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Abstract- Protein sequence alignment to find correlation between different species, or genetic mutations 

etc. is the most computational intensive task when performing protein comparison. To speed-up the 

alignment, Systolic Arrays (SAs) have been used. In order to avoid the internal-loop problem which 

reduces the performance, pipeline interleaving strategy has been presented. This strategy is applied to 

an SA for Smith Waterman (SW) algorithm which is an alignment algorithm to locally align two 

proteins. In the proposed system, the above methodology has been extended to implement a memory 

efficient FPGA-hardware based Network Intrusion Detection System (NIDS) to speed up network 

processing. The pattern matching in Intrusion Detection Systems (IDS) is done using SNORT to find 

the pattern of intrusions. A Finite State Machine (FSM) based Processing Elements (PE) unit to 

achieve minimum number of states for pattern matching and bit wise early intrusion detection to 

increase the throughput by pipelining is presented. 

 

Index terms: Systolic Arrays (SAs),Intrusion Detection Systems (IDS),Network Intrusion Detection System 

(NIDS), protein Data Bases (DBs). 
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I. INTRODUCTION 

The proliferation of Internet and networking applications, coupled with the wide-spread 

availability of system hacks and viruses have increased the need for network security. Firewalls 

have been used extensively to prevent access to systems from all but a few, well defined access 

points (ports), but they cannot eliminate all security threats, nor can they detect attacks when they 

happen. Stateful inspection firewalls are able to understand details of the protocol that are 

inspecting by tracking the state of a connection. They actually establish and monitor connections 

for when it is terminated. However, current network security needs, require a much more efficient 

analysis and understanding of the application data. Content-based security threats and problems 

occur more frequently, in an everyday basis. Virus and worm inflections, Spams (unsolicited e-

mails), email spoofing, and dangerous or undesirable data, get more and more annoying and 

cause innumerable problems. Therefore, next generation firewalls should provide deep packet 

Inspection capabilities, in order to provide protection from these attacks. Such systems check 

packet header, rely on pattern matching techniques to analyze packet payload, and make 

decisions on the significance of the packet body, based on the content of the payload.  

Network Intrusion Detection Systems (NIDS) perform deep packet inspection. They scan 

packet’s payload looking for patterns that would indicate security threats. Matching every 

incoming byte, though, against thousands of pattern characters at wire rates is a complicated task. 

Measurements on SNORT show that 31% of total processing is due to string matching; the 

percentage goes up to 80% in the case of Web-intensive traffic. So, string matching can be 

considered as one of the most computationally intensive parts of a NIDS and in this work we 

focus on payload matching. Intrusion detection systems running in General Purpose Processor 

(GPP) can only serve up to a few hundred Mbps throughput. Therefore, seeking for hardware-

based solutions is possibly the only way to increase performance for speeds higher than a few 

hundred Mbps.Until now several Application Specific Integrated Circuit (ASIC) commercial 

products have been developed. These systems can support high throughput, but constitute a 

relatively expensive solution. On the other hand, Field Programmable Gate Array (FPGA)-based 

systems provide higher flexibility and high throughput comparable to ASICs performance. 

FPGA-based platforms can exploit the fact that the NIDS rules change relatively infrequently, 
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and use reconfiguration to reduce implementation cost. In addition, they can exploit parallelism 

in order to achieve satisfactory processing throughput. Additionally, matching a large number of 

patterns has high area cost, so sharing logic is critical, since it could save a significant amount of 

resources, and make designs smaller and faster. 

A NIDS monitors traffic on a network looking for suspicious activity, which could be an attack 

or unauthorized activity. A large NIDS server can be set up on a backbone network, to monitor 

all traffic; or smaller systems can be set up to monitor traffic for a particular server, switch, 

gateway, or router. In addition to monitoring incoming and outgoing network traffic, a NIDS 

server can also scan system files looking for unauthorized activity and to maintain data and file 

integrity. The NIDS server can also detect changes in the server core components. In addition to 

traffic monitoring, a NIDS server can also scan server log files and look for suspicious traffic or 

usage patterns that match a typical network compromise or a remote hacking attempt. The NIDS 

server can also server a proactive role instead of a protective or reactive function. Possible uses 

include scanning local firewalls or network servers for potential exploits.  

