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BACKGROUNABOUT THECOREBROJECT

The intensification of extreme weather events, coastal erosion andesed rise are significant challenges

to be urgently addressed by European coastal cities. The science behind these disruptive phenomena is
complex, and advancing climate resilience uiegs progress in data acquisition, forecasting, and
understanding the potential risks and impacts of rseénario interventions. The Ecosyst&ased
Approach (EBA) supported by smart technologies has potential to increase climate resilience of European
coastal cities; however, it is not yet adequately understood and coordinated at European level.

SCORE is a feyear Efunded project aiming to increase climate resilience in European coastal cities.
SCORE outlines a-creation strategy, developed viayaS i g2 NJ 2F wmn O21 &aGFf OAl{
rapidly, equitably and sustainably enhance coastal city climate resilience through EBAs and sophisticated
digital technologies.

The 10 coastal city living labs involved in the project are: Sligo anihDubland; Barcelona/Vilanova i la
Geltra, Benidorm and Basque Country, Spain; Oeiras, Portugal; kitedsding the coastal area of Marina
di Massa) Italy;Piran Slovenia; Gdansk, Poland; Samsun, Turkey.

SCORE will establish an integrated coastaé znanagement framework for strengthening EBA and smart
coastal city policies, creating European leadership in coastal city climate change adaptation in lthe with

t I NAa ! ANBSYSyiaod LG oAttt LINRPDARS Ayy2 JlofiEBASSo LI |
increase climate resilience, business opportunities and financial sustainability of coastal cities.

The SCORE interdisciplinary team consists of 28 semtting organisations from academia, local
authorities, RPOs, and SMEs encompassing a maitige of skills including environmental science and

policy, climate modelling, citizen and social science, data management, coastal management and
engineering, security and technological aspects of smart sensing research.
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EXECUTIVE SUMMARY

Thisdocumenh & | RSt AGSNIo6fS 2F (GKS {/hw9 LINR2SOGZI To
research and innovation programme under grant agreement No 101003534.

The D3.4, related to Task 3.2 and entitled "User document for the downscaling analysis tooltaahdsda
aWP3deliverable namelya reportdescribing the downscaling procedures and models packegetzined

in thedeliverable D3.3roviding also what necessary for a proper \@aincluding a synthetic description
of the datasets to be produced.

The aim of this deliverable, is to specify in detail the downscaling procedures used in the project, and
developed within WP3, to provide loestale data Such data feedrbanscale modelsenabling project
critical activitiessuch as flood risk analysis (WP evaluation of the effectiveness oBE solutions
(WPT7), the design of sensor netwofks citizenscience activities (WP4), the development of a Digital Twin

of coastal cities (WP8The same data are going to be fpafthe project's data sharing platform (WP5).

LINKVITHOTHERROJEQICTIVITIES

The activities of WP3 and in particular those of Task 3.2 are closely linked to all the otherf Wes
project in @ much more evidentaythan in the diagram in Fig. 1.

In practice, downscaling procedures are one of the main engines of data producti@project.

The locakscale climatological data, produced by thiask, are essential to enable the performance of
several activities including those of WP3 itself, in this case with reference to statistical analysis (task 3.3),
urban flooding models (t&s3.4), coastal erosion models (task 3.5), and testing (task 3.6).

In addition, here are much more direct and obvious relationships with WP4, WP8, and WP7, which

relate not only to the production of the data needed to perform these activities but, fundaatig, very
necessary to define some methodological approaches of these WPs.
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WP11

Ethics requirements

WP10
Coordination and management

Dissemination,
communication,
exploitation

WP9

Figure 1SCORE WPs interaction

SCORE _D3.4L0 761



SCORE - EU H2020 Grant Agreement N® 101003534

TABLE OF CONTENT

1. Introduction
1.1. Scope of this report
1.2. The meaning of downscaling
1.2.1. Dynamic downscaling
1.2.2. Statistical and stochastic downscaling
1.2.3. Methodology to downscale climate information
1.2.4. Downscaling to enable the simulation of uris@ale scenarios

1.3. Climate simulation models for coastal cities

2. Statistical downscaling of atmospheric fields
2.1. Objective
2.2. Introduction to the method
2.3. The neural network downscaling process
2.4. Mapping the surrogate dataset to the projectidataset

2.5. The local downscaling process

3. Downscaling of sea levels
3.1. Model description
3.2. Model implementation
3.2.1. Numerical mesh
3.2.2. Atmospheric forcing and ocean data
3.2.3. Model and simulation setup

3.3. Output data description

4. Downscaling of waves
4.1. Model description
4.2. Model implementation
4.2.1. Numerical mesh
4.2.2. Atmospheric forcing
4.2.3. Model and simulation setup

4.3. Output data description

5. Hydrological downscaling

5.1. Hydrological models as a downscaling tool

SCORE _D8.1_ V0.1

8/61

10
10
11
12
13
14
16
16

19
19
20
23
26
28

30
30
32
33
34
35
35

37
37
39
39
41
41
42

45
45



SCORE - EU HZ2020 Grant Agreement N°® 101003534

5.2. LISFLOOD model
5.2.1. Model overview
5.2.2. Model implementation
5.2.3. Settings file
5.2.4. Input datasets
Meteorological forcing
Static maps
Topography
Land Use maps
Land Use depending maps
Soil hydraulic properties
Channel geometry
Leaf area index
Other data
5.2.5. Outputs

6. Conclusions and recommendation

7. References

SCORE _D3.4LU

9/61

45
46
48
49
50
50
50
51
51
51
53
53
54
54
55

56
58



SCORE - EU H2020 Grant Agreement N° 101003534 AN 2

1. INTRODUCTION
1.1. Scope of this report

¢tKA&d NBLR2NI 50dn b!' aSNI R20dzySyidi F2NJ K&8S5RZFEADOKE A Y
Fylrfeaira G22ta¢zx AG Aa adGNrROGfe NBf{lFIGSR G2 ,aiKS 21
which it is not only a descriptive part, bot which it isalso a technicascientific one.

The report describes the tools thrgh which locakcale climate data are produced starting from: 1) climate

data provided by global and regional scale climate models; 2) geographical knowledge of the territory
through the combination oflocal specificities (orography, coastline, land usks.)eand the collected
observational data.

In practice, the concept of downscaling that we use in SCORE is not only to produce local scale data that may
be of interest in their own right, but also to enable the creation of new downstream models (urban scal
models) that are crucial, for example, for flood mapping and the study of adaptation solutions.

