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Abstract
The inverse problem of electrocardiography or electrocardiographic imaging (ECGI) is a technique for reconstructing elec-
trical information about cardiac surfaces from noninvasive or non-contact recordings. ECGI has been used to characterize 
atrial and ventricular arrhythmias. Although it is a technology with years of progress, its development to characterize atrial 
arrhythmias is challenging. Complications can arise when trying to describe the atrial mechanisms that lead to abnormal 
propagation patterns, premature or tachycardic beats, and reentrant arrhythmias. This review addresses the various ECGI 
methodologies, regularization methods, and post-processing techniques used in the atria, as well as the context in which they 
are used. The current advantages and limitations of ECGI in the fields of research and clinical diagnosis of atrial arrhythmias 
are outlined. In addition, areas where ECGI efforts should be concentrated to address the associated unsatisfied needs from 
the atrial perspective are discussed.
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1 Introduction

Atrial arrhythmias are common causes of morbidity [1]; 
although rarely fatal, in patients with various cardiovascu-
lar risk factors, structural heart disease, and other comor-
bidities, they can potentially increase mortality [1–3]. Even 
though bradyarrhythmias and tachyarrhythmias are the most 
frequent arrhythmic events in the atria [4], atrial fibrillation 
occurs as a consequence of several established cardiovascu-
lar risk factors [1, 5]. The electrocardiographic diagnostic 
method for these disorders is the evaluation of the P wave 
as a sign of atrial activation on the surface electrocardio-
gram (ECG) [6]. The existence or absence of P waves, their 
shape, and their occurrence can all be used to detect atrial 
disorders [1].

While the use of invasive electrophysiological techniques 
to assess atrial arrhythmias [7, 8] has yielded a mechanistic 
understanding of the origin of arrhythmias in general, it is 
now widely accepted that diagnosis with noninvasive tech-
niques such as electrocardiography is sufficient in most cases 
[9]. However, when there are diagnostic uncertainties or as 

a prelude to a catheter ablation therapy, atrial mapping by 
invasive studies may be advantageous [10]. With the increas-
ing trend of the use of catheter ablation procedures to treat 
atrial arrhythmias [8], research around P waves brings more 
attention to unmasking the mechanisms of focal and reen-
trant atrial rhythm disorders on the surface ECG.

In this sense, the inverse problem of electrocardiography 
or electrocardiographic imaging (ECGI) can provide an extra 
value as an estimation of the electrical information over car-
diac surfaces from non-contact recordings [11]. ECGI has 
been used to determine the propagation patterns during pre-
mature beats or tachyarrhythmias as well as drivers related 
to reentrant arrhythmias [12].

Recent studies reviewing the status of ECGI have focused 
on highlighting best practices for validating solutions [13] or 
characterization of atrial fibrillation using ECGI [14]. The 
purpose of this review is to technically address the major 
atrial ECGI studies of recent years and, therefore, to empha-
size those areas in which technical development of ECGI 
solutions has the potential to improve atrial characteriza-
tion and treatment and to help establish their clinical utility. 
Thus, the objectives of this work are:

1. To summarize the multiple ECGI methodologies, regu-
larization methods, and post-processing techniques, as 
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well as the circumstances under which they were used 
in the atria.

2. To highlight the present advantages and limitations of 
current ECGI applied to research and clinical diagnosis 
of atrial arrhythmias.

3. To identify the areas in which ECGI research should 
concentrate efforts in the future in order to take on the 
unmet needs from the approach in the atrial context.

The main sections and concepts on which this review is 
focused are depicted in Fig. 1. We introduce the different 
alterations that occur in the atria leading to atrial arrhyth-
mias, the approaches for the use of ECGI, methodological 
aspects for ECGI, post-processing including alternative 
approaches to ECGI resolution, and future directions in the 
use of ECGI to characterize atrial arrhythmias.

2  Atrial arrhythmias

Alterations from normal sinus rhythm (SR) are known as 
tachyarrhythmias. According to their origin and mechanism 
behind their maintenance, these pathologies can be divided 
into different groups. The most common supraventricular 
tachyarrhythmias (SVTs) are atrial fibrillation (AF), atrial 
flutter (AFL), and atrial tachycardias (ATs) [15].

Atrial fibrillation is the most common type of arrhythmia, 
with an atrial rate between 300 and 600 bpm [16]. Over the 
last decades, different theories have been proposed as the 
ones responsible for its initiation and maintenance [17–19]. 
They are mainly divided into three (not mutually exclusive) 

theories: ectopic foci (areas that suddenly depolarize leading 
to a centrifugal wavefront expansion from that point to the 
rest of the atria) [20], rotors (reentrant patterns of activation 
which circulate around a region) [21] and multiple unstable 
waves which propagate through the atria [22]. Moreover, 
during the last years, two novel mechanisms have been pro-
posed. The first one argued that the presence of rotors might 
be linked to fibrotic areas and their borders [23] whereas the 
second one suggests that epicardial-endocardial dissociation 
is the one which plays a main role in AF maintenance [24].

