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An analytical solution is derived for the bifurcations
of an elastic disc that is constrained on the
boundary with an isoperimetric Cosserat coating.
The latter is treated as an elastic circular rod,
either perfectly or partially bonded (with a slip
interface in the latter case) and is subjected to three
different types of uniformly distributed radial loads
(including hydrostatic pressure). The proposed
solution technique employs complex potentials to
treat the disc’s interior and incremental Lagrangian
equations to describe the prestressed elastic rod
modelling the coating. The bifurcations of the
disc occur with modes characterized by different
circumferential wavenumbers, ranging between
ovalization and high-order waviness, as a function
of the ratio between the elastic stiffness of the disc
and the bending stiffness of its coating. The presented
results find applications in various fields, such as
coated fibres, mechanical rollers, and the growth and
morphogenesis of plants and fruits.

1. Introduction
When an elastic cylindrical shell or a circular rod is
subject to a radial external pressure of sufficient intensity,
buckling occurs via ovalization, as shown with a teaching
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by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Figure 1. A teaching model illustrates buckling in cylindrical shells. Left: a thin shell (undeformed in the upper part, 42 mm in
diameter, 0.5 mmwall thickness made up of plastic) buckles under external pressure when air is extracted from it (lower part),
resulting in ovalization. Right: buckling is also induced in a cylindrical shell with an inner core (a tubular rubber foam); in this
experiment, the core’s stiffness is insufficient to induce bifurcation in a small-wavelengthmode, so that in both cases ovalization
occurs. Note the position of the plunger inside the syringe showing that the pressure load is higher in the experiment with the
internal core. The simple experimental set-up shown on the right highlights the idea beyond the mechanical modelling, in
which a shell becomes a coating enclosing an elastic core.

model in figure 1 on the left (where a segment of an acrylic polymer tube with a diameter of 42 mm
and a wall thickness of 0.5 mm is used, maintaining a thickness-to-diameter ratio equivalent to
that of a chicken eggshell). This buckling phenomenon is well known and has been analysed by
various researchers, among others [1–4]. In particular, a distinction has been introduced between
three different mechanical models for the external uniform radial load [5,6]:

(i) ‘hydrostatic’ or ‘pressure’ load, which always remains orthogonal to the structural
element to which it is applied in any configuration (undeformed or deformed);

(ii) ‘centrally directed’ load, which acts on the structural element remaining always directed
towards the initial centre of the ring;

(iii) ‘constant directional’ or, better, ‘dead’ load, which remains aligned parallel to the unit
normal to the structural element to which it is applied in its undeformed configuration.

All three above loads are conservative [5] and the difference between them emerges in the
incremental equations, holding for departures from the trivial configuration, so that they lead
to remarkably different bifurcation loads.

Bifurcation also occurs in the case when an elastically deformable core is present inside of
the shell (or the circular rod), as shown with a teaching model in figure 1 on the right (where
the core is a rubber foam used for pipe insulation). The simple experimental set-up inspires the
mechanical modelling that will be adopted in the present article, where the coating of the elastic
core is provided by an axially inextensible elastic rod. This model is already well developed in
mechanics [7–9], including cases involving circular and elliptic geometries [10–19], and has also
been used to analyse bifurcation, but only with respect to a half space [20,21], while bifurcation
for circular configurations has never been analysed.

The inner core inside the circular rod not only increases the buckling load (note the position
of the plunger inside the syringe, which shows that the pressure for buckling is higher when
the inner core is present), but also results in a complex bifurcation behaviour that allows for the
emergence of short-wavelength wave modes, although this does not take place in the case shown
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1 cm

Figure 2. A circular rubber disc (Agilus30TM, 44 mm in diameter) is connected to a stiffer photopolymer (VeroYellowTM, 1 mm
thick) coating through radial ligaments. The latter can transmit axial but only negligible transverse forces. Therefore, a model
of slip interface can be adopted to model the disc (manufactured with a Stratasys J750 3D printer) when radially loaded on its
external surface. The piece is bioinspired by the joining through ligaments of the brain to the cranial vault.