As far as the links with the other WPs of the project are concerned, these became even more important than
initially foreseen in the DoW document

Work Packge @ Interactions

WP1 Knowledge on past extreme climate data is essential to compare with the cli
change scenarios produced by th@sk, as well as to validate dynamic models
using them to reproduce past situations

WP2 The interest in the data produced by thiask is central to the activities of th
CCLLs
WP3 The data produced by the tools in thisask enable other downstrear

services/models, and in particular the hydraulic and kaed interaction models
used for urba-scale floodingTask 3.4) and also the losigrm coastal evolution
models Task 3.5)

WP4 The design of the lowost sensor network and citizen science activities
strongly connected with the need to improve the spatial representativeness o
data,and therefore WP3 and WP4 are naturally complementary

WP5 The data produced by WP3 and from thesk in particular, especially the tirr
series of climate projection data, are among the main sources of data produ
for the entire project

WP6 Data praluced by WP3 are fundamental for risk estimations

WP7 Data produced by WP3 are needed to design AiidSselect EBAS

~X SCORE _D3.4LY 1061
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WPS8 Data produced by WP3 are a fundamental component to drive the models us
the DT
WP9 WP3 models and models definedTiask WP3.2 must be disseminated not only

a scientific audiencéjut as welltransferred to the various contexts also throug
specfic training activitiesvhich involve norscientists

In this report we will attempt to describe the characteristics of the models used for the creatatiré
series of data necessary for the implementation of project activities in coastal cities.

Coastal cities have specificities compared to therounding natural coastaérritory: being located on the
sea, they are the parts of the territory perhaipswhich humans residents aneost susceptible to the effects
of climate change, also due to the efts ofSea Level Ris8I(R

This requires that the data of greatest interest include marine data, alongside traditional meteorological and
hydrological data, as they are needed to estimate, for example, the effects of storm surges, extreme sea
levels, or coastal erosion.

The data covered by this report are therefore:

1 wave dataused for various applications, such as estimatinguprextremes or calculating coastal
morphodynamics;

1 sea level dataused for estimating storm surge effects and irtetions with urban hydraulics;

1 hydrological data such as flow rates and leviilat are needed for urban flooding models but also
to improve understanding on the effects dBA&S solutions;

1 meteorological dataneeded to force other models, for example,dive a more correct distribution
of the rainfall input to hydrological models.

Each of these datasets requires to be produced with tools, mainly models, different from each other. In the
following, we will describe them, keeping in mind the relevancéefgdresent task within the project.

1.2. The meaning of downscaling

A common need for all project components is to have data available at the local scale, namely the urban
scale, to assess the lotgrm consequences of climate change on coastal citiessdhece data, described

in deliverables D3.1 and D3.2 of the WFask 3, component of the project, are climate models, either at

a global or regional scale.

There is a large gap between the data that are produced from Global Climate Models (GCMiesothtaon
that can be on the order of 0.5° or 0.25° i.e. on the order 66@%m at midlatitudes, or-when available
from regional climate models (RCM), with a resolution that typically goes as low as(1f2%. on the
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order of 1012 km at midatitudes, and the need for local (urban) scale data for the various nesdthé
order of hundreds or tens of meters).

Downscaling means taking information at large scales to infer effects at local scales. Thus, to take for example
weather forecastinga common practice is to use data from a global forecasting model (such as those
produced by forecastingentressuch as ECMEF or NCEP), to make forecasts at the regionallandiscale.

Thus, with reference to climate projections, downscaling of climabelels is an attempt to bridge the gap
between global and local effects through techniques or models that take into account local specificities, and
that are able to simulate locally the effects induced by the processes predicted bystaigeclimate mods.

In general, climate information from global or regional climate models has a low resolution, for which an
entire region can be represented by only a few grid cells. Each cell represents a single value, which may be
representative of an area that, foxample, is 104150 kn? (in the case of a regional model with-1@ kn¥
resolution). A key issue why downscaling is necessarthat global climate models do not adequately
account for variations in vegetation, complex topography and coastlines, \ahiare important aspects of

the physical response governing the regional/local climate change signal.

The modeling of the effect of a changing climate at local scale examines relatively small areas down to a few
square kilometes in detail, that isttamuchhigher resolution thamenerallyoffered by global climate model
simulations. Such information supports analyses regarding the impact of climate change, and the assessment
and planning of adaptation strategies thare vital in many vulnerable regions dfie world, which,
undoubtedly, include coastal cities.

Normally, there are two general strategies for downscaling:

1 dynamic downscaling uses sudgional scale models with high spatial resolution (on the order of a
few km) over a limited area, and is fedthy largescale conditions of a GCM or RCM.

9 statistical downscaling is the method by which statistical relationships are derived between observed
smallscale variables (often at the weather station level) and lasgpale variables (GCM or RCM).
The predited values of largscale variables obtained from GCM projections of future climate are
then used to drive statistical relationships and thus estimate satalle details athe future climate.

Both methods have advantages and disadvantages.

1.2.1. Dynamic dowascaling

Dynamical downscaling is based on numerical models that solve a set of discretized equations which
reproduce a set of mathematical equations describing the temporal evolution of the phenomena under
investigation. For example, in the case of atmospherienarine circulation, models solve the primitive
equations of motion that represent the temporal evolution of fundamental variables such as velocity,
temperature, pressure, density, etc. Dynamic downscaling has the great advantage of providing data in a way
that can be considered physically consistent. This means that the equations governing the evolution of the
atmosphere or the sea, are solved in a finer grid in which the representation of certain physical features (e.qg.,
details of orography, land use, ifine, etc.) is much more detailed than in the parent model. For the sake
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of clarity, it is important to specify that on the basis of the scale of the main modelled processes, different
simplifications/approximations can be applied to the governing equmsti

The largescale model data are used, normally, as initial conditions and boundary conditions fesdatzal
models. The largscale variables used as initial and boundary conditions are normally interpolated onto the
higherresolution grid, and the wdel "fits" the solution of the equations into the new domgéfiter a certain
period required to activate the finescale dynamics.

This adaptation period (often referred to as spip) varies greatly from model to model. Models that quickly
lose memory dinitial conditions are, for example, atmospheric models, where the-gpitime is usually
short (612 h). Wave prediction models have similarly small-sipitimes.

In contrast, models in which it is necessary to extend the-spitime are, for examplemarine circulation
models describing baroclinic processes and thermohaline effects, in which several dynamics only come into
effect after many time steps. In general, few days are required to completely activate surface dynamics, while
deep circulation gnamics, related to the distribution of water masses within the oceans, need very long
times, even on the order of several years.

Hydrological models, to simulate processes related to infiltration andssutace runoff, also require long
timescales.

The main disadvantage of dynamic downscaling is the computational cost. The finer the grid, the larger the
computational cost, due to constraints related to the integration time step (e.g., stability conditions). This
condition means that computation at venné resolutions and over very large areas is impractical even for
the best performing computational machines.

