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The behaviour of architectural patterns must be consistent in terms of the artefacts produced in the various activities of
the software development process, such as requirements, software architecture, detailed design and implementation. In this

context, high-level models are mainly used to convey the core concepts or principles of the reality they represent in an abstract

and/or concise way (e.g., requirements or architecture design). If a specific architectural pattern like model-view-controller
is used in such high-level models, the corresponding detailed designs and implementations are also based on the particular

pattern. Low-level or detailed design models are used to provide a (more) precise specification of the source code. However,

because of the involvement of different stakeholders and independent evolution of software systems, inconsistencies might occur
in architectural patterns’ behaviour at those different abstraction levels. Previous studies have not considered the checking

of architectural patterns’ behaviour. In this paper, we present a solution to the containment checking problem that verifies

whether the behaviour described by a low-level model still is consistent with the pattern specifications provided in its high-level
counterparts. Here, the interactions between architectural pattern elements are captured using UML2 sequence diagrams. This

paper also aims at providing more informative and comprehensive feedbacks to the stakeholders for identification of violation

causes and their resolutions. The applicability of the proposed solution is demonstrated by applying it on three architectural
patterns, namely model-view-controller, layers, and pipe and filter. The proposed solutions can also be applied to

other types of behaviour models, such as state machines, activity diagrams and BPMN models, as well as other architectural
patterns.
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1. INTRODUCTION

A typical development scenario for modelling the system behaviour is that a business analyst or software
architect uses a high-level model for outlining the system and discussing it with the customers and developers.
The development team will expand the high-level model to include one or more low-level models. The low-
level model, for example a sequence diagram showing the detailed interactions, is closer to or even very
closely related to the source code of the system. As the software development process involves various
activities, such as requirements elicitation, software architecture design, detailed design and implementation
that are created and evolved independently by different stakeholders and teams, inconsistencies often occur
among them. For instance, high-level models might be changed according to new requirements, and low-level
models are changed as the implementation is modified. If each change is not systematically propagated to all
other models of the same system (or reality), the evolved models may become inconsistent. Hence, detecting
inconsistencies in early phases of the software development life-cycle is crucial to eliminate as many anomalies
as possible before the systems are actually deployed. Such inconsistencies concern all kinds of constraints
that a high-level model imposes on the low-level model. This is important for architectural patterns, as
they impose various kinds of design constraints on the detailed designs and implementations that should
not be violated. To date, however, none of the published studies have considered the consistency checking of
architectural patterns’ behaviour [Muram et al. 2017].

The main idea of architectural patterns is to resolve the recurring design problems that arise in a specific
context at the level of software architectures, including those related to helping in documentation of architec-
tural design decisions, facilitating the communication between stakeholders through a common vocabulary,
and describing the quality attributes of a software system [Avgeriou and Zdun 2005]. There have been many
attempts at modelling the structure of architectural patterns [Gamma et al. 1995; Shaw and Garlan 1996;
Medvidovic and Taylor 2000; Zdun and Avgeriou 2008]; however, only a very few studies have focused on
behaviour modelling of patterns [Garlan et al. 1994; Kamal and Avgeriou 2008; Perronne et al. 2006]. In
practice, the most popular languages for modelling of architectural patterns and pattern variants in software
design are various kinds of informal and semi-formal box-and-line diagrams [Rozanski and Woods 2005], the
Unified Modelling Language (UML) [Group 2011b], Architecture Description Language (ADL) [Shaw and
Garlan 1996; Medvidovic and Taylor 2000], and Domain Specific Language (DSL) [Mernik et al. 2005].

This work focuses on a special type of consistency checking, containment checking, which can be categorized
as vertical consistency, i.e., consistency of the same model at different levels of abstraction [van der Straeten
2005; Muram et al. 2017]. The idea of containment checking is to verify whether the behaviour (or functions)
described by a low-level design and implementation encompasses the behaviour specified in the high-level
counterpart. The containment relationship mainly aims at unidirectional consistency because the low-level
behaviour models are often constructed by refining and extending the high-level model. The containment
checking of architectural patterns’ behaviour not only deals with missing elements or interactions but also
misplacement of elements at different levels of abstraction. Please note that there are severe negative effects
of containment inconsistencies that may cause serious delays in and therefore increased costs of the system
development process, jeopardize properties related to the quality of the system, and make it more difficult to
maintain the system [Spanoudakis and Zisman 2001]. Unfortunately, modelling or mapping of architectural
patterns’ behaviour to sequence diagram is also a challenging task due to different variants of architectural
patterns and different semantics of pattern elements and UML.

