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1. INTRODUCTION

Climate change contributes to a rise in the frequency of ex-
treme events such as heavy rainfalls, which in turn increase
floods, landslides and soil erosion. As a result, a heavy load of
sediment particles reaches water bodies such as lakes, through
rivers, constituting them as muddy. Sediment-laden water oc-
currence is amplified even more by human activities such as
bad agricultural/forestry practices or burned areas, as well as
(illegal) waste disposal originating from (bad) industrial prac-
tices.

The presence of muddy waters in water reservoirs can af-
fect human health and infrastructure, the ecosystem, and the
economy, among others. Concerning human health, it has
been shown that highly turbid water is correlated with in-
creased hospital admissions [1] for gastrointestinal diseases,
which cannot always be avoided by the standard filtering pro-
cedures from water utilities [2].

Another significant impact which further adds to the neg-
ative effects on human health, is the environmental degrada-
tion of aquatic fauna, as is evident by different studies (e.g.,
[3, 4]). High rates of siltation, along with pesticides and in-
dustrial waste, that are carried with torrents, result in popula-
tion decrease and poisoning, which strongly affects the con-
sumers and the local economy. Finally, the siltation in water
reservoirs can lead to streams blockage, which in turn can
lead to flooding of nearby residential and/or farming areas,
causing expensive damages which negatively affect the local
economy, as well as potentially increase the soil fertility [5].

2. RELATED WORK

Traditionally turbidity has been measured with in situ sensors.
The advent of satellite monitoring and especially the free-of-
charge Copernicus data offer the opportunity to not only out-
perform in terms of cost (e.g., material and human resources),
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but also in spatial and temporal coverage. There is a number
of previous studies attempting to monitor highly turbid wa-
ters based on satellite remote sensing. Some of them focus
on monitoring open sea areas [6] based on proxies rather than
muddy waters themselves [7, 8, 9], or focus on local/regional
water bodies restricting the generalization power [10, 6, 9, 11,
12, 13, 14] or lacking the necessary spatial or temporal reso-
lution required for the task.

The majority of studies have been focused on parameter
retrieval (i.e., regression) with the most recent works focusing
on Recurrent Neural Networks [10] rather than classification.
Classification has been implemented by traditional methods
such as [15], as well as modern deep learning-based ones such
as [16] which was based on few data. On top of that, aim-
ing to achieve the aforementioned goals, datasets based on
in situ and satellite Landsat data have been released recently
(e.g., [17, 18]) for regression, although they are not image-
based. Only one image-based dataset exists for the classifica-
tion task, which does not focus specifically on muddy waters
and at the same time the annotation procedure has ambiguities
[19].

A recent hybrid study by [20] has stressed the importance
of muddy water satellite-based monitoring. The authors indi-
cated an alternative way of mapping muddy water using ma-
chine learning, as well as presented a number of challenges,
limitations, gaps and prospects for future research directions
related to annotation, atmospheric correction, availability of
benchmark dataset and application of deep learning towards
building universal classifiers, being in line with [10].

This paper builds on top of [20] aiming to fill and answer
some of the stressed gaps and challenges by 1) providing an
image-based Sentinel-2 muddy water dataset which does not
exist in the current literature, following an annotation method-
ology which reduces human biases, i.e., an ensemble of three
essentially different techniques, and 2) applying a U-Net as a
baseline proof-of-concept for muddy water mapping.



3. DATASET AND MODEL

MUDDAT is a muddy water dataset based on Sentinel-2 (S-
2) Level-2A (i.e., atmospherically corrected) scenes cover-
ing a variety of regions and muddy water types and events,
that were identified by a remote sensing expert. Each scene
along with every band was subjected to a series of preprocess-
ing steps such as band resampling to 10m, spatial subset and
pixel-based annotation, preparing each image for a semantic
segmentation task. Each scene was split into patches consti-
tuting a dataset of size of third to fourth order of magnitude.

The annotation methodology that was followed aims to
reduce the human-induced annotation biases as much as pos-
sible. This was achieved by implementing an ensemble ap-
proach based on majority voting of the results of three tech-
niques of different nature. The first technique is a spectral
index-based one which combines the Normalized Turbidity
Index (NDTI) [21] and the Modified Normalized Water Index
(MNDWI) [22] as described in [20]. In short, an informed
subjective threshold is applied on the two indices, and the bi-
nary mask of MNDWI is subtracted from the one of NDTI in a
pixel-wise sense. The second technique is based on the Spec-
tral Information Divergence (SID) [23] which is a statistical
technique using all spectal bands, and is also subject to an in-
formed threshold. Finally, the third and final technique com-
prises a K-Means clustering [24] utilizing all spectral bands.
The subjectivity and noise of each of these techniques is mini-
mized as much as possible by applying a majority voting. The
resulting classes are the following: (i) Non-muddy, (ii) Muddy
and (iii) Ambiguous. The Non-muddy class comprises various
land cover types (e.g., bare land, clean water etc.). The Am-
biguous class results when two out of three techniques agree
on a pixel representing muddy water.

Subsequently, a Convolutional Neural Network model
for semantic segmentation was trained and applied on the
dataset as a proof of concept for muddy water mapping with
deep learning. The model used is a widely used U-Net which
has been shown that performs well in semantic segmentation
tasks [25]. Several fine-tuning experiments were conducted
after proper preparation (e.g., normalization, balancing etc.).
Results show an adequate performance of the U-Net for
muddy water mapping exceeding 80% performance classifi-
cation metrics.

4. CONCLUSIONS

In our work we provide MUDDAT, a benchmark image-based
per-pixel annotated Sentinel-2 dataset for muddy water map-
ping with remote sensing. Results are promising indicating
that further work on model performance and inclusion of ad-
ditional water quality classes can be introduced in the fu-
ture, among others, in order to assist further in water quality
enivornmental monitoring. The created dataset, as well as the
model will be publicly accessible to the research community.
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