor. As a first step to this approach, the following subsection investigates which of
the needed libraries are already available in the QEMU SDV and describes the basic tests for
the different functionalities.

8.1 Installed Dependencies and Tests

In order to execute the smart mirror application, many software dependencies need to be
installed. Table 3 shows the installation status of the required libraries. If a backend for neural
networks and a middleware (in our case ROS2) is available, independent nodes for the
required detections can be ported. The MagicMirror projectis also in need of an interface for
that middleware and some basic Node.js packages. Some of the required packages have
been installed automatically and have not been affected by errors or issues, and therefore

This document is Public, and was produced under the eProcessor project (EC contract 956702). 14



Processor

D3.3 Initial porting of the use cases

are not listed. With the installation of TensorFlow and TensorFlow Lite, the first critical step

of building the backend for the detection/recognition nodes is present. The next critica | step
which has already started is the installation of a common middleware, which ROS2 is targeted
for and will be evaluated next.

Name Version Status Note

OpenCV 4.6.0 Installed Installed via package manager

Rosdep 0.21.0 Installed Installed via package manager and pip

ROS2 Humble In progress Built and installed without Qt GUI and unit tests
TensorFlow lite  2.9.1/master Built and tested  Built via CMake/make. Built-in benchmark executable
OpenJDK 11.0.15 Installed Installed via package manager

Bazel 5.0.0 Installed Installed via package manager

Built with Bazel 5.0.0. Some patches needed. First

TensorFlow 2.9.0 Built and tested e (e SO ) e e G
Installed via package manager. Downgraded from

Node.js 18.4.0-516.151 Installed 18.4..0 to 16.15.1 .to evaluate some errors. Both.
versions are running but are having problems with the
electron package.

Electron . Installable via Jode.js package manager, but build

. Pending .
(Node.js) currently fails
MagicMirror Pending Depends on Node.js packages

Table 3. Libraries needed by the Smart Mirror use case.

8.1.1 TensorFlow as the Backend

The desired backend for the eProcessor accelerator is TensorFlow. Starting with the CPU
version for testing purposes, the TensorFlow framework should be exchanged with a
customized version, using the RISC-V architecture specific CPU features, as soon as it is
available. TensorFlow version 2.9.0 has been built in the QEMU SDV by patching external
dependencies where needed. Due to the emulation and usage of only 8 cores of the host
system, which is the hardcoded maximum for QEMU, the building process took up to 15
hours in total. A python3 package has been installed and tested by running an inference
benchmark. C++ libraries of Tensorflow have also been compiled and tested by running an
object recognition inference. The current CPU only version shows poor performance, which
is to be expected as it is running on an emulated environment.

8.1.2 ROS2 as the Middleware

The Smart Mirror framework is divided into functional frontend and backend modules. In
order to use the ROS2 middleware for communication, the backend modules are
implemented as ROS2 nodes. The ROS2 framework has a long list of dependencies,
containing Rosdep and OpenCV among others, and is not officially supporting the RISC-V
architecture in the current stable version “Humble Hawksbill”. Hence, some packages have
to be customized to allow building ROS2 for the given architecture. One obstacle at the
moment is the compilation of the mimick_vendor package, which generates assembler code
for unit testing depending on the CPU architecture. Another problem at the moment is the
compilation of the Qt GUI packages due to dependency issues. The rest of the ROS2
framework has been compiled and installed successfully.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 15



Processor

D3.3 Initial porting of the use cases
8.1.3 Node.js and Dependency Packages

The Smart Mirror software framework uses the MagicMirror project as a frontend.
MagicMirror is based on Node.js and depends on the electron browser for its GUI features.
The desired version of Node.js has already been installed in the QEMU SDV but, at the time
of writing this document, the build of the electron browser fails during the MagicMirror
installation.

8.2 Contents of the Use Case Repository and the System Image

All relevant ROS2 nodes and installation scripts can be found in the repository of the
application use cases, in the folder SmartMirror. The folder contains scripts for installing
all the dependencies and the current software version of the Smart Mirror. Due to missing
dependencies and time constraints, the Smart Mirror is not yet executable, but the contents
of the repository shows the rough structure of the software. The installation scripts automate
the process of installing all the dependencies in the system image, including preparing the
environment, enlarging the image, and installing various packages such as Tensorflow.