In order to support containment checking, we conducted a systematic literature review on behaviour consis-
tency checking research [Muram et al. 2017]. In addition, we have investigated the containment relationship
for various behaviour models in our previous work, including activity diagrams [Muram et al. 2014; Tran
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et al. 2015], sequence diagrams [Muram et al. 2016] and Business Process Model and Notation (BPMN)
[Group 2011a] process, choreography and collaboration models [Muram et al. 2015; Muram et al. 2017]. We
have also investigated possible solutions that are based on model-checking techniques [Muram et al. 2014;
2015; 2016; Muram et al. 2017] and graph algorithms [Tran et al. 2015]. The major contributions of this
paper can be summarised as follows:

—For modelling and analysing the behaviours of architectural patterns, we illustrate the containment
checking solution using UML2 sequence diagrams [Group 2011b]. Our solution provides informative and
comprehensive feedback to the software architects and/or developers to identify the violation causes and
their resolutions.

—In order to support modelling or mapping of architectural patterns’ behaviour to sequence diagram as
well as to guide the user to follow a specific architectural pattern and its variants, we extend the UML
metaclasses using UML profile mechanism. In particular, we use stereotypes to extend the properties of
existing UML metaclasses.

—The applicability of the proposed solution is demonstrated for the model-view-controller, layers,
and pipe and filter patterns. The proposed solution can also be applied to other types of behaviour
models such as BPMN, UML activity diagrams and state machines.

The remainder of this paper is structured as follows: Section 2 summarises the related work on modelling
and formalization of architectural patterns, and behavioural consistency checking. Section 3 describes the
proposed containment checking solution in detail. Section 4 demonstrates the applicability of the proposed
solution to the model-view-controller, layers, and pipe and filter patterns. Section 5 discusses
the various aspects and challenges of supporting containment checking. Section 6 concludes the paper and
discusses future work.

2. RELATED WORK

This section gives an overview of existing work on modelling and formalization of architectural patterns and
consistency checking of behavioural models.

2.1 Modelling and Formalization of Architectural Patterns

The literature describes a number of attempts to model the structure of patterns [Gamma et al. 1995;
Medvidovic and Taylor 2000; Zdun and Avgeriou 2008]. For instance, Giesecke et al. [Giesecke et al. 2007]
extend the UML metamodel by creating profiles based on patterns. Their work maps the MidArch ADL to the
UML metamodel for describing patterns in software design. Garlan and Kompanek [Garlan and Kompanek
2000] introduce four strategies (classes and objects, classes and classes, UML components, and subsystems)
for encoding the architectural elements in UML typically found in modern ADLs. Clements et al. [Clements
et al. 2003] demonstrate how UML can be used to represent the fundamental architectural concepts in
a number of architectural views. Selic [Selic 1998] describes a UML profile for real-time systems, which
demonstrates several architectural concepts such as components, connectors, and ports. These approaches
have not considered the behaviour modelling of architectural patterns.

Mehta and Medvidovic [Mehta and Medvidovic 2003] propose an approach, called Alfa, for composing ele-
ments of architectural patterns using a small set of architectural primitives. In particular, they identified
eight forms and nine functions as architectural primitives. Similarly, Bass et al. [Bass et al. 2003] have
also proposed a predefined set of unit operations, such as abstraction, compression, separation and resource
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sharing as the building blocks for all architectural and design patterns. Zdun et al. [Zdun and Avgeriou 2005;
Kamal et al. 2008] present a generic and extensible approach for modelling architectural patterns by means
of architectural primitives. They use a vocabulary of pattern elements in parallel to architectural primiti-
ves to capture the missing semantics of architectural patterns. The primitives for systematic modelling of
architectural patterns’ behaviour are not considered in the existing approaches.

There are many approaches for modelling or representing software patterns, which focuses on the design
patterns from [Gamma et al. 1995]. A number of such approaches attempted to formally specify the patterns
(see for instance [Mikkonen 1998; Eden et al. 1999; Soundarajan and Hallstrom 2004; Mak et al. 2004]).
These approaches have not been used for architectural patterns or whole pattern languages, but just for
some isolated patterns from [Gamma et al. 1995].

There have also been attempts to support the modelling of patterns’ behaviour in software design. For in-
stance, Garlan et al. [Garlan et al. 1994] propose an object model for representing architectural designs. The
authors characterise architectural patterns as specialisation of the object models. Perronne et al. [Perronne
et al. 2006] describe a modelling framework consists of two design patterns to support behaviour specifi-
cation of patterns. The first, polymorphic behaviour pattern provides the integration and the execution of
new behaviours for a system. The second, structured behaviour pattern provides the means to use finite
state machines for behaviour switching. Kamal and Avgeriou [Kamal and Avgeriou 2008] describe the use
of primitives for systematically modelling the behaviour of architectural patterns. However, the published
studies have not considered the consistency checking of architectural patterns’ behaviour so far.