Protein alignment is a way of arranging the sequences of protein to identify regions of similarity 

that may be a consequence of functional, structural, or evolutionary relationships between the 

sequences. Aligned sequences of nucleotide or amino acid residues are typically represented as 

rows within a matrix. Gaps are inserted between the residues so that identical or similar 

characters are aligned in successive columns. Sequence alignments are also used for non-

biological sequences, such as those present in natural language or in financial data. 

Systolic systems consists of an array of PE (Processing Elements)  processors are called cells,  

each cell is connected to a small number of nearest neighbours in a mesh like topology.  Each cell 

performs a sequence of operations on data that flows between them. Generally the operations will 

be the same in each cell, each cell performs an operation or small number of operations on a data 

item and then passes it to its neighbour. 

Since string matching is the most computationally intensive part of an NIDS, our proposed 

architectures exploit the benefits of FPGAs to design efficient string matching systems. The 

proposed architectures can support between 3 to 10 Gbps throughput, storing an entire NIDS set 

of patterns in a single device. In this work, I suggest solutions to maintain high performance and 

minimize area cost, show also how pattern matching designs can be updated and partially or 

entirely changed, and advocate that some solutions can offer high performance, while require low 
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area. Techniques such as fine-grain pipelining, parallelism, partitioning, and pre-decoding are 

described, analyzing how they affect performance and resource consumption. 

This work proposes a pattern matching algorithm that reduces total memory requirements by 

sharing common infixes of target patterns. For the pattern identification, a state should contain its 

own match vector with a set of bits, where each bit represents a matched pattern in the state. Even 

though the information of shared common infixes was stored in match vectors, the number of 

shared common infixes was limited by the size of the match vectors.  

In order to reduce the memory requirements of the DFA-based string matching engine, this 

proposes a memory-efficient parallel string matching scheme using the pattern dividing approach. 

Long target patterns are divided into sub-patterns with a fixed length; therefore, the variety of 

target pattern lengths can be mitigated. Moreover, the number of shared common states increases 

due to both the reduced length and the increasing number of sub-patterns, compared with the 

cases of the string matching with long target patterns. For each string matching, DFAs are built 

with bit-level input symbols for the bit splitting in order to reduce the number of state transitions 

from each state. 

II. RELATED WORKS 

It is very tough to calculate the protein to protein interaction in real time because the PPI differs 

from one individual to another as per the metabolism of the individual[1].To detect a subset of 

small proteins, DALI algorithm  fails to generate any significant alignment, although 

suchalignments do exist.Instead of looking at the total sequence, the Smith–Waterman algorithm 

compares segments of all possible lengths and optimizes the similarity measure and obtains the 

alignment[2].Multiple sequence alignment computation stands at a cross-road between 

computation and biology. The computational issue is ascomplex to solve as when given, any 

sensible biological criterion, thecomputation of an exact MSA is NP .Complete and therefore 

impossible for all but unrealistically small datasets[3].The major drawback of the tools used by 

the author in this proposal is the time needed to scan the entire protein databases (DBs), because 

CPUs are used in a serial manner. Several optimizations have been attempted exploiting GPUs 

and HW accelerator[4].Biologists use alignment algorithms to investigate similarities between 

proteins of different species, in order to find phylogenetic or functional correlations, or proteins 

of the same species, for genetic mutations studies like cancers and genetic diseases. Biologists 

http://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
http://en.wikipedia.org/wiki/Mathematical_optimization
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have several SW tools to perform their analysis. The major drawback of these tools is the time 

needed to scan the entire protein Data Bases (DBs), because Central Processing Units (CPUs) are 

used in a serial manner[5].The discriminative motifs finding is that it lacks in elegance 

ofgenerative such as priors, structures and uncertainity and Relationships between variables are 

also not explicitly mentionable and visualizable[6].When the derived SA requires Processing 

Elements (PEs) with internal loops , throughput could be highly affected in fact in a loop-based 

sequential circuit the result of a logic operation depends on the previous operations. Therefore, in 

sequential circuits, it is not possible to execute a logic operation at each clock cycle, because 

inputs must wait many cycles to synchronize with incoming feedback signals[7].Biological 

networks comparison is a difficult task since it involves subgraph isomorphism checking. 

