

Control of a Laboratory Distillation Column with Methanol-Water Mixture

M. Micherda¹, K. Ercan Özdemir^{1,2}, R. Paulen¹

¹Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia

²Chemical Engineering Department, Gebze Technical University, Kocaeli, Turkey

Goals

Distillation columns are essential units in chemical engineering used for separating mixtures into their individual components. They operate based on the principle differences in volatility between the components of a mixture. Our goal is to control a laboratory distillation column with methanol-water mixture.

P&ID	Scheme
------	--------

Steady-State Model in AVEVA Process Simulation

T1	(Process.Column)	← _
>	Configuration	
>	Settings	

PI Controller Tuning

Plant model - transfer function (TF):

Control law (PI controller):

1 - Condenser, 2 - Stages of the column, 3 - Feed pump, 4 - Reboiler, 5 - Feed preheater, 6 - Product valves, 7 - Cooling water valve, 8 - Reflux valve

 $G(s) = \frac{\text{outputs } Y(s)}{\text{inputs } U(s)} = \frac{K}{Ts+1}e^{-\tau s}$

TF (bottom temperature and reboiler duty):

$$G(s) = \frac{T_8(s)}{Q_B(s)} = \frac{7.5}{8.3s + 1}$$

TF (top temperature and reflux ratio):

$$G(s) = \frac{T_1(s)}{R(s)} = \frac{-0.1142}{112.1s + 1}$$

$$u(t) = K_p(w(t) - y(t)) + \frac{K_p}{T_i} \int_0^t w(t) - y(t) \, \mathrm{d}t$$

Proportional gain:

$$K_p = \frac{T}{K(T_c + \tau)}$$

Integral time constant:

$$T_i = \min[T, 4(T_c + \tau)]$$

Results

Conclusions

The experimental column control exhibited promising results, with stable temperature and composition profiles very similar to the strady-state model. This highlights the efficacy of the control algorithm in optimizing process parameters and ensuring high-quality product output.

Acknowledgements: This research is funded by the Slovak Research and Development Agency under the project APVV-21-0019, by the Scientific Grant Agency of the Slovak Republic under the grant 1/0691/21, and by the European Commission under the grant no. 101079342 (Fostering Opportunities Towards Slovak Excellence in Advanced Control for Smart Industries).