Another aspect to consider is that the resolution ratio between the "parent” model and the "child" model
should never be too high. Many dynamic netgltypically use a ratio of 1:3 or 1.5, seldom higher, which is
not recommended in any case. This constraint significantly affects the dynamic downscaling methodology if
the goal is, for example, to provide loeadale data, where the required loesdaleresolutions are very high.

Assume that we intend, for example, to get climate data at an wdzzate resolution of a few tens of meters
(e.g., 100 m). Moving from a RCM, which has a resolution of the order of 12 km, to such very high resolution
would regure at least 3 consecutive models nested into each other, e.g., maintaining a 1:5 ratio of parent
model resolution to child model resolutidfrom 12 km to 2.5 km; from 2.5 km to 500 m; from 500 m to 100

m), which is very challenging because each modsinailtaneously "child" of a less resolved model and
"parent' of a more "resolved" model. This telescoping approach to nesting is not practical for most uses.

To overcome this complication, the use of unstructured mesh numerical methods is normally eetiveff
because it allows for high resolution only where it is strictly necessary (in our case, near coastal cities, or at
any specific area of interest), while also simplifying procedurally the implementation of downscaling.

1.2.2. Statistical and stochastic dmscaling

Statistical and stochastic downscaling methods have very often been proposed to avoid the complications
associated with the use of dynamic models. In the first case, a statistical link is established between large
scale variables (called predict) and those that one wishes to describe at a local scale (called predigtands)
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in order to produce higiesolution realisations of the latter. Essential for statistical downscaling is the
availability of local observations (i.e. meteorological, hydraalgimarine data). The results of statistical
downscaling improve with higher quality and duratiortloé observed historical data. Having good data for

a particular weather or marine station, enables to downscale the climate model for that particulavivtgse

point. At the same time, having a good gridded data set locally available (i.e. from a hindcast model), does
permit downscaling on that grid. Then, for statistical downscaling, a statistical relationship is developed
between the observed historicalimate data and the climate model output for the same historical period.
This relationship is used to develop future climate data.

Stochastic downscaling methods, although they can reproduce time series of data at a given point, cannot
be considered as sshbtutes forphysicallybased regional models (i.e., dynamic downscaling). Instead, they
are a way to introduce variability in precipitation fields at scales not resolved in global or regional models.

Among the statisticalstochastic method, the applicatbn of Artificial Intelligence (Al) methods for
downscaling has become more and more important. In particular, a new generation of Al methods are gaining
more attention due to better training compared to older generations, including Deep Learnin@grfBL)
Gonvolutional Neural Network (CNN) methods

1.2.3. Methodology to dwnscaé climate information

The downscaling procedure can be applied to different typologies of datakelsed it is possible to
downscale operational forecast data, reanalysis and climate information (Benestad, 2016).

Concerning the downscaling of climate scenarios (or projections, IPCC, 2013), it is important to evaluate how
much we can trust the results from the RCM model that downscaled the GCM that producpdrtioelar
scenario.

Hindcast simulations take initiahd boundary conditions from a reanalysis. The reanalysis is produced by a
data assimilation system which ingests many kinds of observatlmtsare representative of the true
atmospheric state. As a consequenttee RCM maintains the temporal correlatiarith what is observed in
nature (e.g,extreme events).

In case initial and boundary conditions are taken by a GCM without data assimilation we are considering a
historical simulation. This kind of simulation is used to have information about the iniemdmtween GCM

and RCM, but the synchronization witke observed climate is lost. However, the importance lies in the fact
that the boundary conditions for the downscaling of climate scenarios can be taken from the same GCM.

For the purposes of the proj¢ we need to downscale the wave climate, the sea level, and the rainfall rate.
The simulation of these variables requires the data provided by a RCM. More specifically, for the adopted
approach the following variables are needed:

- for waves, surface wind peed forU (eastwarddirection) and V (northward directior) components
(uas vas),

- for sea levelsurface wind speed fdJ andV components (as vas), mean sea level pressunes|;

- for rainfall rate precipitation r).

SCORE _D3.4LY 1461



SCORE - EUHZ2020 Grant Agreement N® 101003534

Rainfall rate is then used in thgydrological model, applied to a specific river basin, to determine the flow
rate at a closure section of the river.

A sketch of the modelling chain is reported in Figure 1.1.

=

Atmospheric model o
(atmospheric circulation at regional scale) g
e N
2 (task
Hydrological Sea level model W 3ol 2 WwWP32)
model (effect of winds, (from wa;r‘vl;snl;z)v;ng on ‘g
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Figure 1.1Sketch of the modelling chain employed to downscale climate dat@ the urban scale.

In our casewe opted for the ALADIN 63 RCM (Coppola et al., 2021; Vaetaid 2021) employed in the
EUROCORDEX project (Jacob et al., 2014), which is the European branch of the CORDEX project and is aime
at the production of downscaled simulation of GCM from the Coupled Model Intercomparison Project Phase

5 (CMIP5, Taylaat al., 2012). The reason foritftthoice was principally due to the availability of the physical
variables needed to simulate waypgoperties sea water level and rainfall rate, at a sufficilgnemporal
frequency, that is 3 hourd\lsobecause ALADIN &8the same RCM used to produce historical (12605),

evaluation (1972019) and scenario (20a8L00) runs.

Furthermore, the RCMs related to the EUROCORDEX project are run on a geographical domain containing all
the CCLdof the project (Figure 1.2).

Ou strategy to downscale climate data is indeed to simulate, vpawperties water levels and rainfall rase

- an evaluation run to validate the models employed for the downscaling, by comparing modelled
results to observations;

- a historical run to be compad to the evaluation run from a statistical point of view. Since we are
particularly interested in extreme events, we evaluate the degree of similarity between the extreme
value distribution from the evaluation and historical f@womputed for the same ference period;

- two runs associated with the RCP4.5 and RCP8.5 scenarios.

The evaluation run is based on the modelling chainnBRARIM (Dee et al., 2011), ALADIN/®reas the
historical and scenario runs are based on the modelling chain GBIRBA(Voldire et al., 2013), ALADIN 63.
The resolution of the ALADIN 63 model is 0.11° (roughly 10 km at mid latitudes).
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Figure 1.2Extension of the EUROCORDEX domain.

1.2.4. Downscaling to enable the simulation of urbarale scenarios

Within the project, athorough discussion took place to decide which methods should be applied to
downscale climate fields.

The discussion took place at two levels:
1) afirst level can be defined as usgiented, i.e. it relates to the use of the data for specific applicatjon

2) a second level concerns the analysis of methods in relation to the need to produce data according to
specifications that are sufficiently staté-the-art, but at the same time sustainable with regard to their
concrete application witim the projecttimeframe and the available human and computing resources.

Figure 11 clarifies the approach used in SCORE for downscaling. Rather than being concerned only with
having more resolved physical fields for certain variables of intgif@stgoal is to enabla series of detailed
models, at local and urban scales, to describe flooding phenomena, as well as possible risk reduction and
adaptation strategies.

