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1Introduction
Security is a crucial aspect of the trustworthiness of an AI 
system and includes a broad range of topics. Privacy is a core 
component of information security and is linked to protecting 
personal and sensitive information. Both security and privacy 
concerns arise along the whole life cycle of AI systems, 
including data collection, model training, and model deployment 
and inference. Classical IT security aspects like secure data 
storage, secure transmissions or access control, have to be 
considered as well. However, in this white paper we focus on 
AI specific security and privacy aspects. For example, we take a 
look at malicious attacks on machine learning models (evasion, 
information extraction, poisoning, and backdoor attacks). 
Furthermore, in the past, data protection measures focused on 
protecting data during storage (i.e. data at rest) or transmission 
(data in transit). Thanks to recent advances in cryptography and 
privacy-enhancing technologies, new methods now also provide 
protection during computations (data in use). For AI models, this 
means that data and model can be protected against attacks 
during the training and inference process. 

A lack of security privacy in AI systems can have serious 
consequences, ranging from data breaches and unauthorized 
access to sensitive information, as well as the manipulation of 
AI algorithms for malicious purposes and the perpetuation of 
biased decision-making. Additionally, compromised AI systems 
may lead to severe financial losses and reputational damage. 
They may even endanger human safety if AI is utilized in critical 
areas such as healthcare, autonomous vehicles or national 
security. Addressing these security and privacy concerns is 
crucial to foster trust in AI technology and ensure its responsible 
and ethical deployment across various domains.

Examples of past incidents of privacy and security violations 
can be found in the AI incident database1. For example, 
Facebook’s friend suggestion feature recommended patients of 
a psychiatrist to each other (incident #406), OpenAI’s generative 
model GPT-2 memorized and recited sensitive training data 
(incident #357) and suicide clips evaded TikTok’s automated 
moderation system in a coordinated attack (incident #366).

Security and privacy have also become key aspects of new 
regulations, especially in the European Union. The legal and 
regulatory landscape in Europe regarding AI privacy and  
security has recently undergone significant developments.  
Key regulations include the General Data Protection Regulation 
(GDPR), which came into effect in 2018, the Data Governance 
Act and the proposed AI Act.
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AI model attacks in  
a nutshell
In order to secure an AI system, it is important to understand 
the threats it faces. Therefore, threat modeling, which defines 
the capabilities and knowledge of the attacker, as well as the 
attack goal and path, is an important first step. Typically, a 
distinction is made between attackers that can deviate from  
the agreed protocol (active/malicious) and those who try to learn 
as much as possible without violating the protocol (passive/
semi-honest/honest-but-curious). Moreover, an attacker may be 
assumed to have finite or infinite computational power. Based 
on the attacker’s knowledge, distinctions can be made between 
black-box attacks (which only access the model’s output),  
white-box attacks (which access the full model), and gray-box 
attacks (which gain partial access). Attacks can be categorized 
into three types according to the attack goal (Bae et al. 2018, 
BSI 2023): (1) evasion attacks (2) poisoning and backdoor  
attacks (3) privacy attacks. 

The goal of an evasion attack (including adversarial attacks) is to 
cause the AI model to misbehave or make incorrect predictions 
by providing input data specifically crafted to evade detection 
or classification. Defenses against evasion attacks range from 
traditional security measures, such as input validation and 
anomaly detection, to specialized techniques like adversarial 
training, defensive distillation and input preprocessing.

Poisoning attacks purposely cause malfunctioning or 
performance loss during model training. Backdoor attacks are 
targeted poisoning attacks that teach the model to produce 
a deliberate output change in response to a certain trigger. 
Defenses against poisoning and backdoor attacks include: 
using trusted sources for pre-trained models and training data, 
fine-tuning the model with trusted training samples, identifying 
triggers by testing if the model’s output changes with small 
input changes, pruning the model, detecting the attack, using 
specifically designed regularization techniques and applying 
certified robustness (Jia et al. 2022).

Privacy attacks aim to reconstruct the model or (part of) its 
training data. The most common privacy attacks include:

•	 Membership inference attacks: with the aim of determining 
whether a sample was used for training

•	 Attribute inference attacks: with the aim of reconstructing 
sensitive attributes of individual records 

•	 Model inversion attacks: with the aim of inferring features 
that characterize classes from the training data

•	 Model extraction/stealing attacks: with the aim of 
reconstructing the model’s behavior, architecture  
and/or parameters

Defenses may include restricting the model output, sanitizing  
the training data, avoiding overfitting (e.g. by using regularization),  
and applying privacy-enhancing technologies (PETs).
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Privacy-enhancing technologies (PETs)
There is a rising interest in PETs that can protect data in use. 
Each method is designed for a certain threat scenario and has 
its own advantages and limitations.

