
1



Anastassios Nanos & Ioannis Plakas
Research team: Charalampos Mainas, Georgios Ntoutsos

Unikernels in K8s: Performance and 
Isolation for Serverless Computing with 
Knative



About us

3

➜ Young SME (inc. 2020) doing research in virtualization systems

➜ Involved in Research & Commercial projects

➜ Focus on systems software

➜ Homogenize application deployment in heterogeneous infrastructure

➜ Optimize application execution

➜ Bring cloud-native concepts to Edge / Far-Edge devices

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

Charalampos (Babis) Mainas
Hypervisors / Unikernels

cmainas@nubis-pc.eu

Anastassios (Tassos) Nanos
Hypervisors / Container runtimes

ananos@nubis-pc.eu

Georgios Ntoutsos
Container runtimes

gntouts@nubis-pc.eu

Ioannis Plakas
Orchestration

iplakas@nubis-pc.eu



FaaS & Serverless platforms 

4Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

API

write back

external

function 

cloud service 

event
{...}

➜ Users: 

➜ write a function in a high-level language

➜ pick the event to trigger the function

➜ The underlying framework handles:

➜ instance selection, deployment, scaling, fault 
tolerance 

➜ monitoring, logging, security patches



FaaS platform requirements

Low end-to-end function execution latency:

➜ A function should complete with minimal overhead 
compared to its execution on a dedicated, bare-metal server

High throughput per CAPEX: 

➜ To maximize throughput per capital expenditure, FaaS 
system software should serve a high rate of function 
execution requests per server to maximize utilization.

Energy efficiency:

➜ To minimize operational expenses — particularly energy 
consumption — the FaaS system should minimize CPU 
cycles for scheduling and executing functions.

Secure isolation:

➜ FaaS system software must prevent untrusted user function 
code from tampering with the infrastructure or accessing 
the data or code of other functions.

Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Function as a Function. In Proceedings of the 2023 ACM 
Symposium on Cloud Computing (SoCC '23). Association for Computing Machinery, New York, NY, USA, 81–92. 
https://doi.org/10.1145/3620678.3624648

5Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

https://doi.org/10.1145/3620678.3624648


FaaS platform requirements

Low end-to-end function execution latency:

➜ A function should complete with minimal overhead 
compared to its execution on a dedicated, bare-metal server

High throughput per CAPEX: 

➜ To maximize throughput per capital expenditure, FaaS 
system software should serve a high rate of function 
execution requests per server to maximize utilization.

Energy efficiency:

➜ To minimize operational expenses — particularly energy 
consumption — the FaaS system should minimize CPU cycles 
for scheduling and executing functions.

Secure isolation:

➜ FaaS system software must prevent untrusted user function 
code from tampering with the infrastructure or accessing 
the data or code of other functions.

6Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Function as a Function. In Proceedings of the 2023 ACM 
Symposium on Cloud Computing (SoCC '23). Association for Computing Machinery, New York, NY, USA, 81–92. 
https://doi.org/10.1145/3620678.3624648

https://doi.org/10.1145/3620678.3624648


FaaS systems software stack

Concerns about the systems software stack:

● retrofits legacy infrastructure

● presents high overhead when managing short-lived tasks

7Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



FaaS systems software stack

Concerns about the systems software stack:

● retrofits legacy infrastructure

● presents high overhead when managing short-lived tasks

8Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



FaaS systems software stack

Concerns about the systems software stack:

● retrofits legacy infrastructure

● presents high overhead when managing short-lived tasks

➜ k8s is still the dominant orchestration framework

➜ knative is a k8s-native serverless framework

9Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



FaaS systems software stack

Concerns about the systems software stack:

● retrofits legacy infrastructure

● presents high overhead when managing short-lived tasks

➜ k8s is still the dominant orchestration framework

➜ knative is a k8s-native serverless framework

10Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU
https://xkcd.com/2347/



FaaS systems software stack

Concerns about the systems software stack:

● retrofits legacy infrastructure

● presents high overhead when managing short-lived tasks

➜ k8s is still the dominant orchestration framework

➜ knative is a k8s-native serverless framework

Let's try to optimize the parts of the stack we care about!

11Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU
https://xkcd.com/2347/



Knative

Components:

● Activator

● Autoscaler

● Function Pods:

○ queue-proxy

○ user-container

12Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Knative

Components:

● Activator

● Autoscaler

● Function Pods:

○ queue-proxy

○ user-container

➜ Examine isolation issues

➜ sandbox user code

13Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Knative

Components:

● Activator

● Autoscaler

● Function Pods:

○ queue-proxy

○ user-container

➜ Examine isolation issues

➜ sandbox user code

➜ Examine response latency issues

➜ cold boot times

14Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Isolation: Sandboxed container runtimes

kata-containers:

● CRI-compatible

● spawn a sandbox / microVM

○ AWS Firecracker

○ QEMU

○ Cloud-hypervisor

○ Dragonball (runtime-rs)

● spawn all containers of a pod in the sandbox

Gvisor follows the same principle

15Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Isolation: Knative with sandboxed containers

RuntimeClass option:

✓ protect the rest of the 
infrastructure from 
user-submitted code

✘ the queue-proxy container is still 
exposed to user-submitted code

✘ increased cold-boot overhead:

➜ spawn the microVM

➜ pass through container rootfs

➜ spawn the container

16Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Isolation: Knative with sandboxed containers

RuntimeClass option:

✓ protect the rest of the 
infrastructure from 
user-submitted code

✘ the queue-proxy container is still 
exposed to user-submitted code

✘ increased cold-boot overhead:

➜ spawn the microVM

➜ pass through container rootfs

➜ spawn the container

What if we had a way to isolate the user-container from the rest of the stack 

and 

reduce cold-boot times...
17Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Unikernels

18

A unikernel is:

➜ specialized

➜ single address space 

➜ built using a LibOS

In other words:

➜ Tailored for a single application

➜ No kernel- / user-space separation (no mode switches)

➜ Contains the absolute minimum software components for 
the application to run

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Unikernels 

19Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

➜ Considered a research-y concept

○ "Unikernels are unfit for production"

➜ Lately, things are changing

➜ Many frameworks exist, tailored to specific use-cases



Unikernels 

➜ Unikernels are not containers

✘ can not use all the nifty container tools :(

➜ Unikernels are not typical VMs

✘ can not integrate directly with sandboxed container 
runtimes

20Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

➜ Considered a research-y concept

○ "Unikernels are unfit for production"

➜ Lately, things are changing

➜ Many frameworks exist, tailored to specific use-cases



Cloud-native Unikernels 

21

➜ OCI is a well defined and widely used format for container 
images

✓ Unikernels should look like OCI images

➜ Container runtimes drive application execution in modern 
orchestration platforms

✓ Container runtimes should know how to execute 
Unikernels

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Cloud-native Unikernels 

22

➜ OCI is a well defined and widely used format for container 
images

✓ Unikernels should look like OCI images

➜ Container runtimes drive application execution in modern 
orchestration platforms

✓ Container runtimes should know how to execute 
Unikernels

➜ Build a unikernel-compatible container runtime!

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



urunc: the unikernel container runtime!

➜ CRI-compatible runtime written in Go

➜ Treats unikernels as processes -- directly manages applications

➜ Unikernel images for urunc are OCI artifacts

➜ urunc makes use of generic hypervisors to spawn unikernel VMs

➜ Extensible, easy to add support for more unikernel frameworks & hypervisors

23Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



The image includes:

➜ the unikernel binary

➜ any extra files required (eg configuration, libraries) 

➜ urunc.json containing urunc-specific metadata

➜ standard tooling (e.g. skopeo, umoci, dive) and container image registry support 
(e.g. dockerhub, harbor etc.).

urunc: unikernel OCI packaging

➜ specialized image builder: bima

➜ Containerfile-like syntax:

24Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



urunc: k8s integration

➜ to deploy k8s pods, we need to handle 
non-unikernel containers (e.g. pause, 
sidecar containers)

➜ urunc leverages runc to spawn generic 
containers

➜ urunc then spawns the unikernel container 
inside the Pod netns

25Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



urunc: knative integration

➜ we build the user-code as a 
unikernel

➜ we package it using bima as an 
OCI artifact

➜ we create a Knative service using 
urunc's RuntimeClass

26

The user code is spawned as a unikernel:

➜ hardware virtualization isolation

➜ faster spawn times than a sandboxed container

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Benchmark Setup

27

Bare-metal server:

➜ AMD EPYC 7520P (Rome, 32 cores)

○ Turbo Boost disabled

○ CPU Frequency scaling disabled

➜ 128GB RAM

Software stack:

➜ Ubuntu 20.04

➜ K8s v1.28.2

➜ Knative v1.12

➜ kata-containers v3.2.0

➜ gvisor 20231113.0

➜ urunc v0.2

Experiment setup:

➜ Kperf

➜ Service: simple HTTP reply function

○ Go for generic/sandboxed containers

○ C for unikernels

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Knative Request workflow

28Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Service Response Latency (single instance)

29Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

Kperf using a single request trigger:

➜ measure "cold-boot" latency

➜ kata & gvisor 2x generic & urunc 

➜ generic & urunc almost identical



Service Response Latency (single instance, 99th)

30Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

Kperf using a single request trigger:

➜ 99th percentile (slowest response)

identical behaviour:

➜ kata & gvisor 2x generic & urunc 

➜ generic & urunc almost identical



Service Response Latency (concurrent)

31Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

tweaked Kperf to map each request to a 
distinct function:

➜ measure concurrent cold-boot 
spawns & sustainable response times

similar behaviour

➜ kata & gvisor 2x generic & urunc (up 
to 125 instances) 

➜ generic & urunc almost identical



Demo

32Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

➜ Build workflow

➜ automate the process of 
building unikernel & generic 
functions just like container 
images

➜ cold-boot triggers & node overhead

➜ capture memory overhead when 
spawning 10s of functions on an 
Edge device (eg NVIDIA Jetson) 
using generic, sandboxed 
container runtimes & urunc.



Acknowledgements

This work is partially funded through Horizon Europe actions, MLSysOps (GA: 
101092912), DESIRE6G (GA: 101096466), and EMPYREAN (GA: 101136024)

33Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU



Summary & Feedback

➜ containers offer hassle-free development & execution in diverse 
environments

➜ orchestration platforms such as k8s are tightly coupled with the 
container ecosystem

➜ sandboxing containers to ensure isolation brings overhead, especially in 
FaaS setups where short-lived tasks dominate

➜ unikernels reduce the attack surface & spawn times, but are not 
cloud-native

➜ urunc appears as the missing component, enabling the use of unikernels in 
FaaS frameworks such as Knative

34

Check out the code on github: 

➜ https://github.com/nubificus/urunc

➜ https://github.com/nubificus/bima

➜ https://github.com/nubificus/unikernel-demo

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

Check out the evaluation blog post:

➜ https://blog.cloudkernels.net/posts/knative-runtime-eval

https://github.com/nubificus/urunc
https://github.com/nubificus/bima
https://github.com/nubificus/unikernel-demo
https://blog.cloudkernels.net/posts/knative-runtime-eval


Summary & Feedback

➜ containers offer hassle-free development & execution in diverse 
environments

➜ orchestration platforms such as k8s are tightly coupled with the 
container ecosystem

➜ sandboxing containers to ensure isolation brings overhead, especially in 
FaaS setups where short-lived tasks dominate

➜ unikernels reduce the attack surface & spawn times, but are not 
cloud-native

➜ urunc appears as the missing component, enabling the use of unikernels in 
FaaS frameworks such as Knative

35

Thanks!

Fri, Mar 22nd, 2024, Paris, KubeCon & CloudNativeCon EU

Check out the code on github: 

➜ https://github.com/nubificus/urunc

➜ https://github.com/nubificus/bima

➜ https://github.com/nubificus/unikernel-demo

Check out the evaluation blog post:

➜ https://blog.cloudkernels.net/posts/knative-runtime-eval

https://github.com/nubificus/urunc
https://github.com/nubificus/bima
https://github.com/nubificus/unikernel-demo
https://blog.cloudkernels.net/posts/knative-runtime-eval

