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Abstract- Big Data concern large-volume, complex, growing data sets with multiple, autonomous 

sources. With the fast development of networking, data storage, and the data collection capacity, Big 

Data are now rapidly expanding in all science and engineering domains, including physical, biological 

and biomedical sciences. This paper presents a HACE theorem that characterizes the features of the 

Big Data revolution, and proposes a Big Data processing model, from the data mining perspective. This 

data-driven model involves demand-driven aggregation of information sources, mining and analysis, 

user interest modeling, and security and privacy considerations. We analyze the challenging issues in 

the data-driven model and also in the Big Data revolution. 
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I. INTRODUCTION 

The data held by Australian Government agencies is both a national and government asset. It is 

also a potential source of opportunity. In this context, Australian Government agencies, like 

many other organisations, are aware of the challenges and opportunities that big data represents 

to the way they develop policy and deliver services to citizens. The purpose of this issues paper is 

to provide an opportunity to consider the range of opportunities presented to agencies in relation 

to the use of big data, and the emerging tools that allow us to better appreciate what it tells us, in 

the context of the potential concerns that this might raise. As an example, one of the major 

challenges facing agencies here is to leverage the value of big data sets while ensuring they 

continue to protect the privacy rights of the Australian public. The Australian Government is 

committed to protecting citizen’s rights to privacy, and as part of that commitment, has recently 

strengthened the provisions of the Privacy Act. The Australian Government Information 

Management Office (AGIMO) acknowledges that big data, and its associated analytical tools, can 

provide a challenge to these rights, but believe that, with proper considerations, agencies will be 

able to use big data to develop better policies and deliver better services without compromising 

the privacy rights of the public. Our aim is to ensure that the use of the new technology and tools 

supporting big data will deliver benefits while maintaining compliance with privacy. To this end 

AGIMO will be working closely with the Office of the Australian Information Commissioner 

(OAIC), the Attorney General’s Department (AGD) and experts across the public and private 

sectors as it develops a big data strategy. 

Where are we now? 

Data is being produced at an ever increasing rate. This growth in data production is being driven 

by: individuals and their increased use of media; organizations; the switch from analogue to 

digital technologies; and The proliferation of internet connected devices and systems. 

Government agencies hold or have access to an ever increasing wealth of data including spatial 

and location data, as well as data collected from and by citizens. Experience suggests that such 

data can be utilised in ways that have the potential to transform service design and delivery so 

that personalised and streamlined services, that accurately and specifically meet individual’s 

needs, can be delivered to them in a timely manner. Private sector organisations such as Google, 

Twitter and Facebook hold enormous data stores on Australian citizens and people across the 

world, and offer access to these on commercial terms. While needing to carefully consider the 
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veracity of this data, it may be that agencies could consider using this data as part of big data 

analytics projects. The ethical, privacy and security implications of decisions such as these will 

need to be carefully considered. 

Why a big data strategy? 

The development of a big data strategy was initiated by the APS ICT Strategy 2012 – 2015i (ICT 

Strategy) which highlighted the need for a strategy to enhance cross-agency data analytic 

capability for improved policy and service delivery.  

As awareness of the benefits of big data increases there is likely to be an increase in public debate 

regarding the balance of benefits versus the challenges associated with the technology. 

Government agencies need to be in a position to consider external expert opinion and enunciate 

their own position on the use of the technology. Opportunities for Australian Government 

agencies The opportunity that big data presents to government agencies is in the potential to 

unlock the value and insight contained in the data agencies already hold via the transformation of 

information, facts, relationships and indicators. The value of big data for agencies is limited by 

their ability to effectively manage the volume, velocity and variety of big data and the ability to 

derive useful information from this data. With every opportunity there come challenges or 

barriers and agencies must overcome these to enable the benefits of big data to be realised. 

Consideration of advances in big data technology has shown that it has potential to enhance the 

government’s analysis capability in areas such citizen-centric service delivery. It is evident that 

big data also provides insights into social networks and relationships as well as allowing for the 

development of predictive models for a number of applications.  

Of interest more broadly to agencies, big data analysis may provide profound insights into a 

number of key areas of society including health care, medical and other sciences, transport and 

infrastructure, education, communication, meteorology and social sciences. 

