Artifacts Overview

Conference. Euro-Par 2024
Article. Light-weight prediction for improving energy consumption in HPC platforms
Quick links.
Preprint PDF on HAL. https://hal.science/hal-04566184
Artifact data on Zenodo. https://doi.org/10.5281/zenodo.11173631
Artifact Nix binary cache. https://lightweight-pred-sched-europar24.cachix.org
Artifact code Git repository. IRIT, Framagit
Artifact code permalink. Software Heritage

1. Introduction

This document shows how to reproduce the experimental sections (6.2 to 6.5) of article [1]. We hope that this
document is enough to reproduce the whole experiments from scratch. However, as reproducing the exact
analyses and experiments conducted by the authors requires to download and store lots of input trace data
(=2 300 Go) and to do some heavy computations, various intermediate and final results have been cached
and made available on Zenodo to enable the reproduction of only subparts of the experimental pipeline. In
particular, the final analyses of the article are done in standalone notebooks whose input data is available
and small.

Unless otherwise specified, all commands shown in this document are expressed in sh and are thus compat-
ible with bash and zsh. The disk/bandwidth/computation overhead of commands is specified in the footer
part of each command box, and significant overheads are emphasized. Unless otherwise specified, execution
times have been obtained on a powerful computation node that uses 2x Intel Xeon Gold 6130. A MD5 hash is
given for the output files that we are think are important, and all these files can be downloaded on Zenodo.
The MD5 hashes have been computed by GNU coreutils’s md5sum command.

echo 'Commands should look like this'
echo 'Example command' > /tmp/example-output
sleep 1

md5 hash output file
fb9807302a8a925bb7a3963d03cedd04 /tmp/example-output

Time: 00:00:01.

2. Getting Started Guide

All the software environments required to reproduce the analyses and experiments of article [1] are open
source and have been packaged with Nix. Nix can build the full software stack needed for this experiment
as long as source code remains available. As we also put most of the source code needed by this artifact
on Software Heritage we hope that this artifact will have long-term longevity. For the sake of this artifact

reviewers’ quality of life, we have set up a binary cache with precompiled versions of the software used in
the experiments.

No special hardware is required to reproduce our work. Our Nix environments are likely to work on fu-
ture Nix versions, but for the sake of traceability we stress that we have used Nix 2.18.0 installed either by

nix-portable 0.10.0 or directly available via NixOS using channel 23-11. Our software environments likely
work on all platforms supported by Nix (Linux on i686/x86_64/aarch64 and MacOS on x86_64/aarch64 as
of 2024-05-07) but we have only tested them on Linux on x86_64. More precisely, we have used the Dahu
Grid’5000 cluster (Dell PowerEdge C6420, 2x Intel Xeon Gold 6130, 192 GiB of RAM) on the default oper-

1/11


https://hal.science/hal-04566184
https://doi.org/10.5281/zenodo.11173631
https://lightweight-pred-sched-europar24.cachix.org
https://gitlab.irit.fr/sepia-pub/open-science/artifact-europar24-lightweight-power-pred-sched
https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched
https://archive.softwareheritage.org/swh:1:rev:5a15139dadde8d923703ece93745fa250b1a0c53;origin=https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched.git;visit=swh:1:snp:968650e57128ea88b02a858279a7054f62f0a0b0
https://doi.org/10.5281/zenodo.11173631
https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/MD5
https://doi.org/10.5281/zenodo.11173631
https://www.gnu.org/software/coreutils/
https://nixos.org/
https://www.softwareheritage.org/
https://archive.softwareheritage.org/swh:1:rev:b5b47f1ea628ecaad5f2d95580ed393832b36dc8;origin=https://github.com/DavHau/nix-portable;visit=swh:1:snp:318694dfdf0449f0a95b20aab7e8370cff809a66
https://www.grid5000.fr/w/Grenoble:Hardware#dahu
https://www.grid5000.fr/w/Grenoble:Hardware#dahu

ating system available on Grid’5000 as of 2024-05-07 (Debian 5.10.209-2 using Linux kernel 5.10.0-28-
amd64).

2.1. Install Nix
If you are already using NixOS, Nix should already be usable on your system and you can go to Section 2.2.