2.2 Behavioural Consistency Checking

Many approaches tackled different types of models and/or model checking techniques [Spanoudakis and
Zisman 2001; Lucas et al. 2009; Muram et al. 2017]. Some of them focus on checking the consistency of
behavioural models against structural models [Rasch and Wehrheim 2003; Tsiolakis and Ehrig 2000; Kim
and Carrington 2002] or checking different types of behaviour models (models and other representations of
the same reality such as the requirements or implementations) [Lam and Padget 2005; Yao and Shatz 2006;
Gherbi and Khendek 2007; Martens 2005]. To the best of our knowledge, very few of them consider the
consistency checking problem for behaviour models at different levels of abstraction. The major difference
of these approaches and our approach is that we consider the consistency of the same model at different
levels of abstraction, i.e., “vertical consistency” [van der Straeten 2005]. In particular, we focus on checking
the consistency of the containment of the high-level model in the low-level model, rather than checking the
consistency of elements of two different representations.

In some studies, the notion of behaviour inheritance has been studied in the realm of consistency checking of
behaviour diagrams, in particular, the inheritance of object life cycles in statecharts. Stumptner and Schrefl
introduce specialisations of object life cycles by examining extension and refinement in the context of UML
statecharts [Stumptner and Schrefl 2000]. Van der Aalst presents a theoretical framework for defining the
semantics of behaviour inheritance [van der Aalst 2002]. In this work, four different inheritance rules, based
on hiding and blocking principles, are defined for UML activity diagram, statechart and sequence diagram.
However, the application of these inheritance concepts in the context of actual scenarios is not clarified. It
might also be noted that the outcomes of these techniques do not assist the stakeholders in understanding
cause(s) of consistency problems and their resolutions.

In our earlier work, we have investigated the containment checking problem for various behavioural models.
Particularly, our previous research not only supports automated transformation of activity diagrams [Muram
et al. 2014], sequence diagrams [Muram et al. 2016], and BPMN process, choreography and collaboration
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diagrams [Muram et al. 2015; Muram et al. 2017] into equivalent formal specifications and consistency
constraints, but also interprets the counterexamples for locating the cause(s) of inconsistencies and their
resolutions [Muram et al. 2015; 2016; Muram et al. 2017]. Besides model checking techniques, graph-based
solutions for addressing the problem of containment checking are also investigated [Tran et al. 2015]. This
research deals with the checking of architecture patterns’ behaviour at different levels of abstraction, which
has not been addressed so far [Muram et al. 2017].

3. APPROACH

This research aims at identification and resolution of containment checking problems for architecture patterns’
behaviour. In particular, we assume that a high-level model of a software system contains an architecture
pattern, and focus on the question whether the behaviour described by a low-level model of that system
encompasses the specifications made in the high-level model. Typically, a high-level model is created by
a business analyst or software architect for outlining the system and discussing with the customers and
developers. The low-level models are created by the development team or otherwise reverse-engineered from
the source code; they are closer to or even very closely related to the source code of the system. In the
course of software system modelling and implementation, as models are created and evolved independently by
different stakeholders and teams, inconsistencies among models often occur. Therefore, containment checking
improves the quality and reduces the complexity of big and complex system by determining and resolving
the deviations between the low-level behaviour models and a high-level counterpart in the design phase. To
guide the user to follow a specific architectural pattern and its variants, we extend UML metaclasses using
the UML profile mechanism. In particular, we use stereotypes to extend the properties of existing UML
metaclasses; for example, the Object/Lifeline metaclass is extended to model the participants of patterns.
An overview of our containment checking approach is shown in Figure 1. The main focus of the approach is
depicted by the solid lines whilst the dashed lines illustrate relevant modelling and developing activities of
the involved stakeholders.

As emphasized, this paper deals with the problem of checking the containment between generic behaviour
of architectural patterns at different level of abstraction. We modelled the generic behaviour of architectural
patterns using UML2 sequence diagrams as these diagrams can be used to capture the interaction between
architectural pattern elements. Sequence diagrams show the sequence of operations/methods entailed by the
architectural patterns, occurrence of events to invoke specific operations, and use messages to show the inte-
raction among pattern elements. In particular, a sequence diagram consists of lifelines/objects representing
the individual participants in the interaction that communicate via messages. A message is sent from its
source object to its target object (represents an operation/method on the objects) and has two endpoints.
Each endpoint is an intersection with an object and is called an OccurrenceSpecification (OS ). In particular,
each message associates normally two OS s (aka events): one is the sending OS and the other is the receiving
OS . An OccurrenceSpecification is a specialisation of a MessageEnd. ExecutionOccurrence is represented by
two event occurrences, the start event occurrence and the finish event occurrence. Messages can be asynchro-
nous or synchronous. The source object continues to send and receive other messages after an asynchronous
message is sent. In contrast, when a synchronous message is sent, the source object blocks and waits to receive
a response (i.e., reply message) from the target object. As the definitions and semantics of UML2 sequence
diagrams are rather informal [Group 2011b], we derive a representative description of sequence diagrams
constructs, to provide the basis for formally analysing the generic behaviour of architectural patterns.
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Fig. 1. Approach Overview