Atrial flutters are a type of SVTs maintained by a macro 
reentrant circuit in the heart around either anatomical or 
functional obstacles and with an atrial rate between 240 and 
350 bpm [25]. Depending on the structures involved in this 
reentry, we can distinguish between typical and atypical 
flutter. Typical flutter is the most frequent AFL, and it is 
characterized by a rotational wavefront pattern that pivots 
around the tricuspid annulus including in its lower part of 
the circuit, the cavotricuspid isthmus (CTI). Considering 
the direction of the rotation, we can differentiate between 
counterclockwise (the most common one) and clockwise 
typical AFL [6, 26, 27]. On the other hand, atypical AFL 
involves other reentrant circuits either in the left or right 
atrium [27, 28].

Atrial tachycardias are characterized by a rapid atrial rate 
which oscillates between 100 and 250 bpm [6]. They are 
sustained by an ectopic focus in the atria which produces a 
centrifugal wavefront expansion from that point to the rest 
of the atria. These sudden depolarizations are either caused 
by automatic trigger activity or by the presence of micro-
reentries [29, 30]. Moreover, it is also possible that ATs are 

Fig. 1  Summary of topics covered in the review
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maintained by various foci leading in this case to multifocal 
AT [31].

Lastly, there are other less common SVTs related spe-
cifically to the sinus node. These are inappropriate sinus 
tachycardia and sinoatrial nodal reentrant tachycardia. Both 
are characterized by a fast sinus rate even in a relaxed con-
dition. Regarding inappropriate sinus tachycardia, different 
mechanisms have been proposed for this pathology from 
internal problems in the sinus node to dysfunctions in the 
autonomic or neurohormonal control system. Nevertheless, 
experts have not achieved any consensus about it yet [32]. 
Contrary, the sinoatrial nodal reentrant tachycardia is led by 
micro reentrant pathways around the sinus node, which lead 
to a focal AT in this area [33]. Some features that differenti-
ate it from sinus tachycardia are that it is characterized by 
an unexpected onset and termination and that the interval 
between activations is typically longer than during SR [6].

3  Modalities of inverse problem resolutions 
in the atria

The classical inverse solution can be seen as an extension of 
the conventional ECG [34], based on surface measurements 
as inputs to determine the electrical activity on the surface of 
the heart. However, there are numerous approaches includ-
ing different source models or the incorporation of physi-
ological constraints into the formulation [35].

In Fig. 2, three modalities of inverse solutions in the atria 
which will be introduced in this section are represented. 
Depending on the source and the forward model used, body 
surface potential recordings can be used to reconstruct time 

series of epicardial surface potentials, inverse computed 
electrograms (iEGM) [36], or specific electrophysiological 
parameters such as activation times [37]. The initial setup 
to obtain these solutions would consist of a dense electrode 
array used to obtain multiple Body Surface Potential Maps 
(BSPM) [38], the location of the recording electrodes, and 
torso and heart geometries that can be obtained using imag-
ing techniques as magnetic resonance imaging (MRI) [39], 
computed axial tomography (CT) [40] or photogrammetry 
[41].

Another inverse problem methodology that has been 
applied in the atria is catheter-based imaging [42]. In this 
case, it is possible to reconstruct the electrical potential 
on the inner wall of the chamber using measurements from 
multielectrode non-contact probes located inside the heart 
chambers as part of an inverse solution during clinical 
electrophysiology (EP) procedures [42, 43]. In this con-
figuration, the catheters must be located by the electrical 
reference electrodes which are connected to the system 
that will allow tracking positions inside the heart cham-
bers [43]. These probes can also be utilized to reconstruct 
the endocardial anatomy after a post-processing stage is 
carried out [44].

Despite the difference in approach between the use of 
noninvasive recording and non-contact mapping, both tech-
niques aim to characterize atrial mechanisms [14, 45]. Some 
studies use the noninvasive recording for characterization 
[46], therapeutic guidance, and in support of ablation ther-
apy [47]. On the other hand, non-contact mapping has been 
used for the identification and ablation of the arrhythmic 
substrate in the setting of atrial tachycardias [45].

Fig. 2  Modalities of inverse problem resolutions in the atria. Reconstruction of epicardial potentials or activation times is accomplished 
through body surface measurements in the first two scenarios; reconstruction of surface potentials is accomplished in the third case through 
intracavitary potentials
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The disparities between the solutions to these inverse 
problem modalities are attributable to the source models 
employed and the different methodological approaches 
used in each case, which will be described in more detail 
in the following sections of this article.

4  Derivation of transfer matrix

The first step in solving the inverse problem is to define 
the relationship between the acquired sources and the 
volumetric conductor model. This framework is referred 
to as the forward problem of electrocardiography [48]. A 
description of the heart and body surfaces that separate 
regions of different conductivity, as well as the tissue con-
ductivities of each of these regions, is required in order 
to solve this problem successfully [49]. The purpose is to 
find a matrix of transfer coefficients that relate the cardiac 
potentials as a linear combination to those on the measured 
source potentials, either in the body or in the heart [50].

To begin, the volume conductor is defined in this frame-
work as the region between a surface enclosing the cardiac 
sources and the conductive outer surface of the volume [50]. 
This definition effectively eliminates all sources from the 
solution domain, allowing to employ Laplace’s equation:

where σ is the electric conductivity and Φ is the electric 
potential [50].

The most frequently used numerical techniques for solv-
ing this problem, in this case, are the finite element method 
(FEM) [51], the boundary element method (BEM) [48], and 
the method of fundamental solutions (MFS) [52].