Therefore, exact algorithms cannot be usually afforded to solve the problem, unless cases are 

focused on for which tractability can be achieved via Fixed Parameter Tractability (FPT) 

algorithms. FPT contains all polynomial-time computable problems. Moreover, it contains all 

optimization problems that allow a fully polynomial-time approximation scheme[8].A memory-

efficient and modular approach for large-scale string pattern matching. In Network Intrusion 

Detection Systems (NIDSs), string pattern matching demands exceptionally high performance to 

match the content of network traffic against a predefined database of malicious patterns. Much 

work has been done in this field. An algorithm called “leaf-attaching” to preprocess a given 

dictionary without increasing the number of patterns was proposed. The resulting set of post 

processed   patterns can be searched using any tree search data structure. A scalable, high-

throughput, Memory-efficient Architecture for large-scale String Matching (MASM) based on a 

pipelined Binary Search Tree (BST) was presented. The proposed algorithm and architecture 

achieve a memory efficiency of 0.56. As a result, the design scales well to support larger 

dictionaries. Implementations on 45 nm ASIC and a state-of-the-art FPGA device show that the 

architecture achieves 24 and 3.2 Gbps, respectively[9].The software-based approaches are 

General-Purpose Processors. In software-based approaches they only need one state transition per 

input character, which causes at most one memory access for each character input. However the 

practical use is limited because of their excessive memory usage. In hardware-based approaches, 

memory usage is not a concern since it can accomodate large memory[10]. Several compression 

techniques for DFAs have been proposed, focusing on reducing the number of transitions 

between states. Although the methods can reduce the memory consumption significantly it is 
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hard to reduce the number of states in DFAs with complex regular expressions. By using 3 single 

bit comparators & applying bitwise early detection method in DFA, the number of states used 

have been reduced[11].Pattern matching is one of the most important components for the content 

inspection based applications of network security, and it requires well designed algorithms and 

architectures to keep up with the increasing network speed. For most of the solutions, derivative 

algorithms are widely used. They are based on the DFA model but utilize large amount of 

memory because of so many transition rules. An algorithm is presented in this paper for multiple 

pattern matching. It uses a novel model, namely Cached Deterministic Finite Automaton 

(CDFA)[12]. 

III. PROPOSED METHOD 

In order to reduce the memory requirements of the DFA-based string matching engine, this 

proposes a memory-efficient parallel string matching scheme using the pattern dividing approach 

and its hardware architecture for the pattern identification. Long target patterns are divided into 

sub-patterns with a fixed length; therefore, the variety of target pattern lengths can be mitigated. 

By balancing memory usage between the string matchers, unused memory area in homogeneous 

string matchers decreases. Moreover, the number of shared common states increases due to both 

the reduced length and the increasing number of sub-patterns, compared with the cases of the 

string matching with long target patterns. For each string matcher, DFAs are built with bit-level 

input symbols for the bit splitting in order to reduce the number of state transitions from each 

state. For identifying the original long target patterns, the successive matches with sub-patterns 

are detected using the proposed two-stage sequential string matching engine. Experimental 

results show that memory requirements decrease on average by 47.8 percent and 62.8 percent for 

selected rules Snort and ClamAV, compared with several existing bit-split string matching 

approaches. 

3.1PROPOSED STRINGMATCHING SCHEME 

Leaf-Attaching Algorithm 

algorithm to disjoint the patterns, called leaf-attaching shown in Fig 1. The algorithm takes a 

prefix tree as the input, and outputs a set of disjoint patterns is proposed. All the child (or non-

leaf) patterns are merged with their parent (or leaf) patterns. Let L be the maximum length of the 

patterns. Each parent pattern has a match vector of length L bits attached to it. The match vector 
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is a binary string, which indicates how many child-patterns are included in a parent pattern. 

 

Fig.1  Leaf-attached tree   

A value of 1 at position i implies that there is a child-pattern with length “I” bytes, starting from 

the beginning of the parent pattern. For instance, if the parent pattern is andy and its match vector 

is 0111, then there are three child-patterns included: an, and, and andy, corresponding to the 1 at 

positions 2, 3, and 4, respectively. Note that a pattern can be the child (prefix) of more than one 

parent pattern. Fig.2 shows the sample merging for two parent patterns, andy and between. 

 

Fig 2Sample merging 

3.2Memory-Efficient Structure 

Memory-efficient data structure based on a complete binary search tree is presented. Complete 

BST is a special binary tree data structure .The binary search algorithm is a technique to find a 

specific element in a sorted list. In a balanced binary search tree, an element if it exists can be 

found in at most dlog2 (N) 1) e operations, where N is the total number of nodes in the tree. The 

given dictionary is leaf-attached and the leaf patterns along with their match vector are extracted. 