Otherwise you must install Nix to use the software we have packaged. We recommend to use up-to-date
documentation on how to install Nix. As of 2024-05-07 the recommended command to install Nix (on a
Linux system running systemd, with SELinux disabled and sudo usable) is the following.

sh <(curl -L https://nixos.org/nix/install) --daemon

Please note that you may need to launch a new shell, to source a file or to modify your shell configuration
script as indicated by the Nix installer.

Testing your Nix installation.
« Launching nix-shell --version should run successfully and print you the Nix version you have installed.
« Launching nix-build --version should run successfully and print you the Nix version you have installed.

2.2. Enable Nix flakes

Our Nix packages rely on Nix flakes, which are not enabled by default as of 2024-05-07. Nix flakes must be
enabled to use the software we have packaged. We recommend to use up-to-date documentation on how
to enable flakes. However for the sake of this artifact guide self-containedness, steps to enable flakes are
given below. Please note that the way to enable flakes depend on whether you are on NixOS or not.

If you are using NixOS flakes can be enabled by
setting at least the nix-command and flakes Nix
experimental settings in your NixOS configuration
file. In other words, your NixOS configuration file

If you are not using NixOS flakes can be enabled
by setting at least the nix-command and flakes
experimental-features in your Nix configuration
file. The Nix configuration file path is ~/.config/

should have a content similar to the following. nix/nix.conf on non-NixOS Linuxes. In other

words, your Nix configuration file should have con-

nix.settings.experimental-features = [
"nix-command" "flakes"

tent similar to the one below.

nix-command flakes

1; experimental-features =

Testing your Nix flakes.

« Launching nix --version should run successfully and print you the Nix version you have installed.

+ Launching nix flake --version should run successfully and print you the Nix version you have installed.

« Launching nix build 'github:nixos/nixpkgs?ref=23.11#hello’' should create a result symbolic link
in your current directory. Then, launching ./result/bin/hello should print Hello, world!.

+ Launching nix shell 'github:nixos/nixpkgs?ref=23.11#hello’ --command hello should printHello,
world!.

2.3. Using our Nix binary cache (optional)

Using our binary cache is recommended as it enables to download precompiled versions of our software
environments instead of building them on your own machine. Our cache has the following properties.

« URL. https://lightweight-pred-sched-europar24.cachix.org

« Public key. lightweight-pred-sched-europar24.cachix.org-1:dHsm8geVskEOsZIjzXtVCmPvhOL2zwT1Lm8V4QoJdgI=

Once again, we recommend to use up-to-date documentation on using a Nix binary cache, but instruc-

tions are given below on how to use our cache as of 2024-05-07.

2/11


https://nixos.org/download/
https://nixos.org/download/
https://nixos.wiki/wiki/Flakes
https://nixos.wiki/wiki/Flakes
https://nixos.wiki/wiki/Flakes
https://lightweight-pred-sched-europar24.cachix.org
https://nixos.wiki/wiki/Binary_Cache#Using_a_binary_cache

If you are using NixOS, you must edit your NixOS configuration file to add our cache URL in the
nix.settings.substituters array, and our cache public key in the nix.settings.trusted-public-keys
array.

If you are not using NixOS, you must edit your Nix configuration file (~/.config/nix/nix. conf on Linux)
to add our cache URL in the substituters array, and our cache public key in the trusted-public-keys ar-
ray. Please find below a 2-line example configuration file that only enables the NixOS binary cache and ours.

substituters = https://cache.nixos.org https://lightweight-pred-sched-europar24.cachix.org
trusted-public-keys = cache.nixos.org-1:6NCHdD59X43100gWypbMrAURkbJ16ZPMQFGspcDShjY= lightweight-pred-sched-
europar24.cachix.org-1:dHsm8geVskEOsZIjzXtVCmPvhOL2zwT1Lm8V4QoldgI=

2.4. Version traceability and quick Nix flake explanation

All the software versions use in this artifact are fully and purely defined thanks to Nix flakes. More con-
cretely, our artifact Git repository at commit 5a15139dadde8d923703ece93745fa250b1a0c53 defines how
to build and use the software environments used to reproduce all our work. These environments are named

shells in Nix terminology. Nix builds software in isolated (filesystem, network...) sandboxes to remove most
sources of non-determinism, and forces inputs (source code, dependencies) to have well-defined versions
(well defined content hash and version control commit).