BEM and FEM methods are mesh-based methods, as they 
require the topological relationships between the nodes in 
order to convert Laplace’s equation to surface integral form 
with Green’s theorem. BEM formulation is based on surface 
integrals and boundary potentials are thus discretized and 
assumed to be constructed as linear combinations of basic 
functions [50, 53]. FEM is based on approximating the prob-
lem by means of small volumetric elements, called finite 
elements, so that the residual of the discretized solution is 
minimized at the Dirichlet and Neumann boundary condi-
tions of the complete discretized volume [51, 54].

The main advantage of BEM is that the number of nodes 
or degrees of freedom involved in the calculation is much 
smaller than in FEM, since just the surfaces and not the 
full volume are discretized. A comparative study applying 
BEM and FEM to ECG problems has revealed that under 
similar levels of discretization, BEM produces smaller errors 
and consumes less computational time but requires more 

(1)∇(�∇Φ) = 0

memory than FEM [55–57]. In contrast, FEM accounts 
for the anisotropic conductivities of human bodies more 
thoroughly.

On the other hand, MFS is meshless [58], as it does not 
require a complete torso’s geometry, only the location of the 
electrodes and the potentials are expressed as a linear combi-
nation of Laplace’s fundamental solution over a discrete set 
of virtual source points following Dirichlet’s and Neumann’s 
boundary conditions in a Cauchy problem.

MFS methodology does not rely on geometry, so negative 
effects caused by segmentation errors and singularities in the 
boundaries are avoided. However, BEM and FEM have the 
advantage of allowing for more precise geometries, which 
allows for a more accurate calculation of the transfer matrix. 
This enhancement is not possible in MFS [58].

5  Regularization and regularization 
parameter optimization in atrial signals

Electrocardiographic imaging is a noninvasive technique 
that requires information from surface recordings and the 
geometry of the torso and the heart of the patient to estimate 
cardiac potentials. ECGI resolution is an ill-conditioned 
problem and, therefore, small perturbations in the data pro-
duce significant errors in the inverse solutions obtaining 
unrealistic results [36]. Regularization is typically used in 
most approaches for inverse problem resolution in order to 
overcome the ill-posedness of the problem. During the last 
decades, different regularization techniques and optimiza-
tion methods have been proposed [35] and widely studied 
by multiple research groups in an attempt to solve one of the 
main challenges of ECGI, the ill-posedness of the inverse 
problem, which is particularly relevant in the context of 
atrial arrhythmias because of the low signal to noise ratio 
present in ECG signals.

One main source for the ill-posedness nature of the ECGI 
comes from the transfer matrix (A) that relates the epicardial 
potentials and the surface potentials in the forward problem 
defined in Eq. 2 [35]:

where X are the epicardial potentials, B the surface poten-
tials, and N the noise. The matrix A is generally taken to be 
temporally invariant and not generally squared and therefore 
is not invertible [35].

5.1  Tikhonov regularization

To obtain the epicardial potentials (X) and minimize the 
errors in the inverse solution, Tikhonov regularization has 
been widely used for obtaining noninvasive signals [59], 

(2)B = AX + N
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which consists in minimizing the Eq. (3) or a compromise 
between the least-squares solution and the residual norm of 
the solution:

where λ is a regularization parameter and R is a squared 
matrix which can take different formulations and defines the 
order of Tikhonov regularization. For zero-order Tikhonov, 
R equals the identity matrix and imposes a limit on the mag-
nitude of the solution. First-order Tikhonov uses the gradient 
operator for R, and second-order Tikhonov uses the surface 
Laplacian operator, providing a less smooth inverse solution 
[35]. Since the earliest works on electrocardiographic imag-
ing, Tikhonov regularization has been used and compared 
with other regularization alternatives, but the vast majority of 
the studies using atrial signals use this regularization approach 
[14]. However, other approaches have been applied, like the 
Generalized Minimal Residual method [60], singular value 
decomposition [61], iterative approaches [62, 63], and hybrid 
combinations between Tikhonov-GMRes methods [64].

5.2  Regularization parameter Identification

The optimal regularization would be the one that finds the 
optimal regularization parameter (λ), and this is where more 
approaches have been studied and tested by other research 
groups, being the L-curve and CRESO (composite residual 
and smoothing operator) [65] methods commonly used.

5.2.1  L‑curve regularization

The L-curve method [66] consists of representing the two 
main terms of Tikhonov regularization, the least-squares and 
the residual of the solution, for different values of the regu-
larization parameter in a log–log scale. This plot is L-shaped 
and allows determining the optimal λ at the corner of the 
curve where these two errors are minimized. This point rep-
resents a compromise between an over-regularized and an 
under-smoothed solution. L-curve optimization, in contrast 
with other methods, is more robust to changes due to small 
errors of the signals [67] and has an acceptable computa-
tional time. To find the corner of this curve, the point of 
maximum curvature is typically calculated [67].