The leaf patterns are used to build the BST. Each node in the BST includes a pattern and a match 

vector.  

3.3Sequential Matching With Divided Patterns 

The match with a divided target pattern consists of successive matches with its quotient vector 

and remnant pattern shown in Fig 3. If a target pattern is divided by a fixed length f, the in the 
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quotient vector should be detected at f different points. Because the starting points of the 

sequential matches can be different, the points when the target pattern is matched can vary. State 

pointers and MSVs are held for f cycles and updated periodically every f cycles. Due to various 

lengths of the remnant patterns, the output states in an FSM for the remnant patterns can be 

reached at any cycle.  

 

Fig 3 Block diagramof the cascading approach 

3.4Pattern Partitioning and Mapping 

After all target patterns are divided with a fixed length f, the unique patterns for the quotient 

vector matcher, the quotient index matcher, the remnant pattern matcher, and the short pattern 

matcher are determined. For each matcher type, sub-patterns are partitioned into multiple subsets 

for homogeneous string matchers. The pattern partitioning is represented in Algorithm 1 as 

follows: procedure denotes the pattern partitioning with patterns T and string matcher parameter 

M. First, patterns are sorted lexicographically to increase the number of shared common prefixes. 

Then, a procedure, which denotes the pattern mapping, is called for obtaining the FSM tile 

contents for a string matcher.The pattern mapping is repeated until there are no unmapped 

patterns. If the largest number of states in tries is greater than the maximum number of states in 

an FSM tile, next iteration is continued by reducing π by one; otherwise, the loop is broken after 

obtaining the map-able patterns, mapped t. The unmapped patterns are returned by a procedure 

Remove. After exiting for loop, a procedure “Add failing pointer” is called to add failing pointers 

from each state to the longest suffix state finally, for the mapped patterns mapped t, the contents 

are obtained by calling a procedure. Due to the hardware resource parameter such as p(M)and 

s(M), the pattern mapping algorithm shows the constant time complexity, O(1). 
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3.6Divided Pattern Matching 

In order to explain the divided pattern matching with an example, the sequence of two digits 

between pipe symbols is the sequence of hexadecimal numbers. The length of the sub-patterns for 

the quotient vector is fixed as 4. All divided patterns are ordered as shown in Fig. 4, where binary 

code values are provided in the right column. Let us assume that the LSB of characters is adopted 

for the input of an FSM tile. 

 

 

 

 

 

 

 

 

 

 

fig 4  Example of subpatterns for divided pattern matching. 

Different types of  FSM tiles in string matchers are adopted for the quotient vector, the remnant 

pattern, and the short pattern matching, respectively. The quotient vector matching adopts all 

possible states for the sub-patterns with the same length; only the output states should indicate 

nonzero PMVs, so the architecture of the FSM tile is adopted. The numbers of output states and 

possible states are determined according to the length of the sub-patterns. If many output states 

are shared, the number of mapped sub-patterns could be greater than the number of output states. 

In this case, the maximum number of mapped target patterns is the same as the number of bits in 

a PMV. DFA for the quotient vector matching where the double-circled eight states represent 

possible output states. In addition, the failing pointers are not shown for clarity. Sub-patterns 

SP32 and SP42 are identical, so only the identification index of SP32 are shown in the figure 3.4. 

The DFA is implemented in an FSM tile for one input bit, where the starting address of the 

nonzero PMV table is the same as the starting address of the FSM tile. The lengths of remnant 

patterns and short patterns are shorter than the fixed length of sub-patterns in the quotient vector. 

In this case, any states except for the initial state can be output states. 
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3.7String Matching EngineArchitecture 

Based on the sequential matching mentioned above, architecture of the proposed string matching 

engine.  f is the fixed length of Sub-patterns in the quotient vector. According to f, the number of 

the remnant pattern matchers can be varied. A character code of one byte from a payload is 

inputed in the quotient vector matcher. The quotient vector matcher consists of v string matchers, 

where the width of an FMV is equal to the number of bits in a PMV of an FSM tile, p. In the 

quotient vector matcher, only one bit in total temporary match vectors becomes true because only 

one sub-pattern can be matched in the quotient vector matcher per cycle. Therefore, the 

temporary match vectors are encoded using binary encoder, where the encoder output can be the 

quotient index. 