Our artifact Git repository directly defines how the scripts used to reproduce Article [1] should be built,
as the source code of these scripts is inside our artifact Git repository. Software that we manage but whose
source code is stored in another repository (e.g., the scheduler implementation used in our scheduling exper-
iment, the Batsim simulator...) define how they should be built in their own Git repository. Software that we
do not manage but that we use is either imported from the repository of the software itself if they use flakes
(e.g., Typst), imported from nixpkgs if possible (e.g., gzip), or otherwise defined in our artifact Git repository
(e.g., Python’s fastparquet library).

Nix flakes enable to link together several Nix software descriptions that are distributed in different reposito-
ries. This is done by (recursively) tracing the inputs (Flake dependencies) needed by the main flake of our
artifact Git repository. Consequently, the flake of our artifact Git repository indirectly defines all the soft-
wares needed and their versions.

For the sake of traceability, here are the software versions that we think are the most important.
e Our artifact Git repository commit 5a15139dadde8d923703ece93745fa250b1lalc53
« Nix 2.18.0
+ Nixpkgs commit 057f9aecfb71c4437d2b27d3323df7f93c010b7e
« NUR-kapack commit 4d8ca88fd8ada2287ee5c023877114d53d4854c1
« SimGrid release 3.34 (commit 036c801d55e3ab07b470c79640109080fed049al)
- intervalset commit 13d8f2d7000d4dc4e3202422658b0b5d83f83679
« batprotocol commit 25bc5bbf039c18a8024c4ab326047ba56800376a
- easy-powercap release europar24 (commit 659660c35650e9f46ec47e8c0743d75649e68d7b)
« Batsim commit ee797ccebbb95410479663ee0547e752112fc83e
« Python 3.11.6
» Pandas 2.1.1
» fastparquet release 2024.2.0 (commit eec9e614603f9be3cb495409ccb263caff53feqd)
« R43.2
» tidyverse 2.0.0
« Typst commit 21c78abd6eecddf6b3208405c7513be3bbd8991c (after 0.11.0)

3. Step-by-Step Instructions
All the scripts strongly related to the experiments of Article [1] are available on the Framagit GitLab
instance, and on Software Heritage for long-term longevity.

3/11


https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched
https://github.com/NixOS/nixpkgs
https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched
https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched
https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched
https://archive.softwareheritage.org/swh:1:rev:5a15139dadde8d923703ece93745fa250b1a0c53;origin=https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched.git;visit=swh:1:snp:968650e57128ea88b02a858279a7054f62f0a0b0

The repository can be cloned with the following commands. The repository is explicitly set to the commit
we have tested to write this artifact overview. Please note that updating the repository may be useful - e.g.,
if errors have been found and fixed, or if other parts of the experimental pipeline have been added.

git clone https://framagit.org/batsim/artifact-europar24-lightweight-power-pred-sched.git artifact-repo
cd artifact-repo
git checkout 5al5139dadde8d923703ece93745fa250b1a0c53

All commands below should be executed from the root of the cloned Git repository.

The step-by-step instructions of this document can be used in several ways depending on your goal.

1. You can check the final analyses (code + plots) done in Article [1] by reading the provided pre-rendered
notebooks available on Zenodo.

2. You can reproduce the final analyses by first downloading the provided aggregated results of the exper-
iments from Zenodo, and then by running the notebooks yourself. This enables you to edit our notebooks
before running them, so that you can to modify the analyses done or add your own.

+ Refer to Section 3.4 for instructions to analyze the results of the machine learning experiment.
+ Refer to Section 3.5.3 for instructions to analyze the results of the scheduling experiment.

3. You can reproduce our experimental campaigns by downloading the provided experiment input files
from Zenodo, and then by running the experiment yourself. This can enable you to make sure that our
experiment can be reproduced with the exact same parameters and configuration.

+ Refer to Section 3.5.2 for instructions to reproduce the scheduling experiment.

4. You can fully reproduce our experimental campaigns by downloading original traces of the Mar-
conil00, by generating the experimental campaigns parameters yourself (enabling you to hack provided
command-line parameters or provided code), and then by running the experiment yourself. You can follow
all steps below in this case, but please do note that this is disk/bandwidth/computation-intensive.

3.1. Analysis and modeling of the power behavior of Marconil00 nodes

3.1.1. Get power and job Marconi100 traces on your disk
This section downloads parts of the Marconil00 trace as archives from the ExaData Zenodo files, checks
that the archives have the right content (via MD5 checksums), extracts the data needed by later stages of the

pipeline (node power usage traces, jobs information traces), then finally removes unneeded extracted files
and the downloaded archives.