What the future looks like 

A successful big data strategy is expected to assist in realising each of the priority areas observed 

in the ICT Strategy.  The delivery of better services Improved efficiency of government 

operations Open engagement Challenges Meeting the challenges presented by big data will be 

difficult. The volume of data is already enormous and increasing every day. The velocity of its 

generation and growth is increasing, driven in part by the proliferation of internet connected 

devices. Furthermore, the variety of data being generated is also expanding, and organisation’s 

http://agimo.gov.au/ict_strategy_2012_2015/
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capability to capture and process this data is limited. Current technology, architecture, 

management and analysis approaches are unable to cope with the flood of data, and organisations 

will need to change the way they think about, plan, govern, manage, process and report on data to 

realise the potential of big data. 

Privacy, security and trust The Australian Government is committed to protecting the privacy 

rights of its citizens and has recently strengthened the Privacy Act (through the passing of the 

Privacy Amendment (Enhancing Privacy Protection) Bill 2012) to enhance the protection of and 

set clearer boundaries for usage of personal information. 

The public trust in government agencies and systems needs to be maintained. As the volume of 

government data holdings increase, the trust that Australians have in these agencies and their 

ability to securely hold information of a personal nature can easily be affected by leakage of data 

or information into the public domain. Agencies need to be able to maintain the public’s trust and 

will need to consider this issue at the forefront when developing secure systems for managing big 

data stores. Liaison with industry experts is an important first step in this process.                                                                                                                                          

II. Data management and sharing 

Accessible information is the lifeblood of a robust democracy and a productive economy.ii 

Government agencies realise that for data to have any value it needs to be discoverable, 

accessible and usable, and the significance of these requirements only increases as the discussion 

turns towards big data.  

AGIMO is seeking the input and advice of the OAIC and other key agencies such as the AGD 

and the Defence Signals Directorate (DSD) in regards to big data and privacy for inclusion in the 

strategy. 

III. Technology and analytical systems 

The emergence of big data and the potential to undertake complex analysis of very large data sets 

is, essentially, a consequence of recent advances in the technology that allow this. If big data 

analytics is to be adopted by agencies, a large amount of stress may be placed upon current ICT 

systems and solutions which presently carry the burden of processing, analysing and archiving 

data. Government agencies will need to manage these new requirements efficiently in order to 

deliver net benefits through the adoption of new technologies. 

Skills: Due to its relative youth and complexity, big data will require agencies to attract 

employees with diverse new skill sets. These skills include science, technological, research, 
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statistical, analytical and interpretive skills, business acumen and creativity — as well as an 

understanding of the underlying nature of the business process or policy intent. These skill sets 

are unlikely to be found in any one person, and this means that collaborative teams of specialists 

will need to be assembled to allow agencies to achieve optimal results from their data analysis 

efforts. 
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IV. DATA MINING CHALLENGES WITH BIG DATA:  

For an intelligent learning database system [52] to handle Big Data, the essential key is to scale 

up to the exceptionally large volume of data and provide treatments for the characteristics 

featured by the aforementioned HACE theorem. Fig. 2 shows a conceptual view of the Big Data 

processing framework, which includes three tiers from inside out with considerations on data 

accessing and computing (Tier I), data privacy and domain knowledge (Tier II), and Big Data 

mining algorithms (Tier III). The challenges at Tier I focus on data accessing and arithmetic 

computing procedures. Because Big Data are often stored at different locations and data volumes 

may continuously grow, an effective computing platform will have to take distributed large-scale 

data storage into consideration for computing. For example, typical data mining algorithms 

require all data to be loaded into the main memory, this, however, is becoming a clear technical 

barrier for Big Data because moving data across different locations is expensive (e.g., subject to 

intensive network communication and other IO costs), even if we do have a super large main 

memory to hold all data for computing.  



R.Elankavi, R.Kalaiprasath and R.Udayakumar  

Data mining with big data revolution hybrid  

565 

The challenges at Tier II center on semantics and domain knowledge for different Big Data 

applications. Such information can provide additional benefits to the mining process, as well as 

add technical barriers to the Big Data access (Tier I) and mining algorithms (Tier III). For 

example, depending on different domain applications, the data privacy and information sharing 

mechanisms between data producers and data consumers can be significantly different. Sharing 

sensor network data for applications like water quality monitoring may not be discouraged, 

whereas releasing and sharing mobile users’ location information is clearly not acceptable for 

majority, if not all, applications. In addition to the above privacy issues, the application domains 

can also provide additional information to benefit or guide Big Data mining algorithm designs. 

For example, in market basket transactions data, each transaction is considered independent and 

the discovered knowledge is typically represented by finding highly correlated items, possibly 

with respect to different temporal and/or spatial restrictions. In a social network, on the other 

hand, users are linked and share dependency structures.  

