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BACKGROUND: ABOUT THE SCORE PROJECT 

The intensification of extreme weather events, coastal erosion and sea-level rise are significant challenges 

to be urgently addressed by European coastal cities. The science behind these disruptive phenomena is 

complex, and advancing climate resilience requires progress in data acquisition, forecasting, and 

understanding the potential risks and impacts of real-scenario interventions. The Ecosystem-Based 

Approach (EBA) supported by smart technologies has potential to increase climate resilience of European 

coastal cities; however, it is not yet adequately understood and coordinated at European level.  

SCORE is a four-year EU-funded project aiming to increase climate resilience in European coastal cities. 

SCORE outlines a co-creation strategy, developed via a ƴŜǘǿƻǊƪ ƻŦ мл Ŏƻŀǎǘŀƭ Ŏƛǘȅ ΨƭƛǾƛƴƎ ƭŀōǎΩ ό//[[ǎύΣ ǘƻ 

rapidly, equitably and sustainably enhance coastal city climate resilience through EBAs and sophisticated 

digital technologies.  

The 10 coastal city living labs involved in the project are: Sligo and Dublin, Ireland; Barcelona/Vilanova i la 

Geltrú, Benidorm and Basque Country, Spain; Oeiras, Portugal; Massa (including the coastal area of Marina 

di Massa), Italy; Piran, Slovenia; Gdansk, Poland; Samsun, Turkey. 

SCORE will establish an integrated coastal zone management framework for strengthening EBA and smart 

coastal city policies, creating European leadership in coastal city climate change adaptation in line with the 

tŀǊƛǎ !ƎǊŜŜƳŜƴǘΦ Lǘ ǿƛƭƭ ǇǊƻǾƛŘŜ ƛƴƴƻǾŀǘƛǾŜ ǇƭŀǘŦƻǊƳǎ ǘƻ ŜƳǇƻǿŜǊ ǎǘŀƪŜƘƻƭŘŜǊǎΩ ŘŜǇƭƻȅƳŜƴǘ of EBAs to 

increase climate resilience, business opportunities and financial sustainability of coastal cities. 

The SCORE interdisciplinary team consists of 28 world-leading organisations from academia, local 

authorities, RPOs, and SMEs encompassing a wide range of skills including environmental science and 

policy, climate modelling, citizen and social science, data management, coastal management and 

engineering, security and technological aspects of smart sensing research. 
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EXECUTIVE SUMMARY 

This document ƛǎ ŀ ŘŜƭƛǾŜǊŀōƭŜ ƻŦ ǘƘŜ {/hw9 ǇǊƻƧŜŎǘΣ ŦǳƴŘŜŘ ǳƴŘŜǊ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл 

research and innovation programme under grant agreement No 101003534. 

The D3.4, related to Task 3.2 and entitled "User document for the downscaling analysis tools and data ", is 

a WP3 deliverable, namely a report describing the downscaling procedures and models packaged contained 

in the deliverable D3.3, providing also what necessary for a proper use, and including a synthetic description 

of the datasets to be produced. 

The aim of this deliverable, is to specify in detail the downscaling procedures used in the project, and 

developed within WP3, to provide local-scale data. Such data feed urban-scale models, enabling project 

critical activities such as flood risk analysis (WP6), the evaluation of the effectiveness of EBA solutions 

(WP7), the design of sensor networks for citizen-science activities (WP4), the development of a Digital Twin 

of coastal cities (WP8). The same data are going to be part of the project's data sharing platform (WP5). 

 LINKS WITH OTHER PROJECT ACTIVITIES  

The activities of WP3 and in particular those of Task 3.2 are closely linked to all the other WPs of the 
project in a much more evident way than in the diagram in Fig. 1. 

In practice, downscaling procedures are one of the main engines of data production in the project. 

The local-scale climatological data, produced by this Task, are essential to enable the performance of 
several activities including those of WP3 itself, in this case with reference to statistical analysis (task 3.3), 
urban flooding models (task 3.4), coastal erosion models (task 3.5), and testing (task 3.6). 

In addition, there are much more direct and obvious relationships with WP4, WP8, and WP7, which 
relate not only to the production of the data needed to perform these activities but, fundamentally, very 
necessary to define some methodological approaches of these WPs. 
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Figure 1. SCORE WPs interaction.
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1. INTRODUCTION 

1.1. Scope of this report 

¢Ƙƛǎ ǊŜǇƻǊǘ 5оΦп Ϧ¦ǎŜǊ ŘƻŎǳƳŜƴǘ ŦƻǊ ǘƘŜ ŘƻǿƴǎŎŀƭƛƴƎ ŀƴŀƭȅǎƛǎ ǘƻƻƭǎέΣ ŀǎ ǘƘŜ ǊŜǎǳƭǘ ƻŦ ¢ŀǎƪ оΦн ά5ƻǿƴǎŎŀƭƛƴƎ 

ŀƴŀƭȅǎƛǎ ǘƻƻƭǎέΣ ƛǘ ƛǎ ǎǘǊƛŎǘƭȅ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ ƻǘƘŜǊ ŘŜƭƛǾŜǊŀōƭŜ 5оΦо ϦtŀŎƪŀƎŜ ƻŦ ŘƻǿƴǎŎŀƭƛƴƎ ŀƴŀƭȅǎƛǎ ǘƻƻƭǎϦ, of 

which it is not only a descriptive part, but of which it is also a technical-scientific one. 

The report describes the tools through which local-scale climate data are produced starting from: 1) climate 

data provided by global and regional scale climate models; 2) geographical knowledge of the territory 

through the combination of local specificities (orography, coastline, land use, etc.) and the collected 

observational data. 

In practice, the concept of downscaling that we use in SCORE is not only to produce local scale data that may 

be of interest in their own right, but also to enable the creation of new downstream models (urban scale 

models) that are crucial, for example, for flood mapping and the study of adaptation solutions. 

As far as the links with the other WPs of the project are concerned, these became even more important than 

initially foreseen in the DoW document. 

 

Work Package Interactions 

WP1 Knowledge on past extreme climate data is essential to compare with the climate 

change scenarios produced by this Task, as well as to validate dynamic models by 

using them to reproduce past situations 

WP2 The interest in the data produced by this Task is central to the activities of the 

CCLLs 

WP3 The data produced by the tools in this Task enable other downstream 

services/models, and in particular the hydraulic and land-sea interaction models 

used for urban-scale flooding (Task 3.4) and also the long-term coastal evolution 

models (Task 3.5) 

WP4 The design of the low-cost sensor network and citizen science activities are 

strongly connected with the need to improve the spatial representativeness of the 

data, and therefore WP3 and WP4 are naturally complementary 

WP5 The data produced by WP3 and from this Task in particular, especially the time 

series of climate projection data, are among the main sources of data production 

for the entire project 

WP6 Data produced by WP3 are fundamental for risk estimations 

WP7 Data produced by WP3 are needed to design NBS and select EBAs 
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WP8 Data produced by WP3 are a fundamental component to drive the models used by 

the DT  

WP9 WP3 models and models defined in Task WP3.2 must be disseminated not only to 

a scientific audience, but as well transferred to the various contexts also through 

specific training activities which involve non-scientists 

 

In this report we will attempt to describe the characteristics of the models used for the creation of a time 

series of data necessary for the implementation of project activities in coastal cities. 