The system image contains all the necessary installation to run the tests in the folder
/install-tmp/riscv-install/scripts. TensorFlow and ROS2 have been compiled
and installed within the system image. The built TensorFlow 2.9.0 C and the C++ libraries are
installed in /usr/local/1ib with the corresponding headers in /usr/local/include. A
CMake module for TensorFlow has been installed on the system in order to integrate the
libraries into a CMake build environment. Furthermore, the compiled python 3.9 package of
TensorFlow has been installed via the python package manager. The ROS2 version “Humble
Hawksbill”, compiled without unit testing and Qt GUI, has been installed in the
/opt/ros/humble directory.

The TensorFlow framework can be tested by executing the script test-tensorflow. sh.
Testing the C++ API includes the download, compilation and inference of an object
recognition example based on the “EfficientDet D3” model, provided by the TensorFlow
model zoo and trained on the “COCO 2017” image dataset. In addition, the script tests if the
TensorFlow python module can be imported successfully.

Both the repository of the application use cases and the system image are available in the
B2DROP repository.

9. Porting of the Surveilla nce Border Control Use Case

to the QEMU SDV

The Surveillance Border Control use case consists of using drones flying at a high altitude to
capture and analyze high-resolution images along maritime borders to detect boats, as
illustrated in Figure 4.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 16



Processor

D3.3 Initial porting of the use cases

Figure 4. lllustration of a drone patrolling along a maritime border with boats to be detected.

The target system for the use case is the final version of the eProcessor platform involving
the eProcessor chip connected to an FPGA  -based off -chip CNN (Convoluti onal Neural
Network) accelerator, which is responsible for the execution of the majority of the
computations. For this deliverable, a mobile -scale state-or-the-art CNN topology has been
considered for the initial port on the QEMU SDV. CNNs such as MobileNet-V1° are perfectly
suited for low-power systems relying on software implementations. This deep neural network
was introduced in 2017 with specific features to target embedded applications (new
hyperparameters and types of layers).

The typical way of using CNNs is to train them in a supervised manner on annotated
databases. In this deliverable we have used the MASATIv2’ dataset. MASATI stands for
MAritime S ATellite Imagery dataset and consists of 7,389 images belonging to seven classes
(land, coast, sea, ship, multi, coast-ship, and detail). The dataset was built by annotating
pictures gathered from the Microsoft Bing Maps website. Then these pictures were labeled
using the Labellmg?® tool.

The MASATI dataset can also be used to illustrate boat detection by merging the seven
existing classes into two main classes (S hip and Non-Ship). The Ship class comprises ship,
multi, coast-ship and detail sub-classes, while the Non-S hip class is made of land, coast and
sea sub-classes. This new partition results in a dataset comprising 4157 images for the Ship
class and 3232 images for the Non-Ship class. Figure 5 shows a sample of the MASATIv2
dataset with a ship not far from the coast. Thus, the main class of this sample is “Ship” and
the sub-class in “coast-ship”.

6 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, Hartwig Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications.” CoRR abs/1704.04861 (2017)

7 MAS ATI dataset (v2) - MAritime SATellite Imagery dataset, https://www.iuii.ua.es/datasets/masati/,
Gallego, Antonio-Javier, Antonio Pertusa, and Pablo Gil. 2018. "Automatic Ship Classification from
Optical Aerial Images with Convolutional Neural Networks" Remote Sensing 10, no. 4: 511.
https://doi.org/10.3390/rs 10040511

8 https://github.com/tzutalin/labellmg

This document is Public, and was produced under the eProcessor project (EC contract 956702). 17



Processor

D3.3 Initial porting of the use cases

Figure 5: Example of a picture containing a ship not far from the coast (from MASATIv2
dataset).

9.1 Installed Dependencies and Tests

For the surveillance border control application use case, the N2D2 (Neural Network Design &
Deployment®) open source framework has been used to prototype the implementation. This
tool is a complete Al framework enabling to build embedded applications based on deep
neural networks (DNNs), from the training phase to the deployment on the target, since it is
able to generate native parallel source codes of the supported deep neural networks. For this
deliverable, N2D2 has been used to generate the native C++ source code of the DNN used
for boat detection. The generated source code is already parallelized using OpenMP
pragmas. Figure 6 shows the flow of the source code generation using N2D2.

® https://github.com/CEA-LIST/N2D2

This document is Public, and was produced under the eProcessor project (EC contract 956702). 18



Processor

D3.3 Initial porting of the use cases

MobileNetV1 description

N2D2 .ini

file

OpenMP C++
Parallel C++ code source code of
source generation MobileNetV1

Trained

Training, .
: MobileNetV1

validation & Test

\ 4

Compile & Run
Ship
Non-Ship
eProcessor SW SDV
MASATIv2 dataset
Processor

<) QEMUREC‘

Figure 6. Flow of MobileNetV'1 source code generation using N2D2, including the
application deployment on the QEMU SDV.