 

 

Fig 5  Pattern Matching and Detection 

The above proposed block diagram in Fig 5 describes pattern matching and detection for NIDS. 

For the proposed NIDS the input data stream of bits is received for every clock pulse as given in 

the clock synchronization circuit. The pattern of intrusions  have already been stored in the 

database. This pattern is converted into a bit stream and is compared with the input data stream 

with the help of pattern matching unit. Snort performs protocol analysis, content searching, and 

content matching. Due to bitwise matching, if there is any intrusion , pattern mismatch occurs 

and early detection takes place. The detected pattern is given to the intrusion pattern in 

database.The decision making unit obtains the patterns and identifies the type of intrusion. 
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Fig 6 Computational Blocks 

A Finite State Machine is any device that stores the status of something at a given time and can 

operate on input to change the status and/or cause an action or output to take place for any given 

change. The memory efficiency is analyzed by two ways. They are the number of states used in 

matching and the number of logical elements utilized after synthesis. As shown in Fig.6 , the 

bitwise comparison is done between the two bit streams and the type of intrusion pattern in 

identified and detected early by means of PMV (Partial Matching Vector) scoring. 

EXPERIMENTALRESULTS 

 

Some of the outputs taken using Model Sim software and Quartus II software are shown below. 

These results show the output for protein alignment with and without interleaving, Network 

Intrusion Detection Intrusion System, area utilization report, performance report, RTL viewer and 

other information. 
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Fig 7 output for protein 

alignment  

Fig8 simulation output for NIDS 

It can be seen from the above figure 7  that the input protein sequence has been matched with the 

protein sequence that has been already stored in the database when it is run in MODELSIM. The 

protein sequence match here is shown as “ H604Y  ” which is an alignment for Blood Cancer. 

The transcript window gives the name of the output when a match is detected. 

It is seen from the above figure 8 that there has been a pattern match for a single virus pattern. 

Here “abv” has been fed as a virus pattern in the database and when the “abv” virus is present in 

the input it gets detected. The pattern match is shown by a binary 1 at the point where the “abv” 

virus pattern gets matched by the use of bit wise early detection method and is detected. 

4.1Performance Report For Protein Alignment 
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Fig9 Fmax summary without interleaving (slow corner) 

 

 

Fig10Fmax summary without interleaving (fast corner) 

 

The above figure 9 shows the Fmax summary for protein alignment for slow corner without 

interleaving. Slow corner represents the operating frequency when the kit is being operated under 

worst conditions like dusty environment etc. which slows down the efficiency of the output rate 

when the environment is not under best suited conditions. The Fmax obtained for slow corner 

without interleaving here is 154.49 MHz.The above figure 10 shows the Fmax summary for 

protein alignment for fast corner without interleaving. Fast corner represents the operating 

frequency when the kit is being operated under best conditions like non-dusty environment etc. 

which speeeds up the efficiency of the output rate when the environment is under best suited 

conditions.The Fmax obtained for fast corner without interleaving here is 274.2 MHz. 

 



M.AntoBennet,S.Sankaranarayanan,M.Deepika,N.Nanthini,S.Bhuvaneshwari and M.Priyanka 

A memory efficient hardware based pattern matching and protein alignment schemes for highly complex 

databases 

114 

 

 

Fig 11Fmax summary with interleaving (slow corner) 

 

 

 

 

 

 

 

 

 

 

Fig 12  Fmax summary with interleaving (fast corner) 

The above figure 11 shows the Fmax summary for protein alignment for slow corner with 

interleaving. Slow corner represents the operating frequency when the kit is being operated under 

worst conditions like dusty environment etc. which slows down the efficiency of the output rate 

when the environment is not under best suited conditions.The Fmax obtained for slow corner 

with interleaving here is 222.17 MHz.The above figure 12 shows the Fmax summary for protein 

alignment for fast corner with interleaving. Fast corner represents the operating frequency when 

the kit is being operated under best conditions like non-dusty environment etc. which speeeds up 

the efficiency of the output rate when the environment is under best suited conditions.The Fmax 

obtained for fast corner with interleaving here is 398.25 MHz. 

4.2 Performance Report For NIDS 
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Fig 13  Fmax summary for NIDS (slow corner) 

 

 

 

 

 

 

Fig 14  Fmax summary for NIDS (Fast 

corner) 

It is seen from the above performance report for NIDS that by using Leaf Attached Algorithm the 

operating frequency has been increased. The above figure 13 shows the Fmax for slow corner. 