5.2.2  Composite residual and smoothing operator

On the other hand, the CRESO method [68] consists of find-
ing the smallest value of λ that results in a local maximum 
of the following equation:

(3)X = min

�
‖AX − B‖2

2
+ �

2��RX��2
2

� These two methods for finding the optimal regulariza-
tion parameter have been used for Tikhonov regularization 
indistinctly using FEM [51], BEM [48], and MFS [52] for 
addressing the relationship between epicardial and surface 
potentials [48]. BEM and zero-order Tikhonov regulariza-
tion with the L-curve have shown good results for different 
types of signals, especially in the context of AF [14]. For 
instance, in atrial models, it has been proven to be able to 
reconstruct epicardial activity for detecting dominant frequen-
cies [69, 70] and reentrant patterns [70], later validated in 
real patients with intracavitary data [41, 71]. Moreover, this 
regularization has been used as part of the methodology for 
solving inaccuracies in atrial placement with good results, by 
minimizing the ECGI reconstruction error [72]. On the other 
hand, Tikhonov regularization and CRESO optimization have 
been applied in multiple studies and trials with atrial signals 
employing CardioInsight’s system, either SR [73], AF [74], or 
trial tachycardias [75, 76]. Using this approach, Cuculich et al. 
could distinguish between activation patterns among clinically 
defined groups of AF patients [46], and Haissaguerre et al. 
[47] demonstrated the potential of ECGI as a technique for 
mapping non-invasively AF drivers like unstable rotors and 
guide ablations with remarkable success. Both approaches, 
although with limitations, have shown good performance for 
evaluating the atrial substrate and the power of ECGI as a 
diagnostic and ablation guidance technology [14].

5.3  Generalized minimal residual method

In addition to the previously described methods, Wang et al. 
[77] used the Generalized Minimal Residual method (GMRes) 
[60] to detect the earliest activation sites during atrial tachycar-
dias and successfully guide ablations. GMRes is an iterative 
approach that belongs to the class of Krylov subspace iterative 
methods. GMRes has been applied to SR signals to analyze 
the P waves with proper repolarization starting at the sinus 
node [78–80]. GMRes has demonstrated its ability to evaluate 
the epicardial activity and showed that in specific cases works 
better than the Tikhonov method and the L-curve when the 
corner of Tikhonov is not easily identified [64]. A combination 
of GMRes and Tikhonov also showed good results and may be 
more reliable in specific cases [64]. Despite this fact, there is 
no theoretical explanation for considering GMRes as a better 
option for Tikhonov regularization [35, 61].

5.4  Agreement on the best approach

Several studies have proven the ability of different regu-
larization methodologies to describe the atrial electrical 
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substrate, but there are still open questions about how to 
minimize the errors when computing the inverse problem. 
In the context of AF, we compared 14 different methods of 
regularization for three atrial models of SR, simple and com-
plex AF (Fig. 3A). Bayesian regularization, which makes use 
of a priori information [81], has been shown to outperform 
other methods for ECGI resolution, although a priori infor-
mation is not a real-case scenario in most of the applications 
[61]. Again in the context of AF, we have shown that the 
incorporation of the information from intracardiac electro-
grams (EGMs) may also outperform other ECGI resolution 
methods [82]. However, if a priori data is not available, 
zero-order Tikhonov with L-curve optimization was found 
to be the best approach, even with constant regularization 
parameters for AF signals. Despite these conclusions, more 
studies need to address the limitations associated with each 
type of atrial arrhythmia and not only AF, in combination 
with a comparison of different regularization and optimiza-
tion approaches. Moreover, there is a lack of studies on more 
regularization alternatives as it has been addressed in studies 
with ventricular signals [63, 83, 84].

5.5  Regularization in non‑conventional ECGI

ECGI usually uses surface electrocardiogram recordings to 
estimate epicardial potentials, but other approaches compute 
the inverse problem and obtain information on the electrical 
activity on the surface of the heart.

Activation imaging is an alternative method which pro-
vides noninvasive information about the activation times 
on the epicardium and endocardium instead of the full-time 
series of epicardial potentials [37]. This problem is non-
linear due to the relationship between the transmembrane 
potentials of the surface ECG and the activation times. This 
relationship is solved using the Fredholm integral and BEM 
formulation. Moreover, this is also an ill-posed problem and, 
similarly to the conventional ECGI, needs regularization. 
This regularization substitutes the least-squares error of the 
Tikhonov regularization with the residual norm of the esti-
mated activation times and the transmembrane potentials 
of the epicardium. For obtaining the optimal regularization 
parameter, similar approaches are used as the L-curve. Acti-
vation mapping has been validated with intracavitary data 
with paced atrial signals [85] and atrial flutter [86]. This reg-
ularization has only been proven to be accurate for smooth 
activation patterns, and therefore, its current formulation is 
not appropriate for complex signals, as in the case of AF.

Alternatively, non-contact charge density mapping con-
sists of using non-contact intracardiac recordings to recon-
struct the cardiac geometry and to estimate the value of the 
charge density in the epicardium by means of the inverse 
problem resolution [87] and later the epicardial voltage 

using the forward problem [43]. From the value of the com-
puted charge density on the epicardium, activation times and 
the time series of potentials can be obtained [42]. Similar 
regularization approaches are used in conventional ECGI 
such as Tikhonov regularization or truncated singular value 
decomposition [87]. Non-contact charge density mapping 
has been validated in simulations and arrhythmic scenarios 
for classifying conduction patterns and localized non-pulmo-
nary veins ablation targets in atrial fibrillation [53–56]. This 
technique can provide real-time anatomical data and signal 
acquisition with a high spatial resolution, but as opposed to 
other methods, it is invasive.