Big Privacy: Protecting Confidentiality in Big Data 

Both the computer science and statistical science communities have developed a variety of 

criteria and methods for quantifying confidentiality risks. Indeed, a major thrust of research 

funded by the US National Science Foundation (including grants to us) is to integrate these two 

perspectives, taking the best of what both have to offer. In reviewing some of the risk metrics, we 

do not attempt to cover all approaches. Rather, we cover a few important ones that we are most 

familiar with. In statistical science, measures used in practice tend to be informal and heuristic in 

nature. For example, a common risk heuristic for publishing tabular magnitude data for business 

establishments (e.g., tables of total payroll within employee size groupings) is that no one 

establishment should contribute in excess of p% of the cell total, and no cell should comprise less 

than 3 establishments. Cells that do not meet these criteria are either suppressed or perturbed. The 

most general and mathematically formal method of disclosure risk assessment is based on 

Bayesian probabilities of re-identification, by which we means posterior probabilities that 

intruders could learn information about data subjects given the released data and a set of 

assumptions about the intruder's knowledge and behavior. 

 Agencies can compute these measures across a variety of intruder knowledge scenarios as a way 

of identifying particularly risky records and making an informed decision about data release 

policy in the face of uncertainty (the goal of statistical science in general). Computing these 
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probabilities in practice is computationally demanding and requires innovative methodology, 

especially for big data. In computer science, some of the early efforts to quantify confidentiality 

risk were targeted to thwart re-identification attacks (which we described in the introduction) by 

ensuring that no individual’s record is unique in the data. This motivated a popular notion of 

privacy called K-Anonymity, which required that microdata be released in a manner that no 

individual’s record is distinguishable from at least K-1 other records. While this seemingly 

avoids the privacy breaches discussed in the introduction, it has two drawbacks. An adversary 

(especially one with prior knowledge) can learn sensitive information. For instance, suppose a 

hospital releases K-anonymous microdata about patients, and you know your neighbor Bob is in 

the data. If individuals in the anonymous group containing Bob all have either cancer or the flu, 

and you know for a fact that Bob does not have the flu, then you can deduce that Bob has cancer. 

K-Anonymity has been extended in a number of ways to handle this shortcoming. 

 One example is L-Diversity, which requires that each group of individuals who are 

indistinguishable via quasi-identifiers (like age, gender, zip code, etc.) not share the same value 

for the sensitive attribute (like disease), but rather has L distinct well represented (of roughly 

same proportion) values. The current state of the art disclosure metric is called differential 

privacy. It eliminates (to a large extent) the confidentiality issues in K-anonymity, L-diversity 

and their extensions. Differential privacy can be best explained using the following opt-in/opt-out 

analogy. Suppose an agency (e.g., the Census Bureau or a search engine) wants to release 

microdata. Any individual has two options: opt-out of the microdata so that their privacy is 

protected, or opt-in and hope that an informed attacker can’t infer sensitive information using the 

released microdata. A mechanism for microdata release is said to guarantee ε-differential privacy 

if for every pair of inputs D1 and D2 that differ in one individual’s record (e.g., D1 contains 

record t and D2 does not contain t), and every microdata release M, the probability that the 

mechanism outputs M with input D1 should be close to (within an exp(ε) factor of) the 

probability that the mechanism outputs M with input D2. In this way, the release mechanism is 

insensitive to a single individual’s presence (opt-in) or absence (opt-out) in the data. Thus, 

differential privacy represents a strong guarantee. Moreover, differential privacy satisfies an 

important property called composability -- if M1 and M2 are two mechanisms that satisfy 

differential privacy with parameters ε1 and ε2, then releasing the outputs of M1 and M2 together 

also satisfies differential privacy with parameter ε1+ε2. Other known privacy conditions (e.g. k-
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anonymity and l-diversity) do not satisfy composability, and hence, two privacy preserving 

releases using these definitions can result in a privacy breach. 

Collective Mining of Bayesian Networks from Distributed Heterogeneous Data 

A collective approach to learning a Bayesian network from dis- tributed heterogenous data. In 

this approach, we rst learn a local Bayesian network at each site using the local data. Then each 

site identi es the observations that are most likely to be evidence of coupling between local and 

non-local variables and transmits a subset of these observations to a central site. Another 

Bayesian network is learnt at the central site using the data transmitted from the local site. The 

local and central Bayesian networks are combined to obtain a collective Bayesian network, that 

models the entire data. Raw data is useful only when it is transformed into knowledge or useful 

in- formation.  