Another need is to have locatale data available for the simulation of lelegm dynamics, such as coakt
erosion/progradation.The availability of atmospheric data downscaled at regional scale from various
initiatives, such as EUROCORDEX and MEDCORDEX, allows us to directly use them as dormsgfaric

the abovementioned modelsThis availability bdata from regionabkcale models was considered sufficient

to describe, albeit in an approximate manner, even in light of recent scientific literature in the field, the
atmospheridorcingthat drives wave and sea level modelling.

1.3. Climatesimulation models for coastal cities

In climate projections, whether on a global, regional or local scale, models certainly play the most important
role. However, it is also important to have observations, so as to have a dataset of observed data that is
representative of both temporal variability and lotgyrm trends, and preferably distributed over several
points in the territory representative of different exposures, orographic conditions, etc. The role of the
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observations in the models: 1) to validée and calibrate the calculation models at least as far as the
historical part is concerned; 2) to train artificial intelligence algorithms; 3) to estimate rnueehal
parameters, which may also be carried out by means of assimilation techniquesalengnKiltering).

The choice of models to be used for the project focused mainly on open source models, possibly community
models, because the development of these models goes on over the years and transparently incorporates all
the updating efforts made Y a large scientific community8condly, it is important that at the level of
individual coastal communities these models can be disseminated and used by local users, technicians and
scientists, with a nomxaggeratedly specialised background, also trams@l through specific training
activities and can be used without additional costs.

In terms of modelling choices, another general preference was given to models that provide greater flexibility
of use by avoiding the use of nesting techniques. In pddicespecially for marine models, the adoption of
unstructured mesh models was preferred. This is because the aim of the project is not to build climate
services on uniform grids, or with a uniform level of output, but to focus on specific coastaliaresdgr to

build tools that guarantee the provision of highly detailed data for those areasossibly maintain a
certain easiness to replicate/adapt procedures and exportability of the methods adopted to other contexts.

The ten Coastal City Livingbkathat are part of the SCORE project have different capacities and skills in
reference to climate modelling.

CCLLs that have been chosen as frontrunners for &3
Massa(ltaly)
Province of Barcelong&pain
Oarsoaldea (Spain)
Alicante (Spain)
Samsun (Turkey)

The implementation of downscaling models in coastal cities can be accompanied by some problems that will
become clear later.

For marine models, problems concerning physics of wave formation and propagation or sea level changes
require defning the model over areas normally large enough to collect all possible contributions from energy
or mass propagation over long distances (normally this distance is referred to as fetch). For coastal cities
placed in semenclosed seas such as the Meditrean, the Black Sea, the Baltic Sea, this does not pose
particular problemsbut doesrequire some care in defining the computational model.

Conversely, for cities facing the Atlantic Ocean, this approach requires much greater attention in identifying
possible contributions related to wave energy and storm surge formation at a given point.

Hydrologicmodellingalso has issues that need to be properly addressed. Indeed, there is great variability in
the size ofthe hydrologic basins and their characteristi®Vhile for very large basins the representation of
rainfall and atmospheric variables from GCMs or RCMs can be considered adequate, the same cannot be said
for smaller basins that would require a much finer representation of rainfall. Dynamic downsohting
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atmospheric component is not carried out by theoject, due mainly to limitations of budget and timing.
However, a procedure based on Al algorithms is described to achievestataldownscaling of rainfall data.

As for the CCLLs followers, otite wave and sea level related components will be simulated by the core
team, but support, assistance and technical trainfryv to effectively make use of the methodologies
described in this reporis planned.
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2. STATISTICAL DOWNSCALING
ATMOSPHERICIEES

2.1.0Objective

As we know from the SCORE D3.1 and D3.2, a number of datasets exist for atmospheric projections up to the
year 2100, that are available over the SCORE target geographical domain, i.e. tideHiteoranean area,
physically downscaled from global project®oand providing horizontal (i.e. ground) spatial resolution up to
about 12km and temporal intervals up to 3h. It is worth to note that the spatial resolution is thearal

unit set,once the model is physically ruwhile the temporal interval islepending onthe averaged and

stored outputs, with the run timesteps always much shorter than this (roughly more than two order of
magnitudes shorter).

A 3h temporal resolution can be generally considered acceptable foith®logical modelling of the SCORE
coastal city basins, according to their response tim¢hprecipitation events. Maybe, foa few smaller
basins, with a faster response time, a 1h resolution could make soomenegligible differences on
hydrological nedelling and consequently on hydrological projections, wimcBCORIE the main application

of the precipitation projections and of the other atmospheric parameter ones. Anyway we assume this to be
not critical for hydrological projections and we adoptt@mporal resolution as suitable for any SCORE basins,
thus not setting up any temporal downscaling strategy.

For what concerns the horizontal spatial resolutid@ km can be instead critical for a number of SCORE
hydrological basins, being their dimensias large as few model ground pixels. This can mean that some
model pixels can belong only partially to the basin and that they can average on sub pixel orographic and
maybe precipitation inhomogeneds introducing non-negligible systematic errors onydirological
projections. In addition running a model at 12 km horizontal resolution means that any phenomenon
happening at a smaller scale cannot be physically represented. This for instance typically happens with
convective precipitation, that in some @ssis not negligible or more often even dominant, so that it is
necessary to model it through statistical empirical schemes, that use some model atmospheric features (at
the available coarse resolution) to infer how much convective precipitation shoulgterated within any

model ground pixels. This isn@n-trivial way to account fonon-negligible sukpixel (i.e. model sugrid)
phenomena, that anyway can bring relevant errors. This typically happens in operational forecasts, and
motivates the effort ofunning higher resolution models, nested in lower resolution ones, from global models
to regional ones. Focusing on precipitation, the final objective is to be more reliable in precipitation intensity
forecasts, increasing also the precision on whereahdn it will happen. When dealing with projections, if

you think about precipitations (buhis similarly holds for other parameterghe scheme approximations

and related errors propagate also in the statistical distributions, so that the result of aaumg should be

to improve the phenomena description in order to have more reliable statistics. In addition we would have
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statistical information on smaller pixels, improving the geographical details for the benefit of the hydrological
modelling.

Similare 2 GKS | F2NBYSYGA2ySR 2LISNFGA2Y I f I LILINR I OK X
nesting a state of the art atmospheric model into the available better projection data, and running such a
model chain for the whole projection range. TheoretigdHis is the more correct approach, but it can be

very time consuming and computing demanding. In addjtthare are a number of issues that have to be
carefullyaddressedind verified to assure that the new projections are reliable and coherent withdheser

model they start fromincluding the need to care about the proper evolution of the greenhouse dges®s

the reference to thenested moded. In sum several aforementioned approaches avatside the SCORE

project objectives and constraints, asaily stated also in the project proposal.