4/11


https://doi.org/10.5281/zenodo.11173631
https://doi.org/10.5281/zenodo.11173631
https://doi.org/10.5281/zenodo.11173631
https://gitlab.com/ecs-lab/exadata

nix develop .#download-ml00-months --command \
mle0-data-downloader ./ml00-data \
22-01 22-02 22-03 22-04 22-05 22-06 22-07 22-08 22-09

md5 hash output file
604a2a2493d688a77a7f771ad1dc91621 ml00-data/22-01 jobs.parquet
53e5939579412cb99347d14c62ce78%e ml00-data/22-02 jobs.parquet
4da725eb59b311c7b7f5568bd389d120 m1l00-data/22-03 jobs.parquet
6091df746cf94d346a3900153777496d m100-data/22-04 jobs.parquet
7f1e44259203b990217ecefb56aecdb ml1l00-data/22-05 jobs.parquet
f8f3fa87a6310f73f8c2e8ac0l3cebaa m1l00-data/22-06 jobs.parquet
350040cbc9532184679f226eff73c6f5 mlO0O-data/22-07 jobs.parquet
lleebd414fbbbe2b4d9f3aal568260ef ml00-data/22-08 jobs.parquet
9d60ba75bd53ab8e689097f2ccfe2f42 mlO0O-data/22-09 jobs.parquet
9a0a5a883862889ea29ebe866038aacf mlO0-data/22-01 power total.parquet
al3bla287197cdafl8cal72cOcfbeec8 mlO0O-data/22-02 power total.parquet
f4c3f05ff5a6b28da48d56c11f8a5146 mlO0-data/22-03 power total.parquet
f02745d785f6afa812a67bd70ca8090f ml00-data/22-04 power total.parquet
2969ala6f501f35b12f80ec4f3c7b298 mlO0-data/22-05 power total.parquet
4bd100c4ebd048c80dea58f064670ela mlO0O-data/22-06 power total.parquet
2631979125b4454e177977da6a482073 ml00-data/22-07 power total.parquet
b36373acddcO0fbf41e7171ded786e877 ml00-data/22-08 power total.parquet
82c3f61013c9254cabfd23c67a3e7b0f mlO0-data/22-09 power total.parquet

Download+temporary disk: 254 Go. Final disk: 928 Mo. Time: 00:40:00.

3.1.2. Aggregate power traces per node
The following command traverses all the Marconil00 power traces and counts how many times each node
was at each power value.

Required input files.
« All power parquet files outputted by Section 3.1.1.

nix develop .#py-scripts --command \
ml00-agg-power-months ./ml00-data/ ./ml@0-data/22-agg_\
22-01 22-02 22-03 22-04 22-05 22-06 22-07 22-08 22-09

md5 hash output file
20e5d7b3f941efblc5b6083e4752b647 ml00-data/22-agg power total.csv

Disk: 1 Mo. Time: 00:03:00.

3.1.3. Analyze Marconi1l00 power traces

The following commands runs a notebook that analyses the node power consumption of the Marconil00
trace. The notebook also generates a power model of the Marconi100 nodes, which is required to generate a
simulation platform.

Required input files.
» ml00-data/22-agg power total.csv (output of Section 3.1.2).

5/11



nix develop .#r-notebook --command \
Rscript notebooks/run-rmarkdown-notebook.R \
notebooks/m100-power-trace-analysis.Rmd

md5 hash output file
a2ebebb21586dladfa63fc917e1517bd ml0e0-data/22-powermodel total.csv
9829bblebb9ca5811676db3c56b6458c notebooks/ml00-power-trace-analysis.html

We could not make HTML notebook binary reproducible despite our best efforts. Their content should
be completely reproducible though.

Disk: 1.7 Mo. Time (laptop): 00:00:10.

3.2. Job power prediction

The experimental workflow consists of three parts, (i) preprocessing of the original data, and (ii) prediction
of the mean and maximum power consumption. Please note that reproducing this section involves heavy
computations and big data. We have not made intermediate files available on Zenodo as they were too big.

3.2.1. Pre-processing

3.2.1.1. Step 1

for month in 22-01 22-02 22-03 22-04 22-05 22-06 22-07 22-08 22-09; do
nix develop .#py-scripts --command ml0@0-pred-preprocessl \
-j ./ml00-data/${month} jobs.parquet \
-m ./ml00-data/${month} power total.parquet
done

Memory: 128 Go. Time (sequential): 18:00:00.