6  Post‑processing in ECGI

The following subsections outline the metrics that are com-
monly derived from EGMs estimated with ECGI: activation 
times are used to characterize simple rhythms, such as SR, 
pacing, and AFL, whereas phase mapping and dominant fre-
quency maps are used in AF.

6.1  Activation time maps

Local activation time (LAT) mapping allows identifying 
the origin and direction of the electrical propagation, help-
ing therefore in the identification of reentrant circuits, wave 
breakthroughs, and collisions. This information is presented 
as a set of isochrones throughout the cardiac tissue indicat-
ing the time of activation of each site [66]. Different meth-
ods have been developed to estimate activation times in inva-
sive recordings. The most commonly used are those based 
on the morphology of the signal, like the largest down slope 
in unipolar electrograms or the center of mass on bipolar 
electrograms [88].

Obtaining activation times in other atrial rhythms by 
ECGI has been carried out by different groups. In [85], dif-
ferent pacing sites in the atria were recorded with a 62-chan-
nel ECG imaging device. Activation time mapping allowed 
to locate the exact stimulation location within a 10-mm 
error in different stimulation areas (the pulmonary veins, 
coronary sinus, right posterior wall, and high atria). Fur-
thermore, the activation map obtained with ECGI was cor-
related with CARTO intracavitary data, obtaining a mean 
correlation of 0.76. Other studies have also demonstrated 
the feasibility of activation mapping in atrial tachycardias. 
Z. Zhou et. al. reported successful reconstruction of the acti-
vation sequence in 3 patients with typical AFL [89]. The 
activation maps obtained were also correlated with intracavi-
tary activation mapping obtaining a correlation coefficient 
of CC = 0.70 ± 0.04. Noninvasive activation mapping in 
focal tachyarrhythmias was also studied in [75], where this 
mechanism and origin of the tachycardia could be correctly 
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Fig. 3  A Correlation coefficient of ECGI and simulations of 14 different inverse problem methodologies for sinus rhythm (SR) and simple and complex atrial 
fibrillation (SAF, CAF), extracted from [61]. B Phase singularity of intracardiac and ECGI phase maps and correlation of intracardiac and noninvasive atrial 
fibrillation sources [71]. C Dominant frequency of intracardiac and ECGI maps and correlation of intracardiac and noninvasive dominant frequencies [41]
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identified with a higher success rate (21 out of 21 patients 
presenting this arrhythmia) compared to AFL (23 out of 27 
patients). The authors reported higher difficulties associated 
with the identification of atrial flutters due to the presence 
of low amplitude P waves.

Most of the traditional methods are oriented to be robust 
against high fractionated signals with complex morpholo-
gies and multiple deflections. However, the main limitation 
present in ECGI is the loss of sudden transients and sharp 
morphologies due to the smoothing effect of the inner organs 
on the projection of cardiac potentials into the body surface 
[61]. Therefore, the direct application of these algorithms 
on ECGI signals may result in suboptimal results like false 
homogeneous regions or artefactual conduction block lines 
[90]. Similar artefactual block lines have also been reported 
in the atria during SR in patients with mitral regurgitation 
(MR) with and without previous history of AF and in healthy 
volunteers to investigate the physiology of atrial activation 
[80]. Lines of conduction block were present in 7/9 subjects 
with AF and MR, in 8/11 subjects with MR without AF, 
in 8/11 subjects with MR without AF, and in the healthy 
subject. Despite these artifacts, prolonged left atrial conduc-
tion times were found in MR patients that also had AF. In 
order to overcome this limitation of ECGI-derived activa-
tion times, algorithms incorporating spatial correlation to 
the pure temporal-based estimation have been proposed [91, 
92] and could be extended to the study of atrial rhythms.

Regarding atrial fibrillation, additional conditions like a 
lower signal-to-noise ratio or a more anisotropic conduction 
system may lead to additional challenges in the estimation of 
local activation times [93]. These challenges are especially 
difficult in complex arrhythmias; for this reason, the follow-
ing subsections are focused on AF.

6.2  Phase mapping

Phase mapping is a common processing technique employed 
to identify reentries in ECGI [70, 71, 94, 95]. Figure 3 B 
depicts a comparison of phase singularity of intracardiac 
and ECGI phase maps and the correlation of intracardiac 
and noninvasive atrial fibrillation sources [71]. Phase maps 
encode uniquely the different cardiac cycle stages using 
phase values ranging between − π and π. In order to cal-
culate unique phases out of potential values, at least two 
state variables of the electrical propagation dynamics must 
be tracked. In cardiac simulations, variables like the trans-
membrane potentials in combination with tissue recovery 
state have been successfully employed to calculate phases 
[96]. However, iEGM only represents a single parameter 
of the electrical state of the heart, the extracellular voltage. 
In this scenario, two different approaches have been devel-
oped to overcome the lack of a second parameter. The first 
one is the combined use of a voltage signal ( v(x, t) ) and a 

delayed version of the same ( v(x, t + τ) ) to obtain a state 
representation of the voltage dynamics [97]. The second 
is the Hilbert transform [98]. This last technique has been 
widely applied by the research community because it does 
not require predefining any initial parameter (like delay τ in 
the first approach) [70, 95, 99].