Definition 3.1 (Sequence Model). A sequence model S eq is a tuple (Ob jects, Interactions) to express the
generic behaviour of architectural pattern where

Ob ject ::= is a finite set of objects/lifelines

type : Interaction ::= (Ob ject S ource,Message, S nd) | (Ob ject Target,Message,Rec)
S nd ::= is a sending OccurrenceS peci f ication of a message on a lifeline Ob ject S ource

Rec ::= is a receiving OccurrenceS peci f ication of a message on a lifeline Ob ject Target

The main goal of our approach is to verify whether the generic behaviour described by the low-level sequence
model of an architectural pattern encompasses those specified in the high-level counterpart. Thus, our appro-
ach takes as inputs a high-level sequence model S eqH and a low-level sequence model S eqL to verify whether
the containment relationship between these models are satisfied (denoted below as: S eqH ≺ S eqL). The fol-
lowing rules for sending and receiving messages must be considered as the generic behaviour specification of
patterns:

—The sending and receiving occurrence specifications of messages on the same object must occur in the
same order in which they are described.

—A receiving occurrence specification Rec of a message is enabled for execution if and only if the sending
occurrence S nd of the same message has already occurred.

—In the case that a synchronous message is sent, the source object cannot send or receive the other messages
until it has received the reply message from the target object.

Two possible ways of containment checking are model checking techniques and graph-based search. Model
checking is an automatic property verification approach that systematically and exhaustively explore the
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states of software systems. It is most frequently used for the formal verification of safety-critical systems, for
example, air traffic control systems, medical equipment systems, train signalling systems, and automotive
control systems [Rozier 2011]. The advantage of model checking is that it can be performed in early phases
of software modelling and development where no executable products are produced yet. The model checking
techniques require the transformation of high-level behaviour model into design constraints, whereas the low-
level behaviour model can be mapped into formal descriptions. This can be done using either manual mapping
of input models into formal descriptions and consistency constraints (e.g., specifying the transformation
rules) or automated techniques. In [Muram et al. 2014; 2016] we have introduced the transformation rules
grounded on formal expressions that can support the automated transformation of the high-level behaviour
models into design constraints and low-level behaviour models into formal descriptions. In particular, the
behaviour models are created in Eclipse Papyrus1 and the Eclipse Xtend framework2 is used to realise the
transformation of behaviour models to formal descriptions and design constraints. The model checker takes
the formal descriptions and design constraints as inputs, and exhaustively explore all executions of the
formal descriptions by traversing the complete state space to determine whether the design constraints hold.
In case formal descriptions do not satisfy the design constraints, it implies that the low-level model deviates
improperly from the high-level counterpart, and the model checker will generate a counterexample. Note that
a counterexample provides only limited information for understanding the causes of inconsistencies but not
how to fix the inconsistencies. Therefore, an efficient analysis of the generated counterexample is supported
in our proposed solution that provides the concrete information about the causes of inconsistencies (i.e.,
missing elements and misplacement of elements) and their resolutions [Muram et al. 2015; 2016; Muram
et al. 2017]. The containment relationship to be validated by model checking is defined in the following
Equation 1:

(1)S eqH ≺ S eqL

= noMissingElements(S eqH , S eqL)

∧ noMisplacedElements(S eqH , S eqL)

The containment checking problem can be broken down into smaller graph-based tasks (or functions), which
has a number of advantages. First, the tasks are independent of each other, and therefore, can be performed
in any order. Moreover, the tasks can also be executed in parallel to gain better performance. Finally, each
task produces concrete and precise information about the violations of the containment relationship. For
instance, no missing nodes (i.e., no missing expected functions), no missing transitive links (i.e., no missing
edges between nodes or functions), and no missing cycles (i.e., no missing loop executions) are implemented
in [Tran et al. 2015]. The graph based techniques might require intermediate representation of behaviour
models, i.e., mapping of elements to nodes and edges [Fryz and Kotulski 2007; Truong et al. 2009; Tran et al.
2015]. Subsequently, the graph search algorithms are used to verify the containment relationship between
input models. In case the containment relationship is not satisfied (i.e., the input behaviour models are
inconsistent), the checking results have to provide concrete information about the causes of inconsistencies
such as missing elements, missing execution paths, or missing cycles as well as the involved model elements.
The containment relationship to be validated by the graph-based algorithm is defined in the following Equa-
tion 2:

1See https://www.eclipse.org/papyrus
2See https://eclipse.org/xtend
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(2)

S eqH ≺ S eqL

= noMissingNodes(S eqH , S eqL)
∧ noMissingTransitiveLinks(S eqH , S eqL)
∧ noMissingCycles(S eqH , S eqL)

noMissingNodes(S eqH , S eqL) = ∀eH : S eqH • ∃eL : S eqL • match(e1, e2) (3)

The function match(), which is used by noMissingNodes(), takes two model elements as inputs and re-
turns true if two elements are matched and false otherwise, as shown in Equation 3. For the function
noMissingTransitiveLinks() the conventional definitions of the adjacency matrix and transitive closure of a
directed graph can be used. Let G = (V, E) be a directed graph where V is the set of nodes and E is the
ordered set of arcs. The adjacency matrix AG of G is an n × n boolean matrix whose elements AG[i, j] is true
if e(i, j) ∈ E and false otherwise. Based on the adjacency matrix AG, a reachability matrix RG = A∗G can be
derived to represent the transitive closure of G. It is denoted as RG[i, j] = true if there is a directed path
from node i to node j and f alse otherwise. In order to define noMissingCycles(), Tarjan’s algorithm [Tarjan
1972] can be used to obtain a set of strongly connected components (SCC)3. For more details see [Tran et al.
2015].

4. APPLICATION OF OUR APPROACH TO ARCHITECTURAL PATTERNS

4.1 Containment Checking in Model-View-Controller

The section discusses the identification and resolution of containment inconsistencies in the model-view-
controller (MVC) pattern’s behaviour at different levels of abstraction. In the MVC pattern the system is
divided into three different parts: The Model concerns the object or objects that encapsulate some application
data and the logic that manipulates that data independently of the user interfaces. One or multiple Views
display a specific portion of the data to the user. The Controller associated with each view receives user
input and translates it into a request to the model. In particular, the views and controllers constitute the user
interface. The users interact strictly through the views and their controllers, independently of the model,
which in turn notifies all different user interfaces about updates. There are many variations of the MVC
pattern, for instance, passive model and classic MVC4[Sokolova et al. 2013]. The former is used when one
controller manipulates the model exclusively. The controller modifies the model and then notifies the view
about the changed model, which should be updated. The later is employed when the model changes state,
and it notifies the view without the controller involvement.

UML sequence diagrams need to be extended to express the specific semantics of MVC, especially to denote
which objects are which participants of MVC and which kinds of messages are sent. Accordingly, a set of
stereotypes is required to help architects and developers in correctly mapping the elements of the MVC
architectural pattern to UML sequence diagrams. This will also reduce the occurrence of containment viola-
tions between the high-level and low-level behaviour models. We selected five stereotypes from the existing

3A graph is strongly connected if every vertex is reachable from every other vertex. The strongly connected components of a
directed graph form a partition into subgraphs that are themselves strongly connected.
4See https://msdn.microsoft.com/en-us/library/ff649643.aspx
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vocabulary of design elements [Kamal and Avgeriou 2008]. The «Model», «View», «Controller» stereotypes
are used to extend the semantics of lifelines/objects in UML sequence diagrams for modelling the model, view
and controller participants of the pattern, respectively. UML sequence diagrams support the asynchronous
messaging; however, the semantics defined in the UML standard do not clearly define the difference between
the return values from the receiver lifeline (i.e., target object). It is difficult to determine whether the return
value is merely a notification/acknowledgement event about the receipt of message or the actually proces-
sed data; therefore the «AsynchMessage» stereotype is used for modelling the asynchronous communication
among the objects. Similarly, the «SynchMessage» stereotype is used when the source object blocks and
waits to receive a response from the target object to update the status of the operation that invoked the
synchronous communication. In summary:

—The «Model» stereotype extends the Lifeline/Object metaclass of UML and owns occurrence specifications
for interaction with Controller and/or View objects.

—The «View» stereotype extends the Lifeline metaclass of UML and owns occurrence specifications for
interaction with Model and Controller objects.

—The «Controller» stereotype extends the Lifeline metaclass of UML and owns occurrence specifications for
interaction with Model and View objects.

—The «SynchMessage» stereotype extends the Message metaclass and uses the existing UML synch-message
operations to ensure that an end-to-end connection is established with the receiver lifeline (target object),
which covers the receiving occurrence specification (event end). A return operation is mandatory for
the synchronous communication to update the status of the operation that invoked the synchronous
communication.

—The «AsynchMessage» stereotype extends the Message metaclass to ensure that the invocation flag is
active when an operation is invoked. The asynchronous communication is further constrained to ensure
that the method invoking the operation is not bound to receive the reply message and only a notifica-
tion/acknowledgement can inform about the receipt of message.