3.2.1.2. Step 2

for month in 22-01 22-02 22-03 22-04 22-05 22-06 22-07 22-08 22-09; do
nix develop .#py-scripts --command ml@@-pred-preprocess2 \
-js ./mlo0-data/${month} filterl2 singlenode.csv \
-jm ./ml00-data/${month} filterl2 multinode.csv \
-m ./ml00-data/${month} power total.parquet
done

Memory: 128 Go. Time (sequential): 66:00:00.

3.2.2. Aggregate step 2 output into a single file

find . -name '*filterl23*' | \
tar -zcvf exadata job _energy profiles.tar.gz --files-from -

Disk: 32 Go.

3.2.3. Compute power metrics and add job information

for month in 22-01 22-02 22-03 22-04 22-05 22-06 22-07 22-08 22-09; do
nix develop .#py-scripts --command ml00-pred-jobs-extract-power-metrics \

-d ./ml00-data/${month}
done

Disk: 32 Go.

3.2.4. Merge files into a single CSV file
This will output the filter123 all jobs aggmetrics.csv.gz needed for the prediction script.

6/11


https://doi.org/10.5281/zenodo.11173631

nix develop .#py-scripts --command ml0O-pred-merge-jobfiles -d ./ml00-data/

Disk: 82 Mo.

3.3. Predicting Job mean and maximum power consumption

mkdir ./ml00-data/total power mean predictions users allmethods mean
mkdir ./ml00-data/total power mean predictions users allmethods max

nix develop .#py-scripts --command \
run-prediction-per-user-allmethods-mean \
-j ./mlO0-data/filterl23 all jobs aggmetrics.csv.gz \
-0 ./mlO0-data/total power mean predictions users allmethods mean

nix develop .#py-scripts --command \
run-prediction-per-user-allmethods-max \
-j ./mlO0-data/filter123 all jobs aggmetrics.csv.gz \
-0 ./mlO0-data/total power mean predictions users allmethods max

Memory: 128 Go. Time (sequential): 72:00:00.

3.3.1. Compressing prediction output into single files

The expected output data has been stored on Zenodo.

tar -cvzf ./ml00-data/power pred users _allmethods max.tar.gz \
./ml00-data/total power _mean predictions users_allmethods mean

tar -cvzf ./mlO0-data/power pred users allmethods mean.tar.gz \
./ml00-data/total power mean predictions users allmethods max

md5 hash output file
fdcc47998a7e998abde325162833b23e power pred users allmethods max.tar.gz
9541782a75c9a5b21c53a95¢c0218e220 power pred users_allmethods mean.tar.gz

Disk: 82 Mo.

3.4. Analyzing prediction results

This analysis requires that the two job power prediction archives (outputs of Section 3.2, available on Zenodo)
are available on your disk in the ./user-power-predictions directory. The following command populates
the ./user-power-predictions/data by extracting the archives and uncompressing all the required files on
your disk.

mkdir ./user-power-predictions/data
nix develop .#merge-mlO0-power-predictions --command \

tar xf ./user-power-predictions/*mean.tar.gz --directory ./user-power-predictions/data
nix develop .#merge-mlO0-power-predictions --command \

tar xf ./user-power-predictions/*max.tar.gz --directory ./user-power-predictions/data
nix develop .#merge-ml00-power-predictions --command \

gunzip ./user-power-predictions/data/*/*.gz

Disk: 519 Mo. Time: 00:00:05.

The analysis of the predictions, which also generates Figures 2 and 3 of Article [1], can be reproduced with
the following command.

7/11


https://doi.org/10.5281/zenodo.11173631
https://doi.org/10.5281/zenodo.11173631

nix develop .#r-py-notebook --command \
Rscript notebooks/run-rmarkdown-notebook.R \
notebooks/prediction-results-analysis.Rmd

md5 hash output file
89e531e6b0eB8b767ach58276189267b4 notebooks/fig2a-distrib-job-power-mean.svg
3bcd5f8e515479f3f81leda23c0dc7291 notebooks/fig2b-distrib-job-power-max.svg

0bc88e65ae495a8d6ec7d3cbcfcal2ae notebooks/fig3a-pred-mape-mean-power.svg
al9bla7c5dc72ec73a5349d85fc68fa3 notebooks/fig3b-pred-mape-max-power.svg
04c2d5ef412b791a4d5515ec0719b3d0® notebooks/prediction-results-analysis.html

We could not make HTML notebooks and Python-generated images binary reproducible despite our
best efforts. Their content should be completely reproducible though.