Phase mapping is a very convenient representation to 
identify reentries in ECGI because it provides a description 
of the electrical state in the activation cycle without the need 
to estimate the activation time in iEGMs. Furthermore, in 
contrast to invasive mapping, where the activation of the 
heart must be sequentially sampled in small portions of tis-
sue, the panoramic representation provided by ECGI makes 
it easy to track the movement and main locations with reen-
tries [18]. Reentries are detected by identifying their vortex 
(or center of rotation). On phase maps, rotor vortices are pre-
sented as phase singularities (PSs). These can be identified 
as points in which no phase value is defined. Nonetheless, 
the easiest way to detect PSs is by checking the phases in 
the surroundings of a vortex candidate. If the whole phase 
range is covered in the surroundings of a particular loca-
tion, (from − π to π) then that particular location can be con-
sidered a PS [100]. There are multiple implementations to 
verify the phase distribution around phase singularity points 
automatically. One of the most popular is the use of the so-
called topological charge, where a line integral of the phase 
change around each location is computed [97]. Specifically, 
a PS is considered when this integral evaluates to ± 2π.

Despite the mentioned advantages, some challenges 
have been pointed out when dealing with phase mapping 
in ECGI, mostly when applied to small portions of tissue 
like the atria or in complex arrhythmias like atrial fibril-
lation. In the first place, it has been reported that PSs col-
locate with conduction block areas. The sudden direction 
changes experienced by wavefront in blocking sites may 
induce the detection of a PS, even if the wave did not spin 
an entire turn [94, 101]. Furthermore, other factors like 
interpolation or far-field effect have been associated with 
the detection of false positive PS [102, 103]. These were 
reported in invasive phase mapping reconstructions with 
a basket catheter, however, to our knowledge, there is very 
little known about the role of these factors in ECGI. In an 
in-silico study, we concluded that the presence of several 
rotors in the atria spinning in opposite directions can lead 
to the mutual cancelation of the surface signals and, there-
fore, may prevent rotor identification on ECGI [104]. This 
is especially true when the rotors are very close together in 
the atria. Another factor that may reduce the sensitivity of 
ECGI in rotor detection is the large distance between the 
electrodes and the atrial substrate, which acts as a natural 
filter for reentries [18, 104].

However, reentry detection using phase mapping and 
ECGI may have some technical limitations. Regarding the 
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possible overestimation of PS due to conduction blocks, we 
previously presented a methodology to filter out these PSs 
belonging to non-stable reentries [104]. In this study, we 
reported that PSs arising from non-reentrant patterns have 
abrupt phase transitions in their surroundings, while PSs 
belonging to rotors present an almost linear phase propaga-
tion around. This examination was carried out in three cir-
cumferences of varying radii around each PSs, as shown in 
Fig. 4. As a compromise, we proposed to impose a linearity 
criterion on the phase evolution in the surroundings of each 
PSs together with a minimum duration of 2 turns in order 
to avoid the detection of transient propagations that do not 
constitute a stable reentry.

Another point to consider is how BSPM signal processing 
affects feature extraction after applying ECGI. For example, 
it has been shown in ventricles that removing high-frequency 
noise does not affect the accuracy of electrogram reconstruc-
tion but can improve feature extraction after reconstruction 
[105]. Phase maps can be heavily affected by this issue.

In conclusion, PS detection must be seen carefully and 
also consider other data sources. ECGI is surely not an 
exception in this regard. However, the capability of acquir-
ing panoramic views of the entire atria for long periods of 
time may provide the chance to robustly differentiate those 
atrial sites driving the arrhythmia from sporadic, artifact-
related PS detections.

6.3  Dominant frequency maps

Frequency analysis of inverse computed electrograms 
becomes especially interesting in the identification of AF 
drivers. The presence of atrial regions with high-frequency 
activation rates has been empirically linked to the sustain-
ment of AF in optical mapping [106], and clinical studies 
[107]. These high-frequency sources are more common in 
the nearby pulmonary veins, however, they can be present 
anywhere in the atria [108–110]. This finding makes Domi-
nant Frequency (DF) mapping a necessary tool to under-
stand some AF mechanisms, especially in persistent AF 
patients.

Regarding the use of DF analysis in ECGI, dominant fre-
quency maps have shown to be a robust representation of 
the atrial electrical activity in complex arrhythmias like AF. 
This is because DF analysis is not based on instantaneous 
properties of the signals, but it requires a segment to be com-
puted, providing robustness in high variable arrhythmias like 
AF [14]. This robustness in inverse computed electrograms 
has been verified using both clinical and in-silico data. We 
have shown that DF patterns computed from electro-ana-
tomical mapping are consistent with estimated iEGMs and 
allow for identifying DF gradients [30]. We also found that 
DF maps were reconstructed more accurately than phase and 
voltage maps. Later, we used 30 different AF simulations 

to quantify the robustness of High Dominant Frequency 
(HDF) maps against different uncertainty sources like atria 
location, orientation, or electrical noise [31]. HDF mapping 
resulted in a robust parameter with matching percentages of 
73% ± 23% for 10-dB noise, 77% ± 21% for 5-cm displace-
ment, and 60% ± 22% for 36° rotation.