An input file describing the CNN (MobileNetV1 for t his particular implementation of the use
case) has been used in the form of a specific .ini file (native file format for N2D2) to perform
the training phase (including validation and test sub -steps). The provided dataset is
MASATIv2 in the form of Ship/Non Ship partition. The most complex version of the
MobileNetV1 network has been chosen, with the “alpha” parameter set to 1.0. An accuracy
of ~95% has been reached on the test dataset. Then, the resulting CNN and its parameters
have been exported using the N 2D2 framework. The CNN export process consists in
generating the C++ source code of the neural network together with quantized weights. For
the purpose of this deliverable, 16-bit integer post-training quantization has been performed
on the trained MobileNetV1 CNN.

The resulting files have been modified to include eProcessor use case specific features, and
then they have been transferred to the QEMU SDV. The source code does not have
dependencies with any external library, and the compilation only requires an appropriate
gcc/g++ compiler with support for OpenMP. A slight modification to the Makefile generated
from N2D2 has been required to change the “ --march” option to a value that is compatible
with the RISC-V toolchain.

The resulting binary application is able to recognize normalized pictures containing boats in

a database or a specific picture provided to it by the “-image” parameter. Figure 7 shows the
execution of the binary on the test dataset on the QEMU SDV.

This document is Public, and was produced under the eProcessor project (EC contract 956702). 19



Processor

D3.3 Initial porting of the use cases

Starting D-Bus System Message Bus...
Starting OpenSSH server daemon...
Starting User Logln Management...
Starting Permit User Sessions...

Started OpenSSH server daemon.

Finished Permit User Sessions.

Started Getty om tityl.

Started Serial Getty on hvco.

Started Serial Getty on ttyse.

Reached target Login Prompts.

Started D-Bus System Message Bus.
Started User Logln Management.

Reached target Multi-User Systenm.
Reached target Graphical Interface.
Starting Record Runlevel Change in UTMP...
Finished Record Runlevel Change in UTMP.

This is eProcessor.unknown_domain (Linux riscvéd 5.7.8) 13:42:
eProcessor legin:
This is eProcessor.unknown_domain (Linux riscvéd 5.7.8) 13:42:

eProcessor login: root
Password:
Last login: Thu Aug 4 13:41:54 -80 2022 on ttyse
root@eProcessor ~ # cd /fhome/eProcessor /BorderSurveillance/
root@eProcessor /home/eProcessor/Bordersurveillance # . /bin/Border_Surveillance
eProcessor project ship detection use case - Survelllance border control application
(Thales RAT contribution to deliverable D3.3)
Based on MoblleNetVl CNM trained on MASATIvVZ database using N2D2 framework
https: //github.com/CEA-LIST/N2D2
**16-blt integer gquantization*+*

File: ./images/NS@1.ppm >
File: ./images/N582.ppm > Prediction: No Ship Detected! Ground 3 Ship Present! |Execution time: 1.9 seconds

Prediction: No Ship Detected! > Ground - Ship Present! |Execution time: seconds

File: ./images/NS@3.ppm => Prediction: No Ship Detected! Ground : Ship Present! |Execution time: 2 seconds
File: ./images/NS04.ppm > Prediction: No Ship Detected! > Ground : Ship Present! |Execution time: 2 seconds
File: ./images/NSO5.ppm : No Ship Detected! Ground = Ship Present! |Execution time: seconds
File: ./images/NS86.ppm : No Ship Detected! Ground : Ship Present! |Execution time: 2 seconds
File: ./images/NSO7.ppm : No Ship Detected! > Ground g Ship Present! | Execution time: 1.9 seconds
File: ./images/NSOB.ppm > Prediction: No Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/S@1.ppm Prediction: Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/582.ppm Prediction: Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/S83.ppm == Prediction: Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/564.ppm => Prediction: Ship Detected! Ground : Ship Present! |Execution time: 2 seconds
File: ./images/505.ppm > Prediction: Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/586.ppm Prediction: Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/S67.ppm s Prediction: Ship Detected! Ground : Ship Present! |Execution time: 1.9 seconds
File: ./images/508.ppm > Prediction: Ship Detected! Ground : Ship Present! | Execution time: 9 seconds

Score: 1080.80%
root@eProcessor /home/eProcessor/BorderSurveillance # l

Figure 7: Execution of the Surveillance Border Control use case on the QEMU SDV.
9.2 Contents of the System Image

Alongside this document we release the binary of the Surveillance Border Control application.
The binary and a set of images for testing can be found in the system image, in the
/opt/BorderSurveillance folder. The system image is available in the B2DROP
repository.