V. Privacy Preserving Data Mining 

 In this paper we address the issue of privacy preserving data mining. Specifically, we 

consider a scenario in which two parties owning confidential databases wish to run a data mining 

algorithm on the union of their databases, without revealing any unnecessary information. Our 

work is motivated by the need to both protect privileged information and enable its use for 

research or other purposes. The above problem is a specific example of secure multi-party 

computation and as such, can be solved using known generic protocols. However, data mining 

algorithms are typically complex and, furthermore, the input usually consists of massive data 

sets. The generic protocols in such a case are of no practical use and therefore more efficient 

protocols are required. Data mining is a recently emerging field, connecting the three worlds of 

Databases, Artificial Intelligence and Statistics.  

The information age has enabled many organizations to gather large volumes of data. However, 

the usefulness of this data is negligible if ―meaningful information‖ or ―knowledge‖ cannot be 

extracted from it. Data mining, otherwise known as knowledge discovery, attempts to answer this 

need. In contrast to standard statistical methods, data mining techniques search for interesting 

information without demanding a priori hypotheses. As a field, it has introduced new concepts 

and algorithms such as association rule learning. It has also applied known machine-learning 

algorithms such as inductive-rule learning (e.g., by decision trees) to the setting where very large 

databases are involved. Data mining techniques are used in business and research and are 

becoming more and more popular with time 
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VI. Proposed System 

In proposed system to build a stream-based Big Data analytic framework for fast response and 

real-time decision making. 

The key challenges and research issues include: - designing Big Data sampling mechanisms to 

reduce Big Data volumes to a manageable size for processing; - building prediction models from 

Big Data streams.  

Such models can adaptively adjust to the dynamic changing of the data. 

A knowledge indexing framework to ensure real-time data monitoring and classification for Big 

Data applications.  

Advantages 

Hug data store and retrieve 

Adapted all environments 

More reliable  

User friendly 

Avoid collusions (eg. Dead lock) 

Ignore network traffics. 

Module Description 

Distributed and Decentralized Control: 

To share the information and multisystem and centralized database environment . 

It provide and control the multiple process and store ,retrieve . 

Complex and Evolving Relationships: 

To analysis and avoid deadlock and optimized to the complex query to the user and provide 

multiple service to the user. 

And it provide the relationship between the multiuser and multiple server throughout the network 

. 

VII. Huge Data with Heterogeneous: 

Anonymity data to store and indexing with the database and provide the service the user 

requirements. 

Various type information to store and retrieve from the server  by the help of big data mining.  

Big data mining analysis: 

To clustering the data or information  through out the one client to another client . 
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Extract the knowledge form the database by the help of mining. 

Performance analysis: 

Performance analysis to provide the information to the compare statement for the user by the help 

of diagrams. 

Architecture diagram: 

 

 

VIII. CONCLUSIONS: 

 Driven by real-world applications and key industrial stakeholders and initialized by national 

funding agencies, managing and mining Big Data have shown to be a challenging yet very 

compelling task. While the term Big Data literally concerns about data volumes, our HACE 
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theorem suggests that the key characteristics of the Big Data are 1) huge with heterogeneous and 

diverse data sources, 2) autonomous with distributed and decentralized control, and 3) complex 

and evolving in data and knowledge associations. Such combined characteristics suggest that Big 

Data require a ―big mind‖ to consolidate data for maximum values [27]. To explore Big Data, we 

have analyzed several challenges at the data, model, and system levels. To support Big Data 

mining, high-performance computing platforms are required, which impose systematic designs to 

unleash the full power of the Big Data. At the data level, the autonomous information sources and 

the variety of the data collection environments, often result in data with complicated conditions, 

such as missing/uncertain values.  

In other situations, privacy concerns, noise, and errors can be introduced into the data, to produce 

altered data copies. Developing a safe and sound information sharing protocol is a major 

challenge. At the model level, the key challenge is to generate global models by combining 

locally discovered patterns to form a unifying view. This requires carefully designed algorithms 

to analyze model correlations between distributed sites, and fuse decisions from multiple sources 

to gain a best model out of the Big Data. At the system level, the essential challenge is that a Big 

Data mining framework needs to consider complex relationships between samples, models, and 

data sources, along with their evolving changes with time and other possible factors. A system 

needs to be carefully designed so that unstructured data can be linked through their complex 

relationships to form useful patterns, and the growth of data volumes and item relationships 

should help form legitimate patterns to predict the trend and future. We regard Big Data as an 

emerging trend and the need for Big Data mining is arising in all science and engineering 

domains. With Big Data technologies, we will hopefully be able to provide most relevant and 

most accurate social sensing feedback to better understand our society at realtime.  
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