In order to cope with the spatial resolution problem, especially thinking to the basins where it can be more
critical, we have then designed a statistical approach for the downscaling, that makes INeuoddNetwork
(NN)approach, aimed at connecting coarse resolution projections to higher resolution grid data, according
to a climatological dataset available at the target (i.e. higher) resolution. This approacthehasn-
secondary benefito be similarly appéd to generate also local downscaling, i.e. to produce scenarios of local
measurements in a given point, according to a climatological dataset of in situ measurements. In the SCORE
framework it means that we can generate projections editol measuremert in the coastal cities, applicable

for instance to urban hydraulic modelling for digital twin applications.

2.2.Introduction to the method

In order to downscale a projection dataset with a statistical approach, it is mandatory to own a reference
dataset forthe study domain at the target spatial resolution (ithe one we want at the end of the process).

It is necessary that both (the projection and the reference) datasets have a subset belonging to a temporal
range exhibiting the same climatological feasr It is also necessary that both subsets extend for a
climatologically significant period. Howeyéris neither necessary that these two subsets refer to the same
temporal range nor that they share any temporal overlapping.

In our test casgthe projedion dataset has been the MeGORDEXRUti et al., 2022), a regional model
centred in the Mediterranean basin. Depending on the forcing present in the model, we can divide the
dataset in historical run (no forcing), evaluation run (measurement forcing)pamdction runs (radiative
forcing according to given development scenarios).

The subset exploited for tuning the downscaling process is from the historical mode, i.e. the model freely run
but for the past (commonly used to verify the consistency betwienreproduced statistics and the real
atmosphere). Normally projections are available for different emission forcing scenarios, according to
possible future (unknown) development scenarios associated to greenhouse gases concentration etc., while
the histaical subset is only one, according to the past (known) atmospheric and other environmental
features. Note that in some datasets (including the one we used) we can find data referring to a number of
past yearsbut run and archived as projections (thiscolurse happens always but not only for data generated

in projects concluded several years ago)this casewe will consider, use and also refer to such data (in the
atmospheric downscaling part of this document) as belonging to the historical mode, even if nominally
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archived in the projection part of the dataset (paying attention to the adopted radiativenigrthat has to
be close to what we know it really was).

Goncerring these historical data, only the statistics between the model and the real atmosphere can be
compared for consistency, not single phenomena, in fact such historical mode is nevemosjsexh with
Nature, e.g. through some direct or indirect assimilation process of real measurements. It means that,
differently from models run for operational forecasts, the historical mode (exactly as the projection mode)
does not simulate different phemmena in the right place at the right time, but, after a long enough period,

it generates aet ofstatisticsfor phenomena consistent with the real one.

For the same past perigthere is also a so called evaluation mode, which, differently ftwerhistorical one,

is continuously forced by reanalyses products (that include observations from global measurement
networks),thusforced to be synchronised to Nature as much as possible (useful to evaluate for instance the
consistency of the model physics). Thiede is not used in our spatial downscaling, because we expect a
greater similarity in the behaviour between the historigabjection couple with respect to the evaluation
projection one, due to the presence of the forcing process in the evaluation nieaiehas no counterpart

in the projection phase. Anywawe will see later that the evaluation mode turns out to be very useful for
the local projections as defined in the previous paragraph.

It is worth to note that several other projection datasets havelogous historical and evaluation modes, so
that the samerepeated approach we are going tase andexplain is applicable to the most advanced
climatological projection datasets.

For what concerns the reference dataset, we have used a dataset gendésated9years run of the Moloch

model (Capecchi et al., 2022) run at 2.5 km of horizontal spatial resolution over a domain as large as the
Italian peninsula. Such a run has been continuously forced with ERAS reanalyses data, implemented through
a nested donain configuration based on limitearea numerical weather models (BOLAM/MOLOCH). The
study region is situated in the NoHWestern Mediterranean Sea, in particular centred in Massa, Italy, and
AL yYyAy3a o0SliemdsSyioy amcd 91 ignyRe dodd oy activitgpwelbconsidered a subset

of the last 12 years.

The projection dataset, or more precisely its historical mode subset, and the reference one are not directly
comparable, because of their different resoluti@and moreover due to the lackir@f any synchronisation.
CNRBY (KS NBFTSNBYyOS RIGlIaSi ¢S KI @S GKSy 3ISYySNI (SR
projection dataset, with an upscaling procedure, applying a simple averaging process. Obviously the
surrogate dataset results piectly synchronised with the reference dataset and available for the same
temporal and spatial domains. At the same time we expect that the surrogate dataset and the projection
historicatmode subset should be statistically comparable, apart from somterdiices given by the
differences in the two models, including the fact that the surrogate dataset was generated by a higher
resolution model, capable to explicitly simulate smaller scale phenomena with respect to the projection one.
Now we have two datads, the reference and the surrogate ones, perfectly synchronised and overlapping,
but at different spatial resolution, so perfectly usable to trairNaural Network(NN) procedure for
downscaling from the surrogate resolution (equal to the projection doahe reference resolutionThen

we haveidentified two other datasets, the surrogate and the projection historicabde subset ones, at the

same resolution and available for a period of constant climatology (as assumed at the beginning), that are
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expectal to have comparable statistics, but with some foreseen differences that have to be matched by
means of some proper transformation procedufégure 2.1 shows the synthesis of the downscaling method.

4 )
Initial datasets
(inputs)

Historical dataset Reference dataset
(from projection dataset)

Dataset Upscaling for generating the

Surrogate dataset

Neural Network Training and Validation
(on perfectly corresponding data)

Downscaling relationships

v

Probability matching

-

= Mapping relationships between
distribution functions

Downscaling procedure

(for Historical/Projection data) Final dataset
= Mapping distributions + (output)
NN downscaling T )

Figure 2.1Synthesis of the statistical downscalistgps From top to bottom: generation of a surrogate dataset from the upscaling
of a high resolution dataset (climatologically significant); building a specific downscaling NN (more complex step)iagdtttain
match the two perfectly corresponding exencesurrogate datasets; match surrogate and projection (historical mode) datasets

having the same resolution; apply the whole downscaling process (map values from mapped distributions, then use the NN
relationships) to the projection dataset (for thetfwe scenarios).
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2.3.TheNeuralNetwork downscaling process

Statistical downscaling uses largeale information (predictor) to build relationships to a local weather
variable (predictand). There are many statistical approaches that can be used to bridgg thetgyeen the

scale needed for a local prediction and the regional scale, for example reconstructing the time series of the
variable at low scale (regression methods) or generating possible event in function of weather type index
(weather type approache)r using stochastic generator, like random Markov chain (stochastic weather
generators). Choosing between one method or anottiependsstrictly on the nature and the quantity of

the data in the dataset availabl&he nature of the dataset and themporal short range of our time series,

for example, makeit impossible to use weather type or stochastic weather generatdhais in this work

we consider the first approach and train a NN to find a relationship between the two different spatial scales

TheNN, more specifically in our case a CMBis to find a local relationship between the predictor and the
predictand directly from the data. The input is a tensor containing information about the predictor value in
a pixel, eventually its neighbours émlso spatial information like orography and land cover (Copernicus
Land Monitoring Service, 2018passociated to the surrogate dataset. From these data the NN should predict
the value of the highresolution pixels in the reference data that are geqar&ally close to theentre of

each lowresolution pixel of the surrogate dat&onsidering the spatitemporal correlation that exists
between the atmospheric variables, we built a NN with layers that can properly capture the spatasand
temporal dgoendencies.