Furthermore, there is need for additional stereotypes to cover the missing aspects concerning the containment
relationships. For instance, the User/Client object is covered by any stereotypes explained so far. We also
consider the case in which the object(s) in the low-level model are broken down into multiple entities, so
that each of them not necessarily receives an update message, in particular, if the View is broken down into
mobileView and desktopView, the message will be sent to only one specific view. For this purpose we introduce
the «ViewPart» stereotype. Similarly, model and controller can be broken down into sub-components.

—The «Actor» stereotype extends the Object/Lifeline metaclass of UML and contains occurrence specifica-
tions for the interaction with View.

—The «ViewPart» stereotype extends the Lifeline metaclass of UML and divides the View into parts for
interaction with a Controller and/or Model.

—The «ModelPart» stereotype extends the Lifeline metaclass of UML and divides the Model into parts for
interaction with a Controller and/or View.

—The «ControllerPart» stereotype extends the Lifeline metaclass of UML and divides the Controller into
parts for interaction with a Model and Views.

The high-level sequence diagram of an itinerary management system is shown in Figure 2. It follows the
MVC pattern and involves five objects, namely Client, Website, User Controller, Travel Agency, and Airline.
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Fig. 2. High-Level Model of Itinerary Management System

Specifically, Airline and Travel Agency objects represent the models; Website concerns view which forward
Client requests to User Controller; and User Controller stores and retrieves data from Airline and Travel
Agency models and updates the Website view accordingly. The core functionality of the itinerary management
system can be described as follows: the process starts when Client sends search flight request by invoking
an event through the Website, the User controller, in turn, contacts the Travel Agency model for loading
airlines. The Travel Agency replies with a flight list to the User Controller which in turn is asked to update
the view. When the Client selects the preferred flight, the User Controller asks the Airline model about seat
info and cost details, respectively.

The low-level itinerary management system is a refined and extended version of the high-level diagram that
provides more detailed information about the system (an example of a low-level model is shown in Figure 3 in
the context of detected violations and their causes). For instance, it contains additionally a Payment model
to calculate the price of an itinerary, as well as an Email model and Service for managing the user registration
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Fig. 3. Feedback of Containment Results in the Low-Level Model

Proceedings of the 22nd European Conference on Pattern Languages of Programs



12 • F. UL Muram, H. Tran, U. Zdun

and login strategy. The low-level model may contain new messages that can be inserted in-between existing
ones, or new objects and messages in parallel with existing ones, and so on, but the elements should not
be inserted arbitrarily. Our containment checking for generic behaviour of the MVC pattern aims to verify
whether the elements of high-level model correspond to those of a detailed design of a system.

The containment checking solution presented in the aforementioned Section 3 first verifies whether all the
objects (i.e. model, view, and controller) that exist in the high-level sequence diagram of the itinerary
management system (S eq H) are also present in the low-level sequence diagram (S eq L). For each object
the respective interactions (e.g., Client S earchFlight S nd, Client S how Rec) are also matched. If an object
present in the S eq H no longer exists in the S eq L it means that interactions corresponding to this object
are also deleted. For this, the “missing element cause” (either one, multiple, or all elements could be missing)
is detected and a corresponding countermeasure (i.e., insert the missing element at a particular position in
the low-level model) is suggested.

In this case, the TakeAnotherScreen message is sent from the UserController to Client present in the high-
level model, but does not exist in the low-level model, can be seen as a reason for the containment violation.
As we can see in Figure 3, the third box displays the actual cause in particularly TakeAnotherScreen message
is missing in the low-level model for which the proposed countermeasure is add TakeAnotherScreen message
after AccessSuccessful message – connecting UserController and Client objects.

If all objects present in S eq H are also present in S eq L, the next check is, whether the corresponding in-
teractions have a different structure. The preceding and succeeding interactions of a corresponding object
of S eq L are matched with the interaction of S eq H to locate the causes of inconsistencies. In our example,
the sending OS of the RetrieveCost message (UserController RetrieveCost S nd) and the receiving occur-
rence of the CostDetails reply message (UserController CostDetails Rec) covered on the UserController

object are violated. The former is violated because the RetrieveCost is sent prior to the sending OS of the
RetrieveSeatInfo message (UserController RetrieveS eatIn f o S nd); whereas the latter is violated because
the receiving occurrence of the SeatInfo message (UserController S eatIn f o Rec) does not exist before the
CostDetails reply message in the low-level model. Similarly, a misplacement of message occurrences exists
for the Airline object. These violations can be resolved by putting the RetrieveCost and CostDetails

messages after the RetrieveSeatInfo and SeatInfo messages – connecting the UserController and Ai-

rline objects in the S eq L. In Figure 3, the first and second boxes show the actual causes and potential
countermeasures of misplacement of elements. Once the causes are located, causes are eliminated by updating
the responsible elements of the low-level sequence diagram.