in figure 1, due to insufficient stiffness of the core. The bifurcation problem of a coated elastic
disc has been scarcely analysed and always only for hydrostatic pressure loading (i): in [22,23]
(where a numerical, not analytical, solution is only found), under the assumption that the coating,
modelled as an elastic rod, cannot transmit shear stress to the inner disc (the imperfect bonding
condition also considered by us); in [24], where the coating is modelled as an elastic shell, either
fully or partially bonded to the disc, and the obtained solution is analytical, though based on a
number of mathematical simplifications. Therefore, the bifurcation of coated discs under radial
forces is still an open and almost unexplored problem.

The present article employs the coating model for an elastic disc introduced in [25], which can
be considered a specific case of the shell-coating model formulated in [26]. This model assumes
that the elastic disc is coated with an elastic rod that is axially inextensible and unshearable,
thereby introducing a Cosserat and isoperimetric constraint for the disc. The analysis of buckling
is carried out with all the three load variants (i)–(iii). Prior to bifurcation, the rod exhibits trivial
equilibrium, characterized by a pure axial internal force. As a result, the elastic core, assumed to be
isotropic, remains unloaded before bifurcation and follows incremental equations obeying linear
isotropic elasticity, characterized by Lamé constants λd and μd. Two transmission conditions are
analysed for the bonding between the elastic rod and the inner core, namely, perfect bonding,
where full continuity of radial and tangential displacements is enforced, and tangential slip
contact, in which the radial displacement is transmitted but the tangential is not, so that the
shear stress at contact remains null. The latter condition can capture the behaviour of a partially
detached coating. It can also model a coating attached at discrete points to the disc, as is the case
of the piece (manufactured with a Stratasys J750 3D printer, following the multi-material Polyjet
technique process, with a layer’s printing resolution of 27 µm) documented in the photo reported
in figure 2.

The mechanical model adopted in the present article allows for an analytical solution to the
bifurcation problem in a simple closed form, using Kolosov–Muskhelishvili complex potentials
for the core and incremental Lagrangian equations for the coating. The superiority of the
complex formalism becomes evident by comparing our closed-form and exact solution with
the approximate solution provided in [24]. The analysis demonstrates that imperfect bonding
decreases the bifurcation threshold and that the hydrostatic-pressure model (i) results in the
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(a) (b)

Figure 3. (a) A pumpkin (white swan acorn variety) with a diameter of 20 cm, featuring circumferential waviness resulting
from the drying of its inner pulp during maturation. (b) A bifurcation analysis of a coated elastic disc provides some insight in
the complicated problemof pumpkin ripening. In particular, the incremental displacement field (where colours denote intensity
increasing from the centre to the boundary) of a coated circular disc at bifurcation, involving amodewith 10wavelengths (with a
measured ratio between the disc’s radius and the coating’s thickness of 7.75, and a Poisson’s ratio of 0.5), enables the evaluation
of the ratio between the Young’s moduli of the pulp and that of the skin. This ratio is found to be equal to 0.6, a value that is not
easily determinable otherwise.

highest critical loads, while the centrally directed load model (ii) leads to the smallest. Significant
differences in the bifurcation conditions discovered here highlight the importance of the role
played by mechanical modelling of applied loads for accurate representations of load transfer
mechanisms under structural deformation, a topic often underestimated and given here a new
evidence.

Results of the bifurcation analysis show that, in cases where the inner core is sufficiently
compliant, the critical bifurcation mode corresponds to ovalization. However, as the ratio between
the stiffness of the elastic core and that of the coating rod increases, the modes display all possible
waviness until they approach the vanishing-wavelength condition in the limit, where the stiffness
ratio approaches infinity.