The architecture that have been adopted (see Figurel&b2land Table 2.1 for technicdetailg can be
summarizel as:

- a Convolutional layeQonv2d, to capture the spatial relationship between the neatpixels and to
map a largescalelatent space;

- a layer with recurrent gateGRU), to catchsome temporal dependencies and temporal patterns in
the largescale latent spageprocessing temporally closest data (here three time steps)

- afully connected layet(nb, to map the spatidemporal representation of the large scale predictor
in the small scale predicted variable;

- alast layerieanl), that generates thdinal data at the reference resolutidnom the LinL output.

From the surrogate data we create a collection of surrogatges withdimensionm - stacking the surrogate
predictorsand the spatial information of the surrogate data (latitude and longitud®)d temporal window

w. For every pixel of the surrogate data, the NN reconstragiixels of theresolution of thereference data

In the reconstruction of the complete image of the reference data, we can have some overlapping, because
two or more pixels of the surrogate data predict the same pixel of the reference data. In such cases the final
image can be generatag-averaging the overlapsn order to force the NN to predict the same values at the
same pixel starting from different pixels of the surrogate data, we include the generation of the image in the
learning processnamelywe generate the downscaled image with a weighted average, where the weights
are stored in the MeanL and learned in the training phase. The optimization of the NN is done #ithsa L
(squared error loss, i.e. squared difference between a prediction lamad¢tual value) over thealues of the

pixels of the image generated by the prediction of the net eodesponding values of thiteue image of the
reference dataset.
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The NN learning process was achieved using 9 years of data as training set (from 2008 tocluded),

while the last available 3 years (2017, 2018 and 2019) were used as test set, i.e. to quantify the learning
precision over data that the NN had never seen before. In Figure 2.3 some examples of output for different
atmospheric variables arshown, where predicted means downscaled by thelddlled process.
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Figure 2.2Top panelfor every time(t, ..., t=w), we extract from the surrogate images (hyaingle pixelvith its nearesneighbours

to create the inpuf the Conv2d layer (2 tensor of size: (m, 3, 3). As output (3) we obtain a vector of size: (Cout, hetg, @out
represensthe number of channel outpstof Conv2d. We stack together this output (4) to obtain the GRU input, with size (Cout, w,
1), that gives us the hidderpresentation (5) of the variables in surrogate pixels. The estimation of the value at the small sisale (6)
done combining this hidden state with a State ved®ithat contains the spatial information of the reference data with the last LinL
layer. his layer gives as output a vector that can be thought as the neighbours of the surrogatBgitazh paneifor reconstructng

the finalimage (8), we repeat ththe top panelprocedurefor all pixels thenwe combine the outputs (A)singthe weights storedin
MeanL.
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m n Cout size 2lze
GRU Lint
value |#p +2 |100 32 64 100

Table 2.1Hyperparameter of the NN used in the examples showed below. #p indicates the number of predictors chosen.

Surrogate | Reference | Predicted | Parameters

Precipitation (kg/m?)

Pressure (Pa)
at ground|

Relative humidity
(%)
at ground level

Temperature (K)
atground level

wind (m/s)
U component
at 10m

wind (m/s)
V component
at 10m

Figure 2.3 Examples of downscaled (i.qredicted) atmospheric parameters with respect to the reference sotiey should
reproduce from the surrogate low resolution dataset. These are validation exanitplesans thatthese data were not used in the
training phaseof the NN
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2.4.Mapping the surgate dataset to the projection
dataset

Figure 2.4showsa comparison between the statistical distributions of the surrogate dataset and the
projection pastsubset previously referred t@ashistorical). We can see that there are clear shape similarities
but alsovery relevantifferencesattimes (e.g. in the precipitation extreme values or in the RH higher values).
Thisis not surprising because the surrogate datasanigpscaling of a model result, run at higher resolution,
so resolving physical phemena schematised in the projection model.
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Figure 2.4 Comparison between statistical distributions of the surrogate databtilgch) with the projection passubset one
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It is apparent that is necessary to match these statisfiege want toapplythe NN downscaling relationships
(trained on the couple surrogateeference datd to the projections Now, we can proceed with the
Probability Matching (PM) method, mapping Cumulative Distribution FunctiGid"s to each other,
through a stepby-step numerical integration process. In fact, given two CDF's on a closed intér{@l,
"Q(w), we can find anappingaibadd) such that the pointsoformerly distributed with CDFL(w), will now
have distribution"@(c). In other words, given some data distributed in a certain manner, we can find a
transformation that, when applied to our datawill resultin data distributed according to another (given)
distribution (see for instance Rosenfeld et al., 1993).

As an example for precipitation, it can be mathematically expressed by:

B, Pa
f Dsdpszj‘ thph
P, P,

In this way we map any value of precipitation in the surrogate datgsgtn( a corresponding one in the
historical datasetf,) according to the cumulative distribution function (seen as a cumulative probability
function). The relationship gives the numerical functpto pass from one distribution to the other. Note
that the h functions is always found, even if the variables are completetprrelated (see Figure 2.5or
totally independent variableshis deliverscompletely nonsense resultashen we use the method to force
the retrieval of a relationshipOn the contrary itturns out to be a powerful property when dealing with
variables that we knovweforehand arecorrelated froma statistical point of view swch as our atmospheric
parameters from norsynchronised modelis the surrogate and historical datasets.

a) R=-0.072 b) R=0.996
lm 1:||||||||||||.|||JJ
e " Pat 7, i : -
0.8 - ; Ry “a B e ] 0.8 [ =
06K =" "3 o08F 3
;_, :nnnnu :: n“n E : : j
LA e Pa = 2 - - |
0.4 =% _g %2 ;:_i= " 0.4 | f.’
fe 0 we, s ] -
02 = fa <, gesd 02
Lt e L E e -
E' _"ll|.|.5||n|||u|“u||-||“|.u|||_ L ' NN N 1
0 02 04 06 0.8

—

0 02 04 06 0.8 1
X X

Figure2.5. Left panel: (X,Y) couplésat are randomly generated. Right pangobability matchingmethod applied to the couples
of the left panelwith the assumptiorthey are statistically correlated. Thmesultingrelationship isepresentedby thedotted line. In
this caseas expecteddots arevery close to the bisector line, being X and Y generatedtlywith the same random procesthus
with the same distributions.
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2.5.The local downscaling process

In order to be able to generate projections flwcal atmospheric parameters, as measured by a local
meteorological station (i.e. in a single, theoretically dimensionless, point), we have now developed two
algorithmic tools, the NN and the PM ones, than can turn out to be useful for our purpose. Bath &me
capable to address the problem, even if the two methodologies are conceptually very different and the
accuracy of the results are expected to be different accordingly.