Fully homomorphic encryption (FHE) (Rechberger and Walch 
2022, Smart 2015, Phong et al. 2018) allows computation on 
encrypted data. In the context of AI, FHE enables the use of 
cloud services (i.e. machine learning as a service) without 
disclosing the content of the data, or the access to pre-trained 
machine learning models, without disclosing the  
model properties. The main challenge of FHE is its 
computational overhead.

Secure multi-party computation (MPC) (Rechberger and  
Walch 2022, Evans et al. 2018) enables a group to jointly 
perform a computation without disclosing any participant’s 
private inputs. Typical applications for machine learning include 
collaborative learning on combined datasets and private 
classification. MPC is communication intensive, especially  
with larger numbers of parties.

Differential privacy (DP) (Dwork 2008, Dwork and Roth 2014)  
is a mathematical notion used to quantify the risk of 
reconstructing the input data from the output of a computation. 
Traditionally, anonymization is applied to prevent such 
reconstruction, but there is an increasing awareness that 
despite the use of this strategy, re-identification is often still 
possible (Backstrom et al. 2007, Ganta et al. 2008, Narayanan 
and Shmatikov 2008). Differential privacy binds the maximum 
amount of information that the output of a computation 
discloses about an individual data point by adding curated noise 
to the computed function. The amount of added noise depends 
on the desired privacy level and the sensitivity of the function. 
In AI systems, noise can be added either to the input data, 
the objective function, the gradients or the output. For deep 
neural networks, gradient perturbation via differentially private 
stochastic gradient descent (DP-SGD) (Abadi et al. 2016) is the 
most common approach. DP has also been applied in the field 

of recommender systems, where a trade-off between a user’s 
privacy and recommendation accuracy has been identified and 
addressed (Müllner et al. 2023). The main challenge of DP is 
the inherent trade-off between privacy and utility, as the noise 
inherently increases the uncertainty of the computation.

Federated learning (FL) (Zhang et al. 2021, Li et al 2020) is a 
machine learning method used to evaluate data from a large 
number of clients (e.g. mobile phones). Each client downloads 
the model, trains it locally, and shares the model updates with 
the central server which aggregates the updates from all clients. 
While this method provides some notion of security by keeping 
the private data local, training data can be reconstructed from 
the model updates (Yin et al. 2021).

Transfer learning is not a PET in the traditional sense but can 
indirectly contribute to privacy. In general, transfer learning 
refers to the fine-tuning of a pre-trained model on a new task 
for which only a small training dataset is available. For example, 
a publicly available pre-trained model can be fine-tuned for a 
specific task on a private training data set. This saves not only 
time and computational effort, but also decreases the amount 
of private data necessary to train a performant machine learning 
model. This allows, for example, local fine-tuning, where the 
private data never leaves the local storage.

Synthetic data approximates real data by retaining statistical 
properties, patterns and dependencies. Synthetic data 
generation is often seen as a promising solution for privacy-
preserving data publishing/sharing, but the original data can 
often still be reconstructed (similar to anonymization techniques) 
(Stadler et al. 2022). 

To provide increased privacy, the above methods can also be 
combined. For example, differential privacy can mitigate the risk 
of reconstruction in federated learning (Wei et al. 2020), transfer 
learning (Walch et al. 2022) and synthetic data (Tai et al. 2022, 
Stadler et al. 2022).
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3Metrics and methods to  
evaluate privacy and security
The vulnerability of AI models to privacy and security attacks 
can be evaluated through a combination of two complementary 
approaches: mathematical analysis and attack-based evaluation. 
Mathematical analysis provides formal guarantees, while  
attack-based evaluation offers real-world insights into how  
the model behaves under different attack scenarios.

Mathematical analysis can be used to prove and/or quantify 
specific security and privacy properties of a system. This 
approach is often applied in cryptography and can provide 
formal guarantees about the security of a system under certain 
assumptions. To make sure that the guarantee holds true, the 
implementation should be checked for errors and suitable 
parameter selection. Mathematical analysis is of particular 
relevance when a new security/privacy method is published.