4.2 Containment Checking in Layers

So far, we have presented a scenario from a realistic use case representing the MVC pattern that illustrates
how our proposed solution works to identify and resolve the containment inconsistencies of the MVC pattern
at different levels of abstraction. As our proposed solution aims to support the software architects and/or
developers to verify the containment relationship during their development tasks, it is crucial to assess
whether our solution is also applicable for other architecture patterns, like the layers architecture pattern,
as well.

In the layers pattern a system is structured into Layers in which each Layer provides a set of services to
the layer above and uses the services of the layer below. Within each layer all constituent components work
at the same level of abstraction and can interact through connectors. Between two adjacent layers a clearly
defined interface is provided. In the pure form of the pattern, layers should not be by-passed: higher-level
layers access lower-level layers only through the layer beneath. However, a relaxed layered scheme loosens
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the constraints and allows the by-passing such that a component can interact with components from any
lower-level layer. The components in the layer should be organized in such a way that they share a set of
common behaviours and one layer member cannot be part of multiple layers.
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Fig. 4. Modelling Layers Architecture Pattern Using Stereotypes

The generic behaviour of the layers pattern at different levels of abstraction satisfies the containment
relationship if elements or behaviours of the high-level model are contained in the detailed design of a
layers-based architecture. It is also important that the detailed design follows the same definition of layers
patterns as the high-level model. The semantics of UML sequence diagram elements (i.e., lifelines/objects
and messages) again need to be extended for modelling the concerns of layers pattern. Therefore, we used
the two stereotypes «SynchMessage» and «AynchMessage» from the previous section to map the layers
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pattern into sequence diagrams. Specifically, they support synchronous and asynchronous communication
between two adjacent layers and members within a layer. The «Actor» stereotype might also be used to
model the client/user. In addition, we need to ensure that interactions between lifelines residing in different
layers do not allow by-passing; also one layer member cannot be part of multiple layers. Therefore, an
additional stereotype is needed to cover the missing aspects concerning these containment relationships – a
similar stereotype for components is proposed in [Zdun and Avgeriou 2008].

—«Layer»: A stereotype that extends the Lifeline metaclass of UML and owns occurrence specifications for
interaction with lower layer. The «Layer» stereotype allows lifelines who are members of the upper layer
(e.g., layer N) to interact with their fellow lifelines in layer N, as well as lifelines in layer N-1 but does not
allow them to communicate with other layers (e.g., N-2 and below). We also support the tag definition
layerNumber (+layerNumber:Integer) for layers – representing the number of the layer in the ordered
structure of layers.

Figure 4 shows a realistic scenario, namely, an ATM (Automated Teller Machine) system modelled with the
stereotypes for expressing the layers pattern. The User (actor) of an ATM machine, can access his/her
bank accounts in order check account balance, deposit funds, make cash withdrawals and/or transfer funds.
In particular, the User interacts with the ATM through a UI (User Interface, Layer 3) by inserting a bank
card and entering a PIN (Personal Identification Number). This information will be sent to the Account
Manager (Layer 1) for validation via the Withdraw Logic (Layer 2). After the correct verification, the User
chooses the withdraw cash operation from the menu and enters the amount. The UI layer connects to the
Withdraw Logic (Layer 2) for verifying the customers’ balance. If the requested withdrawal amount is less
than or equal to the user’s available balance, the transaction will be performed, and the customer will take
the money from dispenser. Otherwise, an error message is sent and the transaction prompts the User to enter
a new amount. After every withdrawal, the updated balance, the withdrawal amount, and other details of
the transaction will be stored in the Bank Database. Using our extensions to UML sequence diagrams it is
possible to support containment checking for the explained containment relationships akin to the support
for MVC explained before.

4.3 Containment Checking in Pipe and Filter

In this section, we describe the identification and resolution of containment inconsistencies in the pipe
and filter pattern’s behaviour at different levels of abstraction. In a pipe and filter architecture a
complex task is divided into several sequential subtasks. Each of these subtasks is implemented by a separate,
independent component (or filter), which handles only this task. Filters are connected through pipes, each of
which transmits outputs of one filter to the inputs of another filter [Buschmann et al. 1996]. A Data Source
produces an output stream without any input and supplies data streams to the first pipe. A Data Sink
consumes an input stream but does not produce any output. The elements in the pipe and filter pattern
can vary in the functions they perform. For instance, filters can be characterised into active and passive filters
based on their input/output behaviour. An active filter starts processing on its own as a separate program
or thread. It pulls in data and pushes out the transformed data. A passive filter is activated by being called
either as a function (pull output data) or as a procedure (push input data). Pipes can buffer data between
filters, form feedback loops or synchronize the filters.