Slow corner represents the operating frequency when the kit is being operated under worst 

conditions like dusty environment etc. which slows down the efficiency of the output rate when 

the environment is not under best suited conditions.  The Fmax here is shown as 422.83 MHz.It is 

seen from the above performance report for NIDS that by using Leaf Attached Algorithm the 

operating frequency has been increased. The above figure 14 shows the Fmax for fast corner. Fast 

corner represents the operating frequency when the kit is being operated under best conditions 

like non-dusty environment etc. which speeeds up the efficiency of the output rate when the 

environment is under best suited conditions. The Fmax here is shown as 738.01 MHz. 

4.4RTL Viewer For Protein Alignment 
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Fig 15 RTL Viewer for protein alignment without interleaving
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Fig 16 RTL Viewer for protein alignment with interleaving 

figure 15 shows the RTL (Register Transfer Level) viewer for the protein alignment scheme. It 

shows the schematic view for protein alignment without interleaving. The logical elements used 

in designing the circuit are shown above.The figure 16 shows the RTL (Register Transfer Level) 

viewer for the protein alignment scheme. It shows the schematic view for protein alignment 

without interleaving. The logical elements used in designing the circuit are shown above. 

4.5RTL Viewer For NIDS 
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Fig 17 RTL viewer for  NIDS 

The above figure 17 shows the RTL (Register Transfer Level) viewer for NIDS. It shows the 

elements used for the hardware implementation of NIDS. The logical elements used in designing 

the circuit are shown above. 

4.6Area Utilization Report For Protein Alignment 

 

Fig 18  Flow summary report without interleaving 

 

Fig19Flowsummary report with interleaving 

The above figure 18 shows the report for area utilization for Protein alignment without 

interleaving. The total number of logical elements, registers, pins, combinationals functions used 

for implementation is shown.The figure 

5.12 shows the report for area utilization for Protein alignment without interleaving. The total 

number of logical elements, registers, pins, combinationals functions used for implementation. 

4.7Area Utilization For NIDS 
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Fig 20 Flow summary report for NID 

 

The above figure 20 shows the report of area utilization for NIDS. The total number of logical 

elements, registers, pins, combinationals functions used are shown above 

STATE MACHINE VIEWER FOR NIDS 

 Fig 21 State machine 

report  

Fig 22 Power Dissipation Report 

The above figure 21 shows the state machine viewer for NIDS. The total number of states for 

FSM is shown. The arrow marks indicate the present, previous and next states accordingly.The 

above figure 22 shows the report of power dissipationfor NIDS. The power models, total power 

dissipation, static power dissipation, dynamic power dissipation informations are shown. 

Table 1 comparison table for pattern dividing methods 
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Hence in proposed system throughput is increased by 350%-450% in case of quotient vector 

matching .The throughput is increased by 150% in case of short pattern matching .Experimental 

results shows that total memory requirements decreases on average by 50% in comparing with 

existing Aho-Corasick method as shown in the above table 1 and the corresponding graph is 

shown n fg 23.. 

 

Fig23 Graph for pattern dividing methods 

IV. 5CONCLUSION 

Network Intrusion Detection System the FPGA hardware based NIDS proves to be more efficient 

than the software based NIDS since the number of users has been increasing rapidly. Based on 

the hardware implementation, it is concluded that hardware based approaches are more efficient 

in terms of speed, memory size and power consumption than software based approaches. The 

FPGA hardware based NIDS has been proposed to achieve higher rates using bit wise early 

PATTERN 

DIVIDING 

METHODS 

FMAX 

SUMMARY 

NO.OF 

STATES 

POWER 

DISSIPA

TION 

Aho-Corasick 132.31MHz 14 66.36mw 

Bit level short 

pattern 
319.9MHz 7 64.25mw 

Quotient 

Vector(LEAF 

based) 

738.01MHz 3 57.13mw 
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detection techniques. The architecture for a hardware based network intrusion detection system 

(NIDS) using pattern match processor was implemented. Now a days, hardware based string 

matching architectures are highly preferred in various real life applications. Based on the current 

implementation of the processor, incoming streams at rates of over 2 Gbps can be processed. This 

is more than sufficient to handle intrusion detection on current gigabit networks, and future 

enhancements by improvements in the VLSI process technology would enable the architecture to 

meet the demands of future 10 Gbps networks. 
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