10. Conclusions

This deliverable describes and releases the initial porting of the eProcessor use cases and
microbenchmarks on the eProcessor architecture. The initial porting has been performed on
the two SDVs that are being developed in the project, namely the QEMU SDV and the FPGA
SDV.

On the one hand, the FPGA SDV allows running simple bare-metal applications on the actual
eProcessor core that is being developed in the project. Given the current constraints and
time limitations, we have ported one microbenchmark and we have demonstrated that it can
be successfully executed on the FPGA SDV. After doing this initial porting effort, the next

This document is Public, and was produced under the eProcessor project (EC contract 956702). 20



Processor

D3.3 Initial porting of the use cases

steps are to re-generate all the microbenchmarks, run them in the FPGA SDV, analyze their
performance, and provide feedback to the hardware developers to tune microarchitectural
parameters and guide design decisions.

On the other hand, the QEMU SDV allows emulating a complete system, including a full Linux
OS, libraries and applications. Given the requirements of the application use cases, we have
chosen this SDV to start their porting. At this initial porting stage, we have built a fully
functional system image that contains all the libraries required by the applications, we have
adapted the codes and the compilation scripts of the a  pplication use cases, and we have
been able to successfully run the first tests. The next steps will consist of finishing the porting
of the applications use cases that have only been partially ported, migrating the system image
to the FPGA SDV when it has full system support, running the application use cases on the
FPGA SDV, analyzing their performance, and providing feedback to the hardware developers
to tune microarchitectural parameters and guide design decisions.

The work reported in this deliverable has been performed by the WP3 “Software Applications
Use Cases, Specifications and Evaluation” under Task 3.4 “Profiling, benchmarking, analysis,
and tuning of applications use cases on the emulated RISC -V system”. This deliverable
contributes to the proj  ect milestone MS3 “Single  -core Tapeout: Dissemination and
exploitation reports, Use -case applications, Single -core hardware and software (OS and
tools for FPGA emulation, chip RTL freeze, and verification, FPGA emulation, Tapeout, PCB,
first firmware and BSP release).”. The work performed in this deliverable has been carried out
by the four partners that participate in Task 3.4. In particular, FORTH has contributed the
FPGA and the QEMU SDVs; BSC has contributed the initial porting of the microbenchmarks,
of the HPC use cases, of the Bioinformatics use cases, and of the DeepHealth Toolkit use
case; UNIBI has contributed the initial porting of the Smart Mirror use case; and THALES has
contributed the initial porting of the Surveillance Border Control use case .

Alongside this document, in this deliverable we do a software release of four files:

@® A set of scripts (YAAFRV) that automate the process of setting up and invoking the
QEMU SDV.

@® A system image for the QEMU SDV that contains the operating system, the libraries
required to run the application use cases, and the binaries and inputs of the
application use cases.

@® A snapshot of the repository of the application use cases that contains the source
code of the application use cases.

@® A microbenchmark that can be executed on the FPGA SDV.

The four aforementioned files that accompany this document are uploaded to the B2DROP
repository of BSC, and can be accessed on the following link and password:

@ Link: https://b2drop.bsc.es/index.php/s/KtkNDR jdneGsLbQ
@ Password: 2PCz3fX9yN

This document is Public, and was produced under the eProcessor project (EC contract 956702). 21



	Executive Summary
	Table of Contents
	1. Introduction
	2. QEMU SDV
	3. FPGA SDV
	4. Porting of the Microbenchmarks to the FPGA SDV
	5. Porting of the HPC Use Cases to the QEMU SDV
	5.1 Contents of the Use Case Repository and the System Image

	6. Porting of the Bioinformatics Use Cases to the QEMU SDV
	6.1 Contents of the Use Case Repository and the System Image

	7. Porting of the Deep Health Toolkit Use Case to the QEMU SDV
	7.1 Installed Dependencies and Tests
	7.2 Contents of the Use Case Repository and the System Image

	8. Porting of the Smart Mirror Use Case to the QEMU SDV
	8.1 Installed Dependencies and Tests
	8.1.1 TensorFlow as the Backend
	8.1.2 ROS2 as the Middleware
	8.1.3 Node.js and Dependency Packages

	8.2 Contents of the Use Case Repository and the System Image

	9. Porting of the Surveillance Border Control Use Case to the QEMU SDV
	9.1 Installed Dependencies and Tests
	9.2 Contents of the System Image

	10. Conclusions