The first one is the NN approach. In this case we can use the same NN staegaribed above, developed

for connecting two different resolution datasets (the reference and the surrogate ones), that in the training
phase had the property to be perfectly coherent, both spatially and temporally (being the surrogate dataset
just thespatial upscaling of the reference one). Hahe most coherent (i.e. synchronised) datasets that we

can have are a time series of past measurements from a given meteorological station (the ones that we want
to produce the projection in the future), thdtecomes our reference data, and the evaluation subset of the
projection dataset, provided that they have a significant temporal overlapping. We remind that, differently
from the historical dataset, any evaluation dataset is obtained running a climatologicke! in the past, but

forced by external data (including systematic global measurements), aimed at reproducing as much as
possible the real sequence of atmospheric events with the correct timing. Thus, in this case they can be used
instead of the surrogte dataset for training the NN against the meteo station data. Of course, after the
training, we expect much greater differences between the NN predictions and the reference data (i.e. the
meteo station time series), than for the couple surrogatéerene datasets of the spatial downscaling
process. Note that a subset of -30% of the whole available overlapping data will be kept out from the NN
training to be properly used for validation objectives. In this ctse NN will be simplified by the fact tha

we are not downscaling a map, but we are connecting some model data to spatially dimensionless
measurements. In sum we will train the NN to connect the values of the model grid point containing the
coordinates of our meteo station, with the station measments. More precisely we will use not only such
model grid point, but also its nearest neighbours, exactly as done for the spatial downscaling. The process
will be however simplified, in fact there will be neither more final map reconstruction (witieketd weights

for the overlapping pixels), nor need to match statistical distributions through the PM method, because here
we do not use any intermediate surrogate dataset, but we directly connect low resolution evaluation data
(from the projection datasétto the local measurements. The process is easier but also more "noisy" and we
expect to need longer corresponding (i.e. overlapping) datasets, to cope with the expected larger errors in
the matching process.

If this is not the case, an alternative appoh that can be used is the PM one. In this cagesimply use the

PM to match the probability distributions computed from an enough populated (and climatological
significant) time series from the reference meteo station with the historical ones, forpargmeter of
interests. In this case we do not need any temporal synchronisation, and thus it is the only way to proceed
in the cases we have no or not sufficient temporal overlap between the reference time series and the
evaluation data. Here, not needimynchronisation, we prefer to use the historical data than the evaluation
ones, because of the supposed greater similarity with the behaviour of projections, as already claimed when
dealing with the spatial downscaling. We can apply the PM method torttieealatasets or we can think to
differentiate for instance according to different seasons, or months or even different events, provided we

SCORE _D3.4LU 2861



SCORE - EU HZ2020 Grant Agreement N°® 101003534

have in use some classification methods. Any differentiation can improve the matching accuracy and thus
projectionreliability, but, as a major drawback, it reduces the statistical population available for building our
distributions, so this is something to take into account, when looking for some optimal compromise in the
local downscaling process.
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3. DOWNSCALING OF 8EXELS

Projections of future sea level changes are usually based on ¢@B8spr regional climate modelRCM$
predictions. However, the changes in shallow coastal regions or marginal seag, sibasins of the
Mediterranean Sea, cannot be fullgsolved by GCMs. To improve sea levels predictions and to study the
effect of climate change on extreme water level, at both regional and coastal scale, dynamical downscaling
based on highresolution ocean models needs to be performed (Rockel et al., ;2Dilbet al., 2016;
Vousdoukas et al., 2016; Fagundes et al., 2020; Sannino et al 2022). The downscaling between ocean models
based on structured mesh usually cannot exceed the size ratio between the coarse and finer model solutions,
greater than 3 (Phamtal., 2016). Therefore, multiple procedures are required to ensure the correct spatial
resolution necessary to reproduce the hydrodynamics at coastal scale (Trotta et al., 2017; Kamidaira et al.
2019) Thisis often strongly influenced by the complex bgthetric and morphological local characteristics.
Alternatively, unstructuregmesh ocean models, commonly used for coastatielling(Danilov, 2013), offer

an efficient substitute to the computationally expensiveiltiple-downscalingstepsapproach (Zheng et al.,
2012). In fact, the crosscale approach, typically characterizing this type of applications, allows to potentially
cover, in one implementation, from the opatean to the near shore dynamsig@Jmgiesser €al., 2022).

3.1.Model description

To provide temporal sea level evolution data along the coast, a dynamic downscaling approach was decided
to be followed in theSCOREroject, which involves:

1) the use of an unstructured mesh hydrodynamic prediction mauéh, increasing resolution only near the
area of interest (i.e., the marine area of each coastal;city)

2) the use as atmospherforcing (for wind and atmospheric pressure) of one of the atmospheric models
available at the regional scale

Such a dynami¢aownscaling application uses the SHYFEM model (Umgiesser et al., 2004yeadiigiion

ocean model based on the finite elements method. In particular, the model is forced by atmospheric data
from the RCM ALADIN &hd from the EUROCORDEX project [@scet al., 2014). See section 1.2.3
Methodology to downscale climate information.

In this section the SHYFEM model system is described along with the procedures necessary for its
implementation, running and evaluation. The description of the numerical mddepplication to the study

site, the adopted simulations setupnd the postprocessing procedure necessary for the analysis of the
model outputs are reported below.

SHYFEM (Umgiesser et al., 2004) is an -gsperce threedimensional hydrodynamic metl based on the

finite elements method, widely used to reproduce the water circulation and the main hydrodynamics in
coastal and shallow water areas (freely downloadableh#ps://github.com/SHYFENhodel/shyfen).
Particularly suited for predicting extreme storm surge events, it constitutes the core of several oceanographic
prediction systems mainly developed for Mediterranean waters, e.g. for the Venice Lagooet@aja007),
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for the Adriatic Sea (Ferrarin et al. 2019) and for the Bonifacio Strait in the western Mediterranean Sea (Cucco
et al., 2012, Quattrocchi et al., 2021). SHYFEM resolves thedhmamsional primitive equations integrated
overz-layers intheir formulations with water levels and transports. It accounts for baroclinic, barotropic and
atmospheric pressure gradients, Coriolis force, wind drag and bottom friction, wind wave radiation stress,
nonlinear advection and vertical turbulent procesdesllowing the approach commonly used for operational
prediction of storm surge events in the Venice Lagoon and Northern Adriatic Sea (Zampato et al., 2006; Bajo
et al., 2007; Umgiesser et al., 2022), the model was applied in its 2D linearized version @msidering

only the wind drag and the atmospheric pressure gradients as the rmatemeforcingdetermining the sea
surface elevation in the selected coastal site. The governing equations read as:
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where — indicates the water levelJ and w the the verticallyintegrated velocities (total or barotropic
transports) inx andy directions,"Qthe Coriolis parameter the atmospheric pressuréQthe gravitational
constant,” the standard water density} the stress term at the surface, ¢hwind stress term, and at the
bottom, the bottom friction term;O "Q -—the total water depth,the undisturbed water depthd the
horizontal eddy viscosity estimated following the Smagorinsky parameterization (Smagorinsky, 1993). Wind
and bottom fridion terms, related to the wind speed and current velocity respectively, read as:

T w0 v 0
T ©" 66 U
T w0 v 0
T 0”0 6 U

with & as the wind drag coefficienéy the bottom friction coefficient” the air density§ ) ) the wind
velocity (at 10 m above water level) components ablib] the horizontal velocity components.

The horizontal space integration is made with a finite element technique, usingygestad grid, while the
integration in time is made through a seimiplicit scheme The Coriolis force, the barotropic pressure
gradient terms in the momentum equation, and the divergence term in the continuity equation are treated
semiimplicitly, while dl the remaining terms are treated explicitly. The model adopts automatic internal

SCORE _D3.4LU 3161



SCORE - EU HZ2020 Grant Agreement N°® 101003534

substepping over time to enforce numerical stability with respect to advection and diffusion terms. Due to
the semiimplicit scheme, a staggered grid formulation is necessargonserve the mass of the system
(Umgiesser et al2004) Accordingly, the water levels are computed on the vertices of a triangular mesh,
while the velocities are computed at tloentre of the triangles, using a step shape function.

3.2.Modelimplementation

To simplify the description of the implementation process, the case study of the coastal area surrounding the
city of Massa in the Ligurian Sea (sometimes referred to as northern Tyrrhenian Sea) is described. To do that,
the SHYFEM model sy was applied to scale the CORDEX sea levels predictions made for both present
day and future RCP scenarios. The Western Mediterranean Sea is characterized by a low tidasdytiamic
amplitudes varying betweea few cm up to 20 cm for the Tyrrheniané&s@lberola et al., 1995). Séavel
changes at decadal and interannual time scales are due to density and-mvassrdistribution variations in

the ocean, driven by wind, atmospheric pressure, heat and water fluxes and barystatevekahanges
through water-mass exchange between the land and the ocean (Bonaduce et al.,, 2020). Among all the
different involved forcings, extremes inundations events are driven mainly by the action of the wind and
waves, which exert a direct drag on the surface water masmas by the atmospheric pressure gradients,
which force the whole water column toward low pressures areas (Lionello et al., 2021).

The selected coastal site, facing at the western part of the Mediterranean Sea is mainly affected by north
westerly and sothern winds, Sirocco and Mistral, both characterized by a limited fetch due to the
geometrical features of the basin (Barbariol et al., 2021). Therefore, for this specific site, considering the
potentiality offered by the unstructurethesh ocean model, angyesting between the oceanographic
component of the GCM and the coastal model was not necessary to reproduce the impact of storm events
on the local sea water levels. The downscaling procedure was, in fact, applied considering only the predicted
atmosphert fields as forcing for a coastal model implementation covering the whole Mediterranean Sea with
a specific focus on the Tyrrhenian Sea. With this aim, areiglution computational mesh was then built

with a varying spatial resolution adapted to satwtfaily reproduce the morphdnathymetrical
characteristics of the investigated coastal region. A set of hindcast numerical simulations were performed to
evaluate the model performances in reproducing the sea surface surge induced by a set of severe storm
events that occurred in the past decades. Finally, the calibrated and validated model sysesapplied

to make predictions of the water level set up in relation to both climatic and sea level rise future scenarios.

The simulation results correspond the residual signal of the total water elevation obtainable, from
observations, after d¢iding and detrending procedures. A further statistical procedure was therefore
applied to account for both the astronomical and the other oceanographic contributmitisettotal water
elevation.

The model predictionslong with the wave climate data obtained from the application of a pteasraging
wind-wave model for the same climatic scenariosll be adopted as input data for a higasolution flow
and wave modk to compute the combined effects of wind and wave setup on the inundation of the- near
shore zones.
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3.2.1Numerical mesh

SHYFEM integrates the equation system on a finite element mesh, an unstructured grid composed of
triangular elements of different size aridrm. For this application, different model meshes were designed
and implemented in order to detect the most suitable configuration of the model domain for the purpose of
this study.

The GMSH, an opegource software based on the Delaunay triangulatiqqgoethm (https://gmsh.info) was

adopted to build the model meshes. Higlietailed geometrical and bathymetrical data of the study site
O2NNBalLRyRAYy3I G2 GKS GNIAG 2F O2FadGhkt &SI Ay LINRE
Tuscany Bgion, Italy, were used as input for the meshing procedure.

Considering the scope of the model application to reproduce the atmospheric component of the total water
elevation during storm surge events, and the fetch of the main wind regimes acting arg¢hethe model
domain should necessarily extend to the whole Tyrrhenian Sea and part of the Western and Central basins.
With this premise, a total of 8 different unstructured meshes were constructed to test the faifidiency

and accuracy.

InFigure3.1, the numerical grids are depicted along with indications about the ratios behind this choice. The
adopted strategy can be summarized in testing the role of spatial resolution and domain configuration on
the computational costs and model accuracy. Tleme the numerical domain was alternatively extended

to the whole Mediterranean Sea (MEDJ limited to the West anctcentral part of theMediterraneanbasin

only (WMED). For both MED and WMED groups, a relative increment of the spatial resolution esedimp

for the coastal study site, whereas specific increments were applied for the whole domain, in the case of the
MED group, and along the main wind fetches only, in the WMED case.

Figure3.1TKS vy TFTAYAGS St SYSyil YSaKSag5aNPURBRISGKIZ2NIKES&@NEE (KR
and lines support the interpretation of the selected numerical strategies.

The number of computational nodes varied roughly between 30000 to 100000 with spatial resolutions
ranging between 25 and 10 km for the open ocean and from 1200 to 400 m for the shelf area in front of the
study site, for the meshes with the lower and highesolutions, respectively. For all the cases, the finest
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