Attack-based evaluation empirically measures if (and how 
much) a specific AI model is vulnerable to a specific attack. 
It assesses how susceptible the model is to different attack 
strategies and quantifies the model’s robustness. Various 
metrics are commonly used to evaluate the performance of the 
model under attack, such as the success rate of the attack, the 
number of iterations needed for a successful attack, the attack 
accuracy and the minimal data changes needed for a successful 
attack (BSI 2022). Which metric(s) should be applied in which 

case depends on the type of attack used for evaluation and 
the assumptions made about the attacker’s capabilities and 
knowledge. This, in turn, needs to be identified for the specific 
use case and model at hand through analysis of possible threat 
scenarios and by searching related literature. It is essential to 
recognize the limitations of attack-based evaluation. While it can 
identify vulnerabilities and weaknesses in the model, it does not 
provide an overall privacy/security guarantee. Moreover, it only 
covers specific attack scenarios tested during evaluation and 
may not account for unforeseen or sophisticated attacks.

Attack-based 
evaluation empirically 
measures if (and how 
much) a specific AI 
model is vulnerable 
to a specific attack.
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Open issues and challenges
The field of AI security and privacy faces several open issues 
and challenges that require research and innovation. Despite 
the development of defense mechanisms, AI models still face 
challenges in achieving robustness against adversarial attacks. 
Additionally, the limitations and possible negative impacts 
of defense methods (e.g. decreased utility or computational 
overhead) must be taken into account. Researchers continue 
to explore more effective defenses to mitigate the impact 
of adversarial examples. The transferability of attacks across 
models poses a significant threat, necessitating more robust 
defense strategies. Defending against poisoning attacks and 
ensuring the integrity of training data is a critical challenge. 
Detecting and mitigating poisoned data inputs requires 
innovative techniques and strategies.

Preserving privacy in deep learning models remains a complex 
challenge, particularly when dealing with sensitive data. 
Methods like differential privacy show promise but need 
further investigation to strike the right balance between privacy 
protection and utility. Seamlessly integrating privacy-enhancing 
technologies (PETs) with existing AI systems requires research 
into compatibility, performance overheads, and ensuring  

that privacy is not compromised in the process. Many privacy 
and security-enhancing techniques can be computationally 
expensive, making them challenging to implement in  
resource-constrained environments like edge devices.  
Enabling secure model sharing and collaboration between 
multiple parties while preserving privacy remains a  
challenging problem.

Developing standardized metrics for evaluating privacy and 
security across different AI systems is essential to facilitate 
comparative analysis and benchmarking.

The emergence of advanced AI-based attacks, including the 
potential for AI systems to be used as attackers, raises new 
concerns. Preparing for the future landscape of adversarial  
AI is a critical challenge.

Addressing these open issues and challenges requires a 
collective effort from researchers, developers, policymakers, 
and organizations. Continuous research, collaboration and 
sharing of best practices are essential to create a more  
secure and privacy-respecting AI ecosystem.
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Summary and outlook
Security and privacy are crucial aspects of AI systems and 
involve a broad range of different topics, ranging from traditional 
IT security aspects like secure data storage and access 
control, to AI specific attacks like evasion and privacy attacks. 
In this white paper we are focusing on the latter and provide 
an introduction to those threats and defenses. Evaluating the 
security of AI systems and models is challenging. Mathematical 
analysis provides formal guarantees and quantification of 
security and privacy properties, while attack-based evaluation 
offers real-world insights into model behavior under various 
attack scenarios. These evaluations are crucial in identifying 
weaknesses and implementing effective defense mechanisms 
to protect against potential threats.

New technologies have emerged in addition to standard 
software and systems security measures, including 
homomorphic encryption, secure multi-party computation, 
differential privacy and federated learning. Those technologies 
solve some of the issues and have become more industry-ready 
in recent years, e.g. due to improvement of the performance 
trade-offs, but they still have limitations and require further 
research and innovation.

Privacy and security in AI is an active research field and a central 
topic in the ongoing pursuit of trustworthy AI. Legal frameworks 
are in the process of being established and will influence further 
developments in the field. As AI continues to play a pivotal 
role in various domains, addressing these security and privacy 
concerns remains paramount to ensure responsible and ethical 
deployment, and to foster trust in this  
transformative technology.
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