Time (laptop): 00:00:20.

3.5. Job scheduling with power prediction

This section shows how to reproduce Sections 6.4 and 6.5 of article [1].
3.5.1. Prepare all the files required to run the simulation

3.5.1.1. Generate a SimGrid platform
The following command generates the SimGrid platform used for the simulations.

Required input files.
+ mlO0-data/22-powermodel total.csv, the M100 node power model (output of Section 3.1.3).

nix develop .#py-scripts --command \
ml00-generate-sg-platform ./ml00-data/22-powermodel total.csv 100 \
-0 ./expe-sched/mle0-platform.xml

md5 hash output file
b5c28261bbebbceadl7ac03blef97bd9 expe-sched/m1l00-platform.xml

Time: 00:00:01.

3.5.1.2. Generate simulation instances

The following commands generate workload parameters (i.e., when each workload should start and end),
taking start points at random during the 2022 M100 trace. Simulation instances are then generated from the
workload parameters.

Required input files.
+ expe-sched/m100-platform.xml (output of Section 3.5.1.1).

8/11



nix develop .#py-scripts --command \
ml00-generate-expe-workload-params -o ./expe-sched/workload-params.json
nix develop .#py-scripts --command \
ml00-generate-expe-params ./expe-sched/workload-params.json \
./expe-sched/mle0-platform.xml \
-0 ./expe-sched/simu-instances.json

md5 hash output file
e1b4475f55938ad6ded4ca500bddc7908 expe-sched/workload-params.json
3a7e7d8183dcb733d6b49d86b2ab3b14 expe-sched/simu-instances.json

Disk: 1.3 Mo. Time: 00:00:01.

3.5.1.3. Merge job power predictions and jobs information into a single file

The job power predictions (outputs of Section 3.2, available on Zenodo) are two archives that we assume are
on your disk in the . /user-power-predictions directory. These archives contain gzipped files for each user.
To make things more convenient for the generation of simulation inputs, all the job power prediction files
are merged into a single file with the following commands.

mkdir ./user-power-predictions/tmp
nix develop .#merge-ml00-power-predictions --command \

tar xf ./user-power-predictions/*mean.tar.gz --directory ./user-power-predictions/tmp
nix develop .#merge-mlO0-power-predictions --command \

tar xf ./user-power-predictions/*max.tar.gz --directory ./user-power-predictions/tmp
nix develop .#merge-ml00-power-predictions --command \

gunzip ./user-power-predictions/tmp/*/*.gz
nix develop .#merge-mlO0-power-predictions --command \

ml00-agg-power-predictions ./user-power-predictions/tmp \
./ml00-data/22-job-power-estimations.csv

rm -rf ./user-power-predictions/tmp

md5 hash output file
86a056a9d61cca59b80adf95fa8bff22 ./mlO0-data/22-job-power-estimations.csv

Temporary disk: 519 Mo. Final disk: 25 Mo. Time: 00:00:30.

Similarly, Marconi100 job traces are also merged into a single file.

nix develop .#py-scripts --command \
ml00-agg-jobs-info ./mleO-data/ ./ml00-data/22-jobs.csv \
22-01 22-02 22-03 22-04 22-05 22-06 22-07 22-08 22-09
nix develop .#py-scripts --command \
ml1l00-join-usable-jobs-info ./ml00-data/22-job-power-estimations.csv \
./ml00-data/22-jobs.csv \
./ml00-data/22-jobs-with-prediction.csv

md5 hash output file
€c7d00104663b13e2992ec10749d6al62 mlO0-data/22-jobs-with-prediction.csv

Final disk: 343 Mo. Time: 00:02:00.

3.5.1.4. Generate workloads
The following command generates all the workloads needed by the simulation. This step is very long, even
while using all the cores of a powerful computation node!

9/11


https://doi.org/10.5281/zenodo.11173631

nix develop .#py-scripts --command \
ml00-generate-expe-workloads ./expe-sched/workload-params.json \
./ml00-data/22-jobs-with-prediction.csv \
./ml00-data \
-0 /tmp/wlds

Output should be the /tmp/wlds directory, with should contain 1.4 Go of files.