Similar to the MVC and layers patterns, UML sequences diagrams need to be extended in order to enable
containment checking. Based on this, the containment checking can be performed to ensure that the generic
behaviour described by the low-level model of a software system that is based on the pipe and filter pattern
encompasses those specified in the high-level counterparts, akin to the support for the MVC pattern described
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Fig. 5. Modelling Pipe And Filter Pattern Using Stereotypes

above. Here, we require at least «Filter» and «Pipe» stereotypes to denote the participants of the pattern
(as also introduced in [Kamal and Avgeriou 2008]), and again the «AynchMessage» and «SynchMessage»
stereotypes described above. The «Filter» stereotype is used to depict the lifelines/objects that transmit
streams of data, and «Pipe» is used for message interaction from source object (filter) to target object
(adjacent filter). The «AynchMessage» and «SynchMessage» stereotypes are used to specify asynchronous
and synchronous communication from one filter to the next filter in the chain, respectively.

—The «Filter» stereotype extends the Lifeline metaclass of UML and covers the occurrence specification of
the associated pipes.

—The «Pipe» stereotype extends the Message metaclass of UML and connects the occurrence specification
of a sender lifeline to the occurrence specification of a receiver lifeline.

Figure 5 shows the stereotypes used for expressing the pipe and filter pattern in a KeyWord In Context
(KWIC) system. The modelled system is composed of KWIC, Input, Circular Shift, Alphabetizer, Line
Storage and Output filters; whereas the pipes act as intermediate buffers to facilitate communication between
filters. The KWIC process is initiated upon receiving an input file that contains a set of lines. The Input filter
reads the input file and writes the parsed lines to the Line Storage filter. Subsequently, the Circular Shift and
Alphabetizer filters are invoked to perform the circular shifts and sorting respectively. Finally, the Output
filter is invoked to write the results on an output file. It is therefore possible to perform the identification
and resolution of containment inconsistencies for the pipe and filter patterns’ behaviour.

5. DISCUSSION

The proposed containment checking approach not only provides a set of stereotypes for correctly modelling
and mapping the elements of architectural patterns to UML2 sequence diagrams but also gives informative
and comprehensive feedbacks to software architect and/or developer for identifying the causes of contai-
nment violations and their resolutions. At the current level of development, our approach is applied to
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the model-view-controller, layers, and pipe and filter architectural patterns. Nevertheless, the
proposed approach is applicable to other patterns such as client-server, broker and presentation-
abstraction-control patterns and to other behaviour models (used for modelling architectural patterns)
such as UML state machines, communication diagrams and activity diagrams.

A limitation of our approach is the extra effort needed for defining stereotypes and formalization of rules,
but this extra effort is necessary only once per pattern (variant) and behaviour model type. Then the
same benefits as presented in this paper might be gained for other behaviour model types and architectural
patterns. However, for each model, modelled using our approach, the comparatively small extra effort for
annotating the model with the proposed stereotypes remains.

Note that the containment relationship between the generic behaviour of architectural patterns at different
levels of abstraction is based on the assumption that element names of a high-level model and its correspon-
ding low-level counterparts are aligned to a common ontology respected by all stakeholders. The assumption
is rather realistic because a low-level model is mainly achieved through a refinement of a high-level model
where existing high-level elements are often enriched with more details and elements [Tran et al. 2011]. Ho-
wever, in cases of mismatches of their names and types, one possibility to alleviate this problem, like in the
approaches on checking behaviour similarity [Becker and Laue 2012], is to employ supporting text matching
techniques [Navarro 2001].

6. CONCLUDING REMARKS

This study focuses on the identification and resolution of containment violations in architecture patterns’
behaviour at different abstraction levels. In this context, we have performed a systematic review of behaviour
consistency checking research [Muram et al. 2017], investigated various behaviour models including activity
diagrams, sequence diagrams and BPMN models, as well as possible solutions based on model-checking
techniques and graph algorithms. This research helped us in the identification of violation causes of an
architectural patterns’ behaviour in various activities of the development process. Our approach helps to
automatically ensure the consistency of the pattern realization in the software architecture, the detailed
design and the implementation. The applicability of the proposed solution is demonstrated for the model-
view-controller, layers, and pipe and filter patterns. We have suggested one specification extension
of UML2 for modelling the behaviour of each of those patterns; please note that our containment checking
approach is not dependent on those specific formalization, but can also be applied on different ones and also
other variants of the covered and other patterns.

For future work we plan to develop a process related to refactoring, a catalogue of applicable refactorings,
and evaluations of that catalogue of refactorings. The intention is that the architecture should not be violated
during code or model refactorings.
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