Coatings are widely used in various technologies, making the findings of this article applicable
to several areas. For instance, the results may be useful in the design of mechanical rollers, as
well as of coated fibres, at both the micro and nanoscales. Another exciting application is to the
morphogenesis and growth of plants and fruits. In such cases, turgor pressure can reach up to
10 atmospheres, which is sufficient to trigger various types of bifurcation. For example, it can
produce ruffle-like or dome-like shapes in leaves [27] and undulations in flowers, characterized
by annular geometry [28]. These findings suggest that coatings may play a significant role
in shaping and enhancing the growth of plants and fruits, which can have implications for
agriculture. In fact, the coated disc analysed here exhibits bifurcation modes that result in elegant
shapes, resembling those observed during the maturation of some fruits or vegetables. In these
cases, a soft pulp is enclosed in a stiff husk, so that pressure generated during drying may lead to
the formation of gracious undulations. A prime example is shown in figure 3a, which illustrates
a pumpkin (white swan acorn variety) and its cross section. At the initial growth stage, the
fruit appears smooth on the outside. However, during maturation, the inner pulp dries up and
generates a state of compression in the stiff husk, causing it to buckle and resulting in a wavy
surface. Drying phenomena are highly complex as the case of colloidal drops shows [29,30],
nevertheless our results can provide some insight in the maturation problem of the pumpkin.
In particular, the bifurcation of a coated disc reveals that the presence of an inner core leads
to complex undulated bifurcation modes, rather than the simple ovalization that occurs in the
absence of any inner reinforcement. Figure 3b showcases the outcome of our bifurcation analysis
for a coated elastic disc, illustrating the incremental displacement field (colours evidence growing
values from the centre to the boundary) for a mode characterized by 10 wavelengths, generated
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Figure 4. (a) The deformation g(x0) maps a rod from its reference configuration (characterized by points x0, arclength
parameter s0, unit tangent t0 and normal n0) to the deformed configuration (characterized by points x, arclength parameter
s, unit tangent t and normal n) through the displacement u(x0). (b) The external and internal forces acting on the current
configuration and their counterparts in the reference configuration.

by a coated elastic disc (with a ratio R/h = 7.75 evaluated for the pumpkin, where R is the radius of
the disc and h is the thickness of the circular rod). By selecting for the pulp of pumpkin a Poisson’s
ratio equal to 0.5 and imposing the observed waviness of the skin, the bifurcation analysis permits
the evaluation of the ratio between Young’s moduli of the skin and of the pulp, which is found
to fall between 0.543 and 0.736 (the figure is generated at 0.6). Therefore, while a direct measure
may not be easy, our closed-form solution allows to determine the stiffness ratio between husk
and pulp by simply counting the number of external undulations without cutting the vegetable.

2. Large deformation of a planar elastic rod

(a) Kinematics of a curved rod
Figure 4a shows a rod that has undergone deformation in a plane defined by two unit vectors,
e1 and e2. The reference configuration of the rod is characterized by the arclength parameter s0,
while its current configuration is characterized by the arclength parameter s. The points on the
rod in the reference and current configurations are parametrized, respectively, as x0(s0) and x(s)
and they are related to each other through the deformation g(x0) and its inverse g−1(x),

x(s0) = g(x0(s0)) and x0(s) = g−1(x(s)). (2.1)

The displacement of a point on the rod is defined as

u = x − x0, (2.2)

which can be expressed as a function of either s0 or s.
The unit tangents, t0 and t, principal normals, n0 and n, and curvatures, κ0 and κ , are defined

in the reference and current configurations, respectively, by

t0 = ∂x0

∂s0
, t = ∂x

∂s

n0 = 1
κ0

∂t0

∂s0
, κ0 = |t′0|, n = 1

κ

∂t
∂s

, κ = |t′|.
(2.3)

When axial deformation of the rod is negligible and thus axial inextensibility is enforced, the
stretch λ, defined as the ratio between the strained and referential elements ds and ds0, becomes
unity, ds = ds0. In this case, the geometrical elements (2.3) are related to each other through the
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equations

t = ∂u
∂s

+ t0 and κ n = ∂2u
∂s2 + κ0n0. (2.4)

It is instrumental to define unit normals to the rods in the two configurations, m0 and m, which
coincide with the principal normals, except possibly for the sign,

m0 = t0 × e3 and m = t