The results obtained in the mentioned studies make the 
dominant frequency analysis of iEGMs a promising tool to 
characterize AF in both paroxysmal and persistent patients. 
However, there are still some limitations to overcome before 
reaching direct identification of AF drivers in DF maps. 
Firstly, the current standard method to obtain DFs consists 
in calculating the maximum spectral density of the sig-
nals [41, 70, 108]. Figure 3C depicts a comparison of the 
dominant frequency of intracardiac and ECGI maps and 
the correlation between intracardiac and noninvasive domi-
nant frequencies [41]. This naïve approach does not prevent 
the identification of harmonic frequencies as DFs. Another 
important limitation, primarily present in persistent AF, is 
the variation of the frequency content through time, lead-
ing to the identification of irrelevant spectral components. 
This limitation has also been observed in clinics. In this 
regard, Sanders et. al. reported an increase in ablation time 
at DF sites, as well as a significant failure of AF termina-
tion during ablation (0 out of 13) in persistent with respect 
to paroxysmal AF [111]. A possible explanation for this 
is the mentioned lack of spatiotemporal stability of these 
sites, also reported in other studies [112, 113]. Therefore, 
according to the results obtained by these studies, additional 
analysis of the variation in the frequency domain may be 
relevant before applying any particular DF estimator to the 
signals.

7  Machine learning in ECGI

The accuracy of current ECGI solutions is still subop-
timal. The main reasons for this are some of the simpli-
fications involved in the calculations, like treating the 
problem as a set of linear equations or the ill-posedness 
of the system to solve. These difficulties justify the use 
of more complex non-linear optimization techniques like 
machine learning.

A direct application of machine learning in ECGI would 
involve the estimation of a set of atrial electrical sources 
or an activation time distribution from noninvasive surface 
data. In this line, neural nets are a popular tool that has been 
tested using in-silico data with promising results. Karoui 
et. al. developed a data-driven approach called DirectMap 
in which activation times were directly estimated from 
BSPM recordings [114]. Later, the same authors proposed 
a spatial adaptation of the Time-Delay Neural Network 
(SATDNN-AT) to estimate activation times encoding the 
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local dynamic propagation properties of the electrical activ-
ity [115]. In [116], a direct quantitative comparison between 
the two mentioned machine learning approaches with the 
classic technique of FEM combined with L1-norm regulari-
zation showed a clear outperformance of DirectMAP over 
the other two methods, and more importantly, that both 

machine learning approaches were strongly robust against 
additive gaussian noise compared to the traditional FEM 
method. Although this study could demonstrate the outper-
formance of DirectMAP over the traditional regularization 
method, this technique was only tested in in-silico data for a 
dataset containing single-paced rhythms. Therefore, further 

Fig. 4  Linearity verification around a PS rotor candidate. Only those PSs with a linear progression of phase in their surrounding should be con-
sidered actual reentries [100]
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evaluation needs to be done in more complex rhythms like 
atrial fibrillation or clinical data. Apart from neural net-
works, other approaches have also been proven successful 
for activation time estimation. In [117], a regression algo-
rithm (Reproducing Kernel Hilbert Space) was trained to 
estimate epicardial atrial potentials from simulated BSPM 
data. Although the EGM signals provided by the regression 
were not very accurate in terms of amplitude, this method 
would allow for an accurate estimation of the activation 
times. In order to improve the results in terms of voltage 
amplitude, the authors included the EGMs estimated by this 
regression model into a least squared regularization in a later 
study [118]. The results obtained from simulated electri-
cal propagation patterns in the atria confirmed that their 
new regularization method based on the regression model 
increases the accuracy of the computed EGM with respect 
to the standard 0-order Tikhonov regularization. Machine 
learning algorithms can also be used to estimate non-inva-
sively other relevant parameters of electrophysiological 
propagation models [119]. Some examples are activation 
onset location or tissue conductivity [120].

Besides finding the distribution of electrical sources or 
relevant electrophysiological parameters, machine learning 
has also been used to identify non-invasively other relevant 
arrhythmogenic phenomena in the atria, although most of 
the studies centered on this purpose used either ECG or 
BSPM signals. As an example, in [121], ECG signals from 
computer models were used to predict the locations of the 
AF drivers, reaching sensitivity and specificity levels of 
73.9% and 82.6%, respectively. Specifically, the classifier 
was able to determine whether the AF drivers were located 
in the pulmonary vein areas or outside. This was done using 
a decision tree classifier with an in-silico data set for train-
ing and a set of 46 clinical ECGs for validation. Similar 
works in the same direction are, for example, [122], where 
the target was the location of ectopic foci using ECG signals 
in supraventricular tachycardias or the study of the induc-
ibility in paroxysmal AF simulations including focal sources 
(ectopic foci and reentries) [123]. In this last study, features 
like the cycle length and periodicity of the simulated BSPM 
were used as features for a random forest classifier to iden-
tify inducibility, but also other parameters like the presence 
of focal sites in the atria. Regarding the location of focal 
drivers, J. Godoy et al. demonstrated the feasibility of the 
location of the origin in simulated focal atrial tachyarrhyth-
mias with different degrees of fibrosis [124].

Besides specific mechanisms and complex electrophysi-
ological data, many machine learning algorithms have also 
been developed for the automatic detection of atrial arrhyth-
mias on the ECG [125, 126]. Although most of these works 
have not been tested for solving the inverse problem of elec-
trocardiography, this technology appears very promising in 
this context as well.