Coastal cities have specificities compared to the surrounding natural coastal territory: being located on the 

sea, they are the parts of the territory perhaps in which humans residents are most susceptible to the effects 

of climate change, also due to the effects of Sea Level Rise (SLR).  

This requires that the data of greatest interest include marine data, alongside traditional meteorological and 

hydrological data, as they are needed to estimate, for example, the effects of storm surges, extreme sea 

levels, or coastal erosion. 

The data covered by this report are therefore: 

¶ wave data, used for various applications, such as estimating run-up extremes or calculating coastal 

morphodynamics; 

¶ sea level data, used for estimating storm surge effects and interactions with urban hydraulics; 

¶ hydrological data such as flow rates and levels, that are needed for urban flooding models but also 

to improve understanding on the effects of EBAs solutions; 

¶ meteorological data, needed to force other models, for example, to give a more correct distribution 

of the rainfall input to hydrological models. 

Each of these datasets requires to be produced with tools, mainly models, different from each other. In the 

following, we will describe them, keeping in mind the relevance of the present task within the project. 

 

1.2. The meaning of downscaling 

A common need for all project components is to have data available at the local scale, namely the urban 

scale, to assess the long-term consequences of climate change on coastal cities. The source data, described 

in deliverables D3.1 and D3.2 of the WP3, Task 3.1, component of the project, are climate models, either at 

a global or regional scale.  

There is a large gap between the data that are produced from Global Climate Models (GCM), with a resolution 

that can be on the order of 0.5° or 0.25° i.e. on the order of 25-50 km at mid-latitudes, or -when available- 

from regional climate models (RCM), with a resolution that typically goes as low as 0.125-0.1° i.e. on the 
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order of 10-12 km at mid-latitudes, and the need for local (urban) scale data for the various needs (on the 

order of hundreds or tens of meters). 

Downscaling means taking information at large scales to infer effects at local scales. Thus, to take for example 

weather forecasting: a common practice is to use data from a global forecasting model (such as those 

produced by forecasting centres such as ECMEF or NCEP), to make forecasts at the regional and/or local scale. 

Thus, with reference to climate projections, downscaling of climate models is an attempt to bridge the gap 

between global and local effects through techniques or models that take into account local specificities, and 

that are able to simulate locally the effects induced by the processes predicted by large-scale climate models. 

In general, climate information from global or regional climate models has a low resolution, for which an 

entire region can be represented by only a few grid cells. Each cell represents a single value, which may be 

representative of an area that, for example, is 100-150 km2 (in the case of a regional model with 10-12 km2 

resolution). A key issue why downscaling is necessary, is that global climate models do not adequately 

account for variations in vegetation, complex topography and coastlines, which all are important aspects of 

the physical response governing the regional/local climate change signal. 

The modeling of the effect of a changing climate at local scale examines relatively small areas down to a few 

square kilometres in detail, that is at a much higher resolution than generally offered by global climate model 

simulations. Such information supports analyses regarding the impact of climate change, and the assessment 

and planning of adaptation strategies that are vital in many vulnerable regions of the world, which, 

undoubtedly, include coastal cities. 

Normally, there are two general strategies for downscaling: 

¶ dynamic downscaling uses sub-regional scale models with high spatial resolution (on the order of a 

few km) over a limited area, and is fed by the large-scale conditions of a GCM or RCM. 

¶ statistical downscaling is the method by which statistical relationships are derived between observed 

small-scale variables (often at the weather station level) and larger-scale variables (GCM or RCM). 

The predicted values of large-scale variables obtained from GCM projections of future climate are 

then used to drive statistical relationships and thus estimate small-scale details of the future climate. 

Both methods have advantages and disadvantages. 

 

1.2.1. Dynamic downscaling 

Dynamical downscaling is based on numerical models that solve a set of discretized equations which 

reproduce a set of mathematical equations describing the temporal evolution of the phenomena under 

investigation. For example, in the case of atmospheric or marine circulation, models solve the primitive 

equations of motion that represent the temporal evolution of fundamental variables such as velocity, 

temperature, pressure, density, etc. Dynamic downscaling has the great advantage of providing data in a way 

that can be considered physically consistent. This means that the equations governing the evolution of the 

atmosphere or the sea, are solved in a finer grid in which the representation of certain physical features (e.g., 

details of orography, land use, coastline, etc.) is much more detailed than in the parent model. For the sake 
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of clarity, it is important to specify that on the basis of the scale of the main modelled processes, different 

simplifications/approximations can be applied to the governing equations. 

The large-scale model data are used, normally, as initial conditions and boundary conditions for local-scale 

models. The large-scale variables used as initial and boundary conditions are normally interpolated onto the 

higher-resolution grid, and the model "fits" the solution of the equations into the new domain, after a certain 

period required to activate the finer-scale dynamics. 

This adaptation period (often referred to as spin-up) varies greatly from model to model. Models that quickly 

lose memory of initial conditions are, for example, atmospheric models, where the spin-up time is usually 

short (6-12 h). Wave prediction models have similarly small spin-up times. 

In contrast, models in which it is necessary to extend the spin-up time are, for example, marine circulation 

models describing baroclinic processes and thermohaline effects, in which several dynamics only come into 

effect after many time steps. In general, few days are required to completely activate surface dynamics, while 

deep circulation dynamics, related to the distribution of water masses within the oceans, need very long 

times, even on the order of several years. 

Hydrological models, to simulate processes related to infiltration and sub-surface runoff, also require long 

timescales. 

The main disadvantage of dynamic downscaling is the computational cost. The finer the grid, the larger the 

computational cost, due to constraints related to the integration time step (e.g., stability conditions). This 

condition means that computation at very fine resolutions and over very large areas is impractical even for 

the best performing computational machines. 

Another aspect to consider is that the resolution ratio between the "parent" model and the "child" model 

should never be too high. Many dynamic models typically use a ratio of 1:3 or 1:5, seldom higher, which is 

not recommended in any case. This constraint significantly affects the dynamic downscaling methodology if 

the goal is, for example, to provide local-scale data, where the required local-scale resolutions are very high. 

Assume that we intend, for example, to get climate data at an urban-scale resolution of a few tens of meters 

(e.g., 100 m). Moving from a RCM, which has a resolution of the order of 12 km, to such very high resolution 

would require at least 3 consecutive models nested into each other, e.g., maintaining a 1:5 ratio of parent 

model resolution to child model resolution (from 12 km to 2.5 km; from 2.5 km to 500 m; from 500 m to 100 

m), which is very challenging because each model is simultaneously "child" of a less resolved model and 

"parent" of a more "resolved" model. This telescoping approach to nesting is not practical for most uses. 