+ 30 Batsim workload files — e.g., /tmp/wlds/wload_delay 5536006.json

+ 30 unused input_watts files — e.g., /tmp/wlds/wload_delay 5536006 input watts.csv

« 1 directory per replayed job in /tmp/wlds/jobs/ (total of 121544 jobs)

+ 1 dynamic power trace per job in /tmp/wlds/jobs/JOBID_ STARTREPLAYTIME/dynpower.csv

Disk: 1.4 Go. Time: 05:30:00.

3.5.2. Run the simulation campaign

The following command runs the whole simulation campaign. The main results of the simulations are aggre-
gated in situ into a single file. Details about each simulation are stored in the /tmp/simout directory, one
subdirectory per simulation instance — please refer to expe-sched/simu-instances. json for the mapping
from unique simulation instances to the simulation parameters.

Required input files.

+ expe-sched/m100-platform.xml, the SimGrid platform file (output of Section 3.5.1.1).

+ expe-sched/simu-instances.json, the set of simulation instances (output of Section 3.5.1.2).

« The /tmp/wlds directory (1.4 Go) that contains all the workload files (output of Section 3.5.1.4).

Please note that all input files can be downloaded from Zenodo if you have not generated them yourself. In
particular to populate the /tmp/wlds directory you can download file workloads. tar.xz and then extract
it into /tmp/ via a command such as the following. tar xf workloads.tar.xz --directory=/tmp/

nix develop .#simulation --command \
mleO-run-batsim-instances \
./expe-sched/simu-instances.json \
-w /tmp/wlds \
-0 /tmp/simout \
--output state file ./expe-sched/simu-campaign-exec-state.json \
--output _result file ./expe-sched/simu-campaign-agg-result.csv

md5 hash output file
2f31cf5a3cabb2f46a2d426c9558f351 expe-sched/simu-campaign-agg-result.csv

Disk: 7.6 Go. Time: 00:06:00.

3.5.3. Analyze the simulation campaign results
The following command runs a notebook that analyze the aggregated results of the simulation campaign,
and outputs Figure 4 and Figure 5 of Article [1].

Required input files.
+ expe-sched/simu-campaign-agg-result.csv, the simulation campaign main output of Section 3.5.2.

10/ 11


https://doi.org/10.5281/zenodo.11173631

nix develop .#r-notebook --command \

Rscript notebooks/run-rmarkdown-notebook.R \
notebooks/simulation-output-analysis.Rmd

md5 hash output file

660144ea7340a7accfdeb8c7c2a7a3fa notebooks/fig4-sched-mean-power-distribution.svg
df07dec0lea5dd176ef406b26638d180 notebooks/fig5-sched-mtt-diff-distribution.svg
e00304f9f2fd1819b72ca8b6b802db9c notebooks/simulation-output-analysis.html

We could not make HTML notebook binary reproducible despite our best efforts. Their content should
be completely reproducible though.

Time (laptop): 00:00:30.

Bibliography

[1] D. Carastan-Santos, G. Da Costa, M. Poquet, P. Stolf, and D. Trystram, “Light-weight prediction for im-
proving energy consumption in HPC platforms,” European Conference on Parallel Processing (Euro-Par)
2024, Aug. 2024, [Online]. Available: https://hal.science/hal-04566184

11/11


https://hal.science/hal-04566184

	Introduction
	Getting Started Guide
	Install Nix
	Enable Nix flakes
	Using our Nix binary cache (optional)
	Version traceability and quick Nix flake explanation

	Step-by-Step Instructions
	Analysis and modeling of the power behavior of Marconi100 nodes
	Get power and job Marconi100 traces on your disk
	Aggregate power traces per node
	Analyze Marconi100 power traces

	Job power prediction
	Pre-processing
	Step 1
	Step 2

	Aggregate step 2 output into a single file
	Compute power metrics and add job information
	Merge files into a single CSV file

	Predicting Job mean and maximum power consumption
	Compressing prediction output into single files

	Analyzing prediction results
	Job scheduling with power prediction
	Prepare all the files required to run the simulation
	Generate a SimGrid platform
	Generate simulation instances
	Merge job power predictions and jobs information into a single file
	Generate workloads

	Run the simulation campaign
	Analyze the simulation campaign results


	Bibliography