8  What is next?

ECGI allows both atria to be mapped synchronously, even 
with a single atrial beat, making it the first mapping tech-
nology of its kind. However, this panoramic view is gained 
at the expense of a lower spatial resolution as compared to 
invasive mapping techniques. Further research is required 
in order to properly identify the limitations of ECGI in the 
context of atrial arrhythmias.

Regularization techniques have been more extensively 
validated in the context of ventricular signals and may not be 
entirely suitable for atrial signals. In particular, constraints 
typically imposed in order to choose both the regularization 
technique and the regularization parameters are not opti-
mized for complex electrical patterns nor the presence of 
low signal-to-noise ratios. For this reason, regularization is 
possibly the most active area of research and dispute in the 
field of inverse problems. In this direction, we have recently 
proposed a new regularization technique that combines non-
invasive and invasive recordings, illustrated in Fig. 5 [82]. 
This approach may overcome some of the limitations of both 
invasive and noninvasive atrial characterization and lead to 
a more accurate identification of AF drivers.

Recent studies have found significant line-of-block arti-
facts when computing activation maps from reconstructed 
ventricular potentials [90]. Although this has not been exten-
sively studied in atrial signals [80], similar behavior can 
potentially be present in the estimation of atrial activation 
maps and should be further addressed since the main rea-
son underlying these artifacts is spatial smoothing caused by 
regularization, which may be even more prominent in atrial 
reconstructions [127].

The lack of integration of structural abnormalities, such 
as scar, fibrosis, and other structural abnormalities, which 
are commonly encountered during atrial arrhythmias and 
have a significant impact on electrical patterns, is a sig-
nificant limitation of current ECGI formulations. In this 
regard, scar-dependent ECGI solutions with ventricular 
data are starting to be proposed [128].

According to several experimental reports, ECGI algo-
rithms based on the reconstruction of activation times may 
be more robust than those estimating the full course of 
potentials [129]. However, this particular ECGI resolution 
approach may be unable to deal effectively with reentrant 
events. A more exhaustive validation of activation imag-
ing during fibrillatory rhythms and AF would be desirable. 
Another area where enhanced ECGI solutions can help 
is in the context of digital twins. Studies have been pro-
posed for the generation of digital cardiac electrophysiol-
ogy twins using 12-lead clinical ECGs [130], and ECGI 
could provide an extended set of restrictions to personalize 
computational models.
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A promising field of research resides in the use of arti-
ficial intelligence to estimate the electrical activity of the 
heart. The use of autoencoders [131] and other machine 
learning architectures could be the future solution to the ill-
posedness of the inverse problem.

Beyond these improvements in the estimation of cardiac 
potentials, further areas of research that should be further 

developed include the maturation of imageless technologies 
that will not require the co-registration of medical images 
to estimate the heart and torso geometries [13, 41]. In this 
context, machine learning approaches could potentially 
reduce the time for collecting the data needed for the ECGI 
calculation. Moreover, these methodologies could be used 
for the correct quantification of the real approximation of 

Fig. 5  Comparison of reconstructions (epicardial potentials, dominant frequencies, phases, and phase singularities) between L0 Tikhonov and a 
new constrained Tikhonov regularization technique that combines noninvasive and invasive recordings, adapted from [82]
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the ECGI solution, giving information on the confidence of 
the results for guiding and recommending treatments [132] 
and using them for the prediction of the evolution of cardiac 
arrhythmias [131].

Another important limitation of ECGI applied to sur-
face signals is that we can only reconstruct epicardial 
activity. Similarly, non-contact catheter mapping only 
looks at endocardial tissue. Some work has attempted a 
combination of the two approaches in the ventricles [133, 
134]. Future work on this pathway may help to unmask the 
phenomena of epi-endo dissociation in atria.

Finally, ECGI has the potential to guide ablation thera-
pies in a totally noninvasive manner. While ablation today 
is performed by the introduction of catheters in the heart 
chambers and, therefore, the use of additional catheters for 
an electro-anatomical mapping does not introduce addi-
tional risks for the patient, in the future, the paradigm 
might change by further development of noninvasive abla-
tion techniques such as stereotactic body radiation therapy 
(SBRT). SBRT consists of administering radiation therapy 
to a defined target with minimum collateral harm to sur-
rounding tissue and has been successfully applied to treat 
ventricular arrhythmias [135]. Further improvements in 
spatial resolution on both ECGI and SBRT, together with 
validation studies in the context of atrial arrhythmias, may 
lead to a change in the current paradigm of treating atrial 
arrhythmias.

9  Conclusion

The use of electrocardiographic imaging has the poten-
tial to reveal atrial arrhythmic substrates. The numerous 
approaches, technical aspects, and new solutions proposed 
in recent years in this field have highlighted the advances 
and existing difficulties for these techniques to be adopted 
by daily clinical practice in atrial mapping. However, 
these open issues can be considered an opportunity to 
overcome the existing limitations. Future ECGI studies 
and new research directions should help to fully elucidate 
the characterization and understanding of atrial arrhyth-
mic mechanisms along with other imaging modalities for 
cross-validations. Enhancements in global atrial mapping 
techniques are essential to improve treatment guidance and 
patient outcomes.
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