To overcome this complication, the use of unstructured mesh numerical methods is normally very effective, 

because it allows for high resolution only where it is strictly necessary (in our case, near coastal cities, or at 

any specific area of interest), while also simplifying procedurally the implementation of downscaling. 

 

1.2.2. Statistical and stochastic downscaling 

Statistical and stochastic downscaling methods have very often been proposed to avoid the complications 

associated with the use of dynamic models. In the first case, a statistical link is established between large-

scale variables (called predictors) and those that one wishes to describe at a local scale (called predictands), 
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in order to produce high-resolution realisations of the latter. Essential for statistical downscaling is the 

availability of local observations (i.e. meteorological, hydrological, marine data). The results of statistical 

downscaling improve with higher quality and duration of the observed historical data. Having good data for 

a particular weather or marine station, enables to downscale the climate model for that particular observing 

point. At the same time, having a good gridded data set locally available (i.e. from a hindcast model), does 

permit downscaling on that grid. Then, for statistical downscaling, a statistical relationship is developed 

between the observed historical climate data and the climate model output for the same historical period. 

This relationship is used to develop future climate data. 

Stochastic downscaling methods, although they can reproduce time series of data at a given point, cannot 

be considered as substitutes for physically-based regional models (i.e., dynamic downscaling). Instead, they 

are a way to introduce variability in precipitation fields at scales not resolved in global or regional models. 

Among the statistical/stochastic methods, the application of Artificial Intelligence (AI) methods for 

downscaling has become more and more important. In particular, a new generation of AI methods are gaining 

more attention due to better training compared to older generations, including Deep Learning (DL) and 

Convolutional Neural Network (CNN) methods. 

 

1.2.3. Methodology to downscale climate information 

The downscaling procedure can be applied to different typologies of datasets. Indeed, it is possible to 

downscale operational forecast data, reanalysis and climate information (Benestad, 2016). 

Concerning the downscaling of climate scenarios (or projections, IPCC, 2013), it is important to evaluate how 

much we can trust the results from the RCM model that downscaled the GCM that produced the particular 

scenario. 

Hindcast simulations take initial and boundary conditions from a reanalysis. The reanalysis is produced by a 

data assimilation system which ingests many kinds of observations that are representative of the true 

atmospheric state. As a consequence, the RCM maintains the temporal correlation with what is observed in 

nature (e.g., extreme events). 

In case initial and boundary conditions are taken by a GCM without data assimilation we are considering a 

historical simulation. This kind of simulation is used to have information about the interaction between GCM 

and RCM, but the synchronization with the observed climate is lost. However, the importance lies in the fact 

that the boundary conditions for the downscaling of climate scenarios can be taken from the same GCM. 

For the purposes of the project we need to downscale the wave climate, the sea level, and the rainfall rate. 

The simulation of these variables requires the data provided by a RCM. More specifically, for the adopted 

approach the following variables are needed: 

- for waves, surface wind speed for U (eastward direction) and V (northward direction) components 

(uas, vas); 

- for sea level, surface wind speed for U and V components (uas, vas), mean sea level pressure (psl); 

- for rainfall rate, precipitation (pr). 
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Rainfall rate is then used in the hydrological model, applied to a specific river basin, to determine the flow 

rate at a closure section of the river. 

A sketch of the modelling chain is reported in Figure 1.1. 

 

Figure 1.1. Sketch of the modelling chain employed to downscale climate data up to the urban scale.  

In our case, we opted for the ALADIN 63 RCM (Coppola et al., 2021; Vautard et al., 2021) employed in the 

EUROCORDEX project (Jacob et al., 2014), which is the European branch of the CORDEX project and is aimed 

at the production of downscaled simulation of GCM from the Coupled Model Intercomparison Project Phase 

5 (CMIP5, Taylor et al., 2012). The reason for this choice was principally due to the availability of the physical 

variables needed to simulate wave properties, sea water level and rainfall rate, at a sufficiently temporal 

frequency, that is 3 hours. Also because ALADIN 63 is the same RCM used to produce historical (1950-2005), 

evaluation (1979-2019) and scenario (2006-2100) runs. 

Furthermore, the RCMs related to the EUROCORDEX project are run on a geographical domain containing all 

the CCLLs of the project (Figure 1.2). 

Our strategy to downscale climate data is indeed to simulate, wave properties, water levels and rainfall rates: 

- an evaluation run to validate the models employed for the downscaling, by comparing modelled 

results to observations; 

- a historical run to be compared to the evaluation run from a statistical point of view. Since we are 

particularly interested in extreme events, we evaluate the degree of similarity between the extreme 

value distribution from the evaluation and historical run, computed for the same reference period; 

- two runs associated with the RCP4.5 and RCP8.5 scenarios. 

The evaluation run is based on the modelling chain ERA-INTERIM (Dee et al., 2011), ALADIN 63. Whereas the 

historical and scenario runs are based on the modelling chain CNRM-CM5 (Voldoire et al., 2013), ALADIN 63. 

The resolution of the ALADIN 63 model is 0.11° (roughly 10 km at mid latitudes). 

 



  

     SCORE _D3.4_V1.0    16/ 61 
 

 

Figure 1.2. Extension of the EUROCORDEX domain. 

 

1.2.4. Downscaling to enable the simulation of urban-scale scenarios 

Within the project, a thorough discussion took place to decide which methods should be applied to 

downscale climate fields. 

The discussion took place at two levels: 

1) a first level can be defined as user-oriented, i.e. it relates to the use of the data for specific applications; 

2) a second level concerns the analysis of methods in relation to the need to produce data according to 

specifications that are sufficiently state-of-the-art, but at the same time sustainable with regard to their 

concrete application within the project timeframe and the available human and computing resources. 

Figure 1.1 clarifies the approach used in SCORE for downscaling. Rather than being concerned only with 

having more resolved physical fields for certain variables of interest, the goal is to enable a series of detailed 

models, at local and urban scales, to describe flooding phenomena, as well as possible risk reduction and 

adaptation strategies. 

Another need is to have local-scale data available for the simulation of long-term dynamics, such as coastal 

erosion/progradation. The availability of atmospheric data downscaled at regional scale from various 

initiatives, such as EUROCORDEX and MEDCORDEX, allows us to directly use them as atmospheric forcing for 

the above-mentioned models. This availability of data from regional-scale models was considered sufficient 

to describe, albeit in an approximate manner, even in light of recent scientific literature in the field, the 

atmospheric forcing that drives wave and sea level modelling. 

 

1.3. Climate simulation models for coastal cities 

In climate projections, whether on a global, regional or local scale, models certainly play the most important 

role. However, it is also important to have observations, so as to have a dataset of observed data that is 

representative of both temporal variability and long-term trends, and preferably distributed over several 

points in the territory, representative of different exposures, orographic conditions, etc. The role of the 
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observations in the models is: 1) to validate and calibrate the calculation models at least as far as the 

historical part is concerned; 2) to train artificial intelligence algorithms; 3) to estimate model-internal 

parameters, which may also be carried out by means of assimilation techniques (e.g. Kalman filtering). 

The choice of models to be used for the project focused mainly on open source models, possibly community 

models, because the development of these models goes on over the years and transparently incorporates all 

the updating efforts made by a large scientific community. Secondly, it is important that at the level of 

individual coastal communities these models can be disseminated and used by local users, technicians and 

scientists, with a non-exaggeratedly specialised background, also transferred through specific training 

activities and can be used without additional costs. 

In terms of modelling choices, another general preference was given to models that provide greater flexibility 

of use by avoiding the use of nesting techniques. In particular, especially for marine models, the adoption of 

unstructured mesh models was preferred. This is because the aim of the project is not to build climate 

services on uniform grids, or with a uniform level of output, but to focus on specific coastal areas, in order to 

build tools that guarantee the provision of highly detailed data for those areas and -possibly- maintain a 

certain easiness to replicate/adapt procedures and exportability of the methods adopted to other contexts. 

The ten Coastal City Living Labs that are part of the SCORE project have different capacities and skills in 

reference to climate modelling. 

CCLLs that have been chosen as frontrunners for WP3 are: 

 Massa (Italy) 

 Province of Barcelona (Spain) 

 Oarsoaldea (Spain) 

 Alicante (Spain) 

 Samsun (Turkey) 

The implementation of downscaling models in coastal cities can be accompanied by some problems that will 

become clear later.  

For marine models, problems concerning physics of wave formation and propagation or sea level changes 

require defining the model over areas normally large enough to collect all possible contributions from energy 

or mass propagation over long distances (normally this distance is referred to as fetch). For coastal cities 

placed in semi-enclosed seas such as the Mediterranean, the Black Sea, the Baltic Sea, this does not pose 

particular problems, but does require some care in defining the computational model. 

Conversely, for cities facing the Atlantic Ocean, this approach requires much greater attention in identifying 

possible contributions related to wave energy and storm surge formation at a given point. 

Hydrologic modelling also has issues that need to be properly addressed. Indeed, there is great variability in 

the size of the hydrologic basins and their characteristics. While for very large basins the representation of 

rainfall and atmospheric variables from GCMs or RCMs can be considered adequate, the same cannot be said 

for smaller basins that would require a much finer representation of rainfall. Dynamic downscaling of the 
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atmospheric component is not carried out by the project, due mainly to limitations of budget and timing. 

However, a procedure based on AI algorithms is described to achieve local-scale downscaling of rainfall data. 

As for the CCLLs followers, only the wave and sea level related components will be simulated by the core 

team, but support, assistance and technical training how to effectively make use of the methodologies 

described in this report, is planned.   
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2. STATISTICAL DOWNSCALING OF 

ATMOSPHERIC FIELDS 
 

2.1. Objective  

As we know from the SCORE D3.1 and D3.2, a number of datasets exist for atmospheric projections up to the 

year 2100, that are available over the SCORE target geographical domain, i.e. the Euro-Mediterranean area, 

physically downscaled from global projections and providing horizontal (i.e. ground) spatial resolution up to 

about 12 km and temporal intervals up to 3h. It is worth to note that the spatial resolution is the real one 

unit set, once the model is physically run. While the temporal interval is depending on the averaged and 

stored outputs, with the run time-steps always much shorter than this (roughly more than two order of 

magnitudes shorter). 

A 3h temporal resolution can be generally considered acceptable for the hydrological modelling of the SCORE 

coastal city basins, according to their response time to the precipitation events. Maybe, for a few smaller 

basins, with a faster response time, a 1h resolution could make some non-negligible differences on 

hydrological modelling and consequently on hydrological projections, which in SCORE is the main application 

of the precipitation projections and of the other atmospheric parameter ones. Anyway we assume this to be 

not critical for hydrological projections and we adopt 3h temporal resolution as suitable for any SCORE basins, 

thus not setting up any temporal downscaling strategy. 

For what concerns the horizontal spatial resolution, 12 km can be instead critical for a number of SCORE 

hydrological basins, being their dimension as large as few model ground pixels. This can mean that some 

model pixels can belong only partially to the basin and that they can average on sub pixel orographic and 

maybe precipitation inhomogeneities, introducing non-negligible systematic errors on hydrological 

projections. In addition running a model at 12 km horizontal resolution means that any phenomenon 

happening at a smaller scale cannot be physically represented. This for instance typically happens with 

convective precipitation, that in some cases is not negligible or more often even dominant, so that it is 

necessary to model it through statistical empirical schemes, that use some model atmospheric features (at 

the available coarse resolution) to infer how much convective precipitation should be generated within any 

model ground pixels. This is a non-trivial way to account for non-negligible sub-pixel (i.e. model sub-grid) 

phenomena, that anyway can bring relevant errors. This typically happens in operational forecasts, and 

motivates the effort of running higher resolution models, nested in lower resolution ones, from global models 

to regional ones. Focusing on precipitation, the final objective is to be more reliable in precipitation intensity 

forecasts, increasing also the precision on where and when it will happen. When dealing with projections, if 

you think about precipitations (but this similarly holds for other parameters), the scheme approximations 

and related errors propagate also in the statistical distributions, so that the result of downscaling should be 

to improve the phenomena description in order to have more reliable statistics. In addition we would have 
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statistical information on smaller pixels, improving the geographical details for the benefit of the hydrological 

modelling. 

Similarlȅ ǘƻ ǘƘŜ ŀŦƻǊŜƳŜƴǘƛƻƴŜŘ ƻǇŜǊŀǘƛƻƴŀƭ ŀǇǇǊƻŀŎƘΣ ǎǇŀǘƛŀƭ ŘƻǿƴǎŎŀƭƛƴƎ ŎƻǳƭŘ ōŜ ŀŎƘƛŜǾŜŘ άǎƛƳǇƭȅέ 

nesting a state of the art atmospheric model into the available better projection data, and running such a 

model chain for the whole projection range. Theoretically this is the more correct approach, but it can be 

very time consuming and computing demanding. In addition, there are a number of issues that have to be 

carefully addressed and verified to assure that the new projections are reliable and coherent with the coarser 

model they start from, including the need to care about the proper evolution of the greenhouse gases from 

the reference to the nested models. In sum, several aforementioned approaches are outside the SCORE 

project objectives and constraints, as clearly stated also in the project proposal. 

In order to cope with the spatial resolution problem, especially thinking to the basins where it can be more 

critical, we have then designed a statistical approach for the downscaling, that makes use of a Neural Network 

(NN) approach, aimed at connecting coarse resolution projections to higher resolution grid data, according 

to a climatological dataset available at the target (i.e. higher) resolution. This approach has the non-

secondary benefit to be similarly applied to generate also local downscaling, i.e. to produce scenarios of local 

measurements in a given point, according to a climatological dataset of in situ measurements. In the SCORE 

framework it means that we can generate projections of in-situ measurements in the coastal cities, applicable 

for instance to urban hydraulic modelling for digital twin applications. 

 

2.2. Introduction to the method 

In order to downscale a projection dataset with a statistical approach, it is mandatory to own a reference 

dataset for the study domain at the target spatial resolution (i.e., the one we want at the end of the process). 

It is necessary that both (the projection and the reference) datasets have a subset belonging to a temporal 

range exhibiting the same climatological features. It is also necessary that both subsets extend for a 

climatologically significant period. However, it is neither necessary that these two subsets refer to the same 

temporal range nor that they share any temporal overlapping. 

In our test case, the projection dataset has been the Med-CORDEX (Ruti et al., 2022), a regional model 

centred in the Mediterranean basin. Depending on the forcing present in the model, we can divide the 

dataset in historical run (no forcing), evaluation run (measurement forcing) and projection runs (radiative 

forcing according to given development scenarios). 

The subset exploited for tuning the downscaling process is from the historical mode, i.e. the model freely run 

but for the past (commonly used to verify the consistency between the reproduced statistics and the real 

atmosphere). Normally projections are available for different emission forcing scenarios, according to 

possible future (unknown) development scenarios associated to greenhouse gases concentration etc., while 

the historical subset is only one, according to the past (known) atmospheric and other environmental 

features. Note that in some datasets (including the one we used) we can find data referring to a number of 

past years, but run and archived as projections (this of course happens always but not only for data generated 

in projects concluded several years ago). In this case, we will consider, use and also refer to such data (in the 

atmospheric downscaling part of this document) as belonging to the historical mode, even if nominally 
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archived in the projection part of the dataset (paying attention to the adopted radiative forcing, that has to 

be close to what we know it really was).      

Concerning these historical data, only the statistics between the model and the real atmosphere can be 

compared for consistency, not single phenomena, in fact such historical mode is never synchronised with 

Nature, e.g. through some direct or indirect assimilation process of real measurements. It means that, 

differently from models run for operational forecasts, the historical mode (exactly as the projection mode) 

does not simulate different phenomena in the right place at the right time, but, after a long enough period, 

it generates a set of statistics for phenomena consistent with the real one. 

For the same past period, there is also a so called evaluation mode, which, differently from the historical one, 

is continuously forced by reanalyses products (that include observations from global measurement 

networks), thus forced to be synchronised to Nature as much as possible (useful to evaluate for instance the 

consistency of the model physics). This mode is not used in our spatial downscaling, because we expect a 

greater similarity in the behaviour between the historical-projection couple with respect to the evaluation-

projection one, due to the presence of the forcing process in the evaluation mode, that has no counterpart 

in the projection phase. Anyway, we will see later that the evaluation mode turns out to be very useful for 

the local projections as defined in the previous paragraph. 

It is worth to note that several other projection datasets have analogous historical and evaluation modes, so 

that the same repeated approach we are going to use and explain is applicable to the most advanced 

climatological projection datasets. 

For what concerns the reference dataset, we have used a dataset generated by a 29-years run of the Moloch 

model (Capecchi et al., 2022) run at 2.5 km of horizontal spatial resolution over a domain as large as the 

Italian peninsula. Such a run has been continuously forced with ERA5 reanalyses data, implemented through 

a nested domain configuration based on limited-area numerical weather models (BOLAM/MOLOCH). The 

study region is situated in the North-Western Mediterranean Sea, in particular centred in Massa, Italy, and 

ǎǇŀƴƴƛƴƎ ōŜǘǿŜŜƴ уϲсф тн 9ςммϲпо лс 9 ŀƴŘ поϲрн пф bςппϲфу мрN. In our activity we considered a subset 

of the last 12 years. 

The projection dataset, or more precisely its historical mode subset, and the reference one are not directly 

comparable, because of their different resolution, and moreover due to the lacking of any synchronisation. 

CǊƻƳ ǘƘŜ ǊŜŦŜǊŜƴŎŜ ŘŀǘŀǎŜǘ ǿŜ ƘŀǾŜ ǘƘŜƴ ƎŜƴŜǊŀǘŜŘ ŀ άǎǳǊǊƻƎŀǘŜ ŘŀǘŀǎŜǘέ ǿƛǘƘ ǘƘŜ ǎŀƳŜ ǊŜǎƻƭǳǘƛƻƴ ƻŦ ǘƘŜ 

projection dataset, with an upscaling procedure, applying a simple averaging process. Obviously the 

surrogate dataset results perfectly synchronised with the reference dataset and available for the same 

temporal and spatial domains. At the same time we expect that the surrogate dataset and the projection 

historical-mode subset should be statistically comparable, apart from some differences given by the 

differences in the two models, including the fact that the surrogate dataset was generated by a higher 

resolution model, capable to explicitly simulate smaller scale phenomena with respect to the projection one. 

Now we have two datasets, the reference and the surrogate ones, perfectly synchronised and overlapping, 

but at different spatial resolution, so perfectly usable to train a Neural Network (NN) procedure for 

downscaling from the surrogate resolution (equal to the projection one) to the reference resolution. Then 

we have identified two other datasets, the surrogate and the projection historical-mode subset ones, at the 

same resolution and available for a period of constant climatology (as assumed at the beginning), that are 
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expected to have comparable statistics, but with some foreseen differences that have to be matched by 

means of some proper transformation procedure. Figure 2.1 shows the synthesis of the downscaling method. 

 

 

Figure 2.1. Synthesis of the statistical downscaling steps. From top to bottom: generation of a surrogate dataset from the upscaling 
of a high resolution dataset (climatologically significant); building a specific downscaling NN (more complex step) and training it to 
match the two perfectly corresponding reference-surrogate datasets; match surrogate and projection (historical mode) datasets 
having the same resolution; apply the whole downscaling process (map values from mapped distributions, then use the NN 
relationships) to the projection dataset (for the future scenarios). 
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2.3. The Neural Network downscaling process 

Statistical downscaling uses large-scale information (predictor) to build relationships to a local weather 

variable (predictand). There are many statistical approaches that can be used to bridge the gap between the 

scale needed for a local prediction and the regional scale, for example reconstructing the time series of the 

variable at low scale (regression methods) or generating possible event in function of weather type index 

(weather type approaches) or using stochastic generator, like random Markov chain (stochastic weather 

generators). Choosing between one method or another depends strictly on the nature and the quantity of 

the data in the dataset available. The nature of the dataset and the temporal short range of our time series, 

for example, makes it impossible to use weather type or stochastic weather generators. Thus, in this work 

we consider the first approach and train a NN to find a relationship between the two different spatial scales. 

The NN, more specifically in our case a CNN, has to find a local relationship between the predictor and the 

predictand directly from the data. The input is a tensor containing information about the predictor value in 

a pixel, eventually its neighbours and also spatial information - like orography and land cover (Copernicus 

Land Monitoring Service, 2018) ς associated to the surrogate dataset. From these data the NN should predict 

the value of the high-resolution pixels in the reference data that are geographically close to the centre of 

each low-resolution pixel of the surrogate data. Considering the spatio-temporal correlation that exists 

between the atmospheric variables, we built a NN with layers that can properly capture the spatial and also 

temporal dependencies.    

The architecture that have been adopted (see Figure 2.2 label and Table 2.1 for technical details) can be 

summarized as: 

- a Convolutional layer (Conv2d), to capture the spatial relationship between the nearest pixels and to 

map a large-scale latent space; 

- a layer with recurrent gate (GRU), to catch some temporal dependencies and temporal patterns in 

the large-scale latent space, processing temporally closest data (here three time steps); 

- a fully connected layer (LinL), to map the spatio-temporal representation of the large scale predictor 

in the small scale predicted variable; 

- a last layer (MeanL), that generates the final data at the reference resolution from the LinL output. 

From the surrogate data we create a collection of surrogate images with dimension m - stacking the surrogate 

predictors and the spatial information of the surrogate data (latitude and longitude) - and temporal window 

w. For every pixel of the surrogate data, the NN reconstructs n pixels of the resolution of the reference data. 

In the reconstruction of the complete image of the reference data, we can have some overlapping, because 

two or more pixels of the surrogate data predict the same pixel of the reference data. In such cases the final 

image can be generated re-averaging the overlaps. In order to force the NN to predict the same values at the 

same pixel starting from different pixels of the surrogate data, we include the generation of the image in the 

learning process: namely we generate the downscaled image with a weighted average, where the weights 

are stored in the MeanL and learned in the training phase. The optimization of the NN is done with a L2 loss 

(squared error loss, i.e. squared difference between a prediction and the actual value) over the values of the 

pixels of the image generated by the prediction of the net and corresponding values of the true image of the 

reference dataset. 
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The NN learning process was achieved using 9 years of data as training set (from 2008 to 2016 included), 

while the last available 3 years (2017, 2018 and 2019) were used as test set, i.e. to quantify the learning 

precision over data that the NN had never seen before. In Figure 2.3 some examples of output for different 

atmospheric variables are shown, where predicted means downscaled by the NN-based process. 

 

 

Figure 2.2. Top panel: for every time (t, ..., t=w), we extract from the surrogate images (1) any single pixel with its nearest neighbours 
to create the input of the Conv2d layer (2), a tensor of size: (m, 3, 3). As output (3) we obtain a vector of size: (Cout, 1, 1), where Cout 
represents the number of channel outputs of Conv2d. We stack together this output (4) to obtain the GRU input, with size (Cout, w, 
1), that gives us the hidden representation (5) of the variables in surrogate pixels. The estimation of the value at the small scale (6) is 
done combining this hidden state with a State vector (S) that contains the spatial information of the reference data with the last LinL 
layer. This layer gives as output a vector that can be thought as the neighbours of the surrogate pixel. Bottom panel: for reconstructing 
the final image (8), we repeat the the top panel procedure for all pixels, then we combine the outputs (7) using the weights stored in 
MeanL. 
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Table 2.1. Hyperparameter of the NN used in the examples showed below. #p indicates the number of predictors chosen. 

 

Figure 2.3. Examples of downscaled (i.e., predicted) atmospheric parameters with respect to the reference ones they should 
reproduce from the surrogate low resolution dataset. These are validation examples, it means that these data were not used in the 
training phase of the NN. 
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2.4. Mapping the surrogate dataset to the projection 

dataset    

Figure 2.4 shows a comparison between the statistical distributions of the surrogate dataset and the 

projection past-subset (previously referred to as historical). We can see that there are clear shape similarities, 

but also very relevant differences at times (e.g. in the precipitation extreme values or in the RH higher values). 

This is not surprising because the surrogate dataset is an upscaling of a model result, run at higher resolution, 

so resolving physical phenomena schematised in the projection model. 

 

 
Figure 2.4. Comparison between statistical distributions of the surrogate dataset (Moloch) with the projection past-subset one 
(CORDEX). 
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It is apparent that is necessary to match these statistics, if we want to apply the NN downscaling relationships, 

(trained on the couple surrogate-reference data) to the projections. Now, we can proceed with the 

Probability Matching (PM) method, mapping Cumulative Distribution Functions (CDF's) to each other, 

through a step-by-step numerical integration process. In fact, given two CDF's on a closed interval, Ὂ1(ὼ), 

Ὂ2(ὼ), we can find a mapping ὼҦƎόὼ) such that the points ὼ formerly distributed with CDF Ὂ1(ὼ), will now 

have distribution Ὂ2(ὼ). In other words, given some data distributed in a certain manner, we can find a 

transformation, that, when applied to our data, will result in data distributed according to another (given) 

distribution (see for instance Rosenfeld et al., 1993). 

As an example for precipitation, it can be mathematically expressed by: 

 

In this way we map any value of precipitation in the surrogate dataset (ps) in a corresponding one in the 

historical dataset (ph) according to the cumulative distribution function (seen as a cumulative probability 

function). The relationship gives the numerical function g to pass from one distribution to the other. Note 

that the h functions is always found, even if the variables are completely uncorrelated (see Figure 2.5). For 

totally independent variables this delivers completely nonsense results, when we use the method to force 

the retrieval of a relationship. On the contrary it turns out to be a powerful property when dealing with 

variables that we know beforehand are correlated from a statistical point of view, such as our atmospheric 

parameters from non-synchronised models in the surrogate and historical datasets. 

 

Figure 2.5. Left panel: (X,Y) couples that are randomly generated. Right panel: probability matching method applied to the couples 
of the left panel with the assumption they are statistically correlated. The resulting relationship is represented by the dotted line. In 
this case, as expected, dots are very close to the bisector line, being X and Y generated exactly with the same random process, thus 
with the same distributions. 
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2.5. The local downscaling process   

In order to be able to generate projections for local atmospheric parameters, as measured by a local 

meteorological station (i.e. in a single, theoretically dimensionless, point), we have now developed two 

algorithmic tools, the NN and the PM ones, than can turn out to be useful for our purpose. Both in fact are 

capable to address the problem, even if the two methodologies are conceptually very different and the 

accuracy of the results are expected to be different accordingly. 

The first one is the NN approach. In this case we can use the same NN structure described above, developed 

for connecting two different resolution datasets (the reference and the surrogate ones), that in the training 

phase had the property to be perfectly coherent, both spatially and temporally (being the surrogate dataset 

just the spatial upscaling of the reference one). Here, the most coherent (i.e. synchronised) datasets that we 

can have are a time series of past measurements from a given meteorological station (the ones that we want 

to produce the projection in the future), that becomes our reference data, and the evaluation subset of the 

projection dataset, provided that they have a significant temporal overlapping. We remind that, differently 

from the historical dataset, any evaluation dataset is obtained running a climatological model in the past, but 

forced by external data (including systematic global measurements), aimed at reproducing as much as 

possible the real sequence of atmospheric events with the correct timing. Thus, in this case they can be used 

instead of the surrogate dataset for training the NN against the meteo station data. Of course, after the 

training, we expect much greater differences between the NN predictions and the reference data (i.e. the 

meteo station time series), than for the couple surrogate-reference datasets of the spatial downscaling 

process. Note that a subset of 20-30% of the whole available overlapping data will be kept out from the NN 

training to be properly used for validation objectives. In this case, the NN will be simplified by the fact that 

we are not downscaling a map, but we are connecting some model data to spatially dimensionless 

measurements. In sum we will train the NN to connect the values of the model grid point containing the 

coordinates of our meteo station, with the station measurements. More precisely we will use not only such 

model grid point, but also its nearest neighbours, exactly as done for the spatial downscaling. The process 

will be however simplified, in fact there will be neither more final map reconstruction (with retrieved weights 

for the overlapping pixels), nor need to match statistical distributions through the PM method, because here 

we do not use any intermediate surrogate dataset, but we directly connect low resolution evaluation data 

(from the projection dataset) to the local measurements. The process is easier but also more "noisy" and we 

expect to need longer corresponding (i.e. overlapping) datasets, to cope with the expected larger errors in 

the matching process.  

If this is not the case, an alternative approach that can be used is the PM one. In this case, we simply use the 

PM to match the probability distributions computed from an enough populated (and climatological 

significant) time series from the reference meteo station with the historical ones, for any parameter of 

interests. In this case we do not need any temporal synchronisation, and thus it is the only way to proceed 

in the cases we have no or not sufficient temporal overlap between the reference time series and the 

evaluation data. Here, not needing synchronisation, we prefer to use the historical data than the evaluation 

ones, because of the supposed greater similarity with the behaviour of projections, as already claimed when 

dealing with the spatial downscaling. We can apply the PM method to the entire datasets or we can think to 

differentiate for instance according to different seasons, or months or even different events, provided we 
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have in use some classification methods. Any differentiation can improve the matching accuracy and thus 

projection reliability, but, as a major drawback, it reduces the statistical population available for building our 

distributions, so this is something to take into account, when looking for some optimal compromise in the 

local downscaling process.  
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3. DOWNSCALING OF SEA LEVELS 
Projections of future sea level changes are usually based on global (GCMs) or regional climate models (RCMs) 

predictions. However, the changes in shallow coastal regions or marginal seas, as the sub-basins of the 

Mediterranean Sea, cannot be fully resolved by GCMs. To improve sea levels predictions and to study the 

effect of climate change on extreme water level, at both regional and coastal scale, dynamical downscaling 

based on high-resolution ocean models needs to be performed (Rockel et al., 2015; Liu et al., 2016; 

Vousdoukas et al., 2016; Fagundes et al., 2020; Sannino et al 2022). The downscaling between ocean models 

based on structured mesh usually cannot exceed the size ratio between the coarse and finer model solutions, 

greater than 3 (Pham et al., 2016). Therefore, multiple procedures are required to ensure the correct spatial 

resolution necessary to reproduce the hydrodynamics at coastal scale (Trotta et al., 2017; Kamidaira et al. 

2019). This is often strongly influenced by the complex bathymetric and morphological local characteristics. 

Alternatively, unstructured-mesh ocean models, commonly used for coastal modelling (Danilov, 2013), offer 

an efficient substitute to the computationally expensive multiple-downscaling-steps approach (Zheng et al., 

2012). In fact, the cross-scale approach, typically characterizing this type of applications, allows to potentially 

cover, in one implementation, from the open-ocean to the near shore dynamics (Umgiesser et al., 2022). 

 

3.1. Model description 

To provide temporal sea level evolution data along the coast, a dynamic downscaling approach was decided 

to be followed in the SCORE project, which involves: 

1) the use of an unstructured mesh hydrodynamic prediction model, with increasing resolution only near the 

area of interest (i.e., the marine area of each coastal city); 

2) the use as atmospheric forcing (for wind and atmospheric pressure) of one of the atmospheric models 

available at the regional scale. 

Such a dynamical downscaling application uses the SHYFEM model (Umgiesser et al., 2004), a high-resolution 

ocean model based on the finite elements method. In particular, the model is forced by atmospheric data 

from the RCM ALADIN 63 and from the EUROCORDEX project (Jacobs et al., 2014). See section 1.2.3 

Methodology to downscale climate information. 

In this section the SHYFEM model system is described along with the procedures necessary for its 

implementation, running and evaluation. The description of the numerical model, its application to the study 

site, the adopted simulations setup, and the post-processing procedure necessary for the analysis of the 

model outputs, are reported below. 

SHYFEM (Umgiesser et al., 2004) is an open-source three-dimensional hydrodynamic model based on the 

finite elements method, widely used to reproduce the water circulation and the main hydrodynamics in 

coastal and shallow water areas (freely downloadable at https://github.com/SHYFEM-model/shyfem). 

Particularly suited for predicting extreme storm surge events, it constitutes the core of several oceanographic 

prediction systems mainly developed for Mediterranean waters, e.g. for the Venice Lagoon (Bajo et al., 2007), 

https://github.com/SHYFEM-model/shyfem
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for the Adriatic Sea (Ferrarin et al. 2019) and for the Bonifacio Strait in the western Mediterranean Sea (Cucco 

et al., 2012, Quattrocchi et al., 2021). SHYFEM resolves the three-dimensional primitive equations integrated 

over z-layers in their formulations with water levels and transports. It accounts for baroclinic, barotropic and 

atmospheric pressure gradients, Coriolis force, wind drag and bottom friction, wind wave radiation stress, 

nonlinear advection and vertical turbulent processes. Following the approach commonly used for operational 

prediction of storm surge events in the Venice Lagoon and Northern Adriatic Sea (Zampato et al., 2006; Bajo 

et al., 2007; Umgiesser et al., 2022), the model was applied in its 2D linearized version and by considering 

only the wind drag and the atmospheric pressure gradients as the meteo-marine forcing determining the sea 

surface elevation in the selected coastal site. The governing equations read as:  

 

‬Ὗ

‬ὸ
Ὢὠ ὫὌ

‬‒

‬ὼ

ὫὌ

”

‬ὴ

‬ὼ
ὃ
‬Ὗ

‬ὼ

‬Ὗ

‬ώ

ρ

”
† †  

 

‬ὠ

‬ὸ
ὪὟ ὫὌ

‬‒

‬ώ

ὫὌ

”

‬ὴ

‬ώ
ὃ
‬ὠ

‬ὼ

‬ὠ

‬ώ

ρ

”
† †  

 

‬‒

‬ὸ

‬Ὗ

‬ὼ

‬ὠ

‬ώ
π 

 

where ‒ indicates the water level, U and ὠ the the vertically-integrated velocities (total or barotropic 

transports) in x and y directions, Ὢ the Coriolis parameter, ὴ the atmospheric pressure, Ὣ the gravitational 

constant, ” the standard water density, † the stress term at the surface, the wind stress term, and at the 

bottom, the bottom friction term, Ὄ Ὤ ‒ the total water depth, Ὤ the undisturbed water depth, ὃ the 

horizontal eddy viscosity estimated following the Smagorinsky parameterization (Smagorinsky, 1993). Wind 

and bottom friction terms, related to the wind speed and current velocity respectively, read as: 

† ὧ”ύ ύ ύ  

† ὧ”ό ό ὺ 

† ὧ”ύ ύ ύ  

† ὧ”ὺ ό ὺ 

 

with ὧ as the wind drag coefficient, ὧ the bottom friction coefficient, ” the air density (ύȟύ ) the wind 

velocity (at 10 m above water level) components and (όȟὺ) the horizontal velocity components.  

The horizontal space integration is made with a finite element technique, using a staggered grid, while the 

integration in time is made through a semi-implicit scheme. The Coriolis force, the barotropic pressure 

gradient terms in the momentum equation, and the divergence term in the continuity equation are treated 

semi-implicitly, while all the remaining terms are treated explicitly. The model adopts automatic internal 
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substepping over time to enforce numerical stability with respect to advection and diffusion terms. Due to 

the semi-implicit scheme, a staggered grid formulation is necessary to conserve the mass of the system 

(Umgiesser et al., 2004). Accordingly, the water levels are computed on the vertices of a triangular mesh, 

while the velocities are computed at the centre of the triangles, using a step shape function. 

 

3.2. Model implementation 
To simplify the description of the implementation process, the case study of the coastal area surrounding the 

city of Massa in the Ligurian Sea (sometimes referred to as northern Tyrrhenian Sea) is described. To do that, 

the SHYFEM model system was applied to scale the CORDEX sea levels predictions made for both present 

day and future RCP scenarios. The Western Mediterranean Sea is characterized by a low tidal dynamics with 

amplitudes varying between a few cm up to 20 cm for the Tyrrhenian Sea (Alberola et al., 1995). Sea-level 

changes at decadal and interannual time scales are due to density and water-mass distribution variations in 

the ocean, driven by wind, atmospheric pressure, heat and water fluxes and barystatic sea-level changes 

through water-mass exchange between the land and the ocean (Bonaduce et al., 2020). Among all the 

different involved forcings, extremes inundations events are driven mainly by the action of the wind and 

waves, which exert a direct drag on the surface water masses, and by the atmospheric pressure gradients, 

which force the whole water column toward low pressures areas (Lionello et al., 2021).  

The selected coastal site, facing at the western part of the Mediterranean Sea is mainly affected by north-

westerly and southern winds, Sirocco and Mistral, both characterized by a limited fetch due to the 

geometrical features of the basin (Barbariol et al., 2021). Therefore, for this specific site, considering the 

potentiality offered by the unstructured-mesh ocean model, any nesting between the oceanographic 

component of the GCM and the coastal model was not necessary to reproduce the impact of storm events 

on the local sea water levels. The downscaling procedure was, in fact, applied considering only the predicted 

atmospheric fields as forcing for a coastal model implementation covering the whole Mediterranean Sea with 

a specific focus on the Tyrrhenian Sea. With this aim, a high-resolution computational mesh was then built 

with a varying spatial resolution adapted to satisfactorily reproduce the morpho-bathymetrical 

characteristics of the investigated coastal region. A set of hindcast numerical simulations were performed to 

evaluate the model performances in reproducing the sea surface surge induced by a set of severe storm 

events that occurred in the past decades. Finally, the calibrated and validated model systems were applied 

to make predictions of the water level set up in relation to both climatic and sea level rise future scenarios. 

The simulation results correspond to the residual signal of the total water elevation obtainable, from 

observations, after de-tiding and detrending procedures. A further statistical procedure was therefore 

applied to account for both the astronomical and the other oceanographic contributions to the total water 

elevation.  

The model predictions, along with the wave climate data obtained from the application of a phase-averaging 

wind-wave model for the same climatic scenarios, will be adopted as input data for a high-resolution flow 

and wave model, to compute the combined effects of wind and wave setup on the inundation of the near-

shore zones. 
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3.2.1. Numerical mesh 

SHYFEM integrates the equation system on a finite element mesh, an unstructured grid composed of 

triangular elements of different size and form. For this application, different model meshes were designed 

and implemented in order to detect the most suitable configuration of the model domain for the purpose of 

this study.  

The GMSH, an open-source software based on the Delaunay triangulation algorithm (https://gmsh.info) was 

adopted to build the model meshes. Highly detailed geometrical and bathymetrical data of the study site 

ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ǘǊŀƛǘ ƻŦ Ŏƻŀǎǘŀƭ ǎŜŀ ƛƴ ǇǊƻȄƛƳƛǘȅ ƻŦ ǘƘŜ Ŏƛǘȅ ƻŦ aŀǎǎŀ όппϲлл ооΦу b млϲлс лсΦф 9ύ ƛƴ ǘƘŜ 

Tuscany Region, Italy, were used as input for the meshing procedure.  

Considering the scope of the model application to reproduce the atmospheric component of the total water 

elevation during storm surge events, and the fetch of the main wind regimes acting in the area, the model 

domain should necessarily extend to the whole Tyrrhenian Sea and part of the Western and Central basins. 

With this premise, a total of 8 different unstructured meshes were constructed to test the modelΩǎ efficiency 

and accuracy.  

In Figure 3.1, the numerical grids are depicted along with indications about the ratios behind this choice. The 

adopted strategy can be summarized in testing the role of spatial resolution and domain configuration on 

the computational costs and model accuracy. Therefore, the numerical domain was alternatively extended 

to the whole Mediterranean Sea (MED), or limited to the West and central part of the Mediterranean basin 

only (WMED). For both MED and WMED groups, a relative increment of the spatial resolution was imposed 

for the coastal study site, whereas specific increments were applied for the whole domain, in the case of the 

MED group, and along the main wind fetches only, in the WMED case.  

 

Figure 3.1. TƘŜ у ŦƛƴƛǘŜ ŜƭŜƳŜƴǘ ƳŜǎƘŜǎΣ ƎǊƻǳǇŜŘ ƛƴǘƻ ǘƘŜ άa95έ ŀƴŘ ά²a95έΣ ŀŘƻǇǘŜŘ ŦƻǊ ǘŜǎǘƛƴƎ ǘƘŜ ƴǳƳŜǊƛŎŀƭ ƳƻŘŜƭΦ !ǊǊƻǿǎ 

and lines support the interpretation of the selected numerical strategies. 

The number of computational nodes varied roughly between 30000 to 100000 with spatial resolutions 

ranging between 25 and 10 km for the open ocean and from 1200 to 400 m for the shelf area in front of the 

study site, for the meshes with the lower and higher resolutions, respectively. For all the cases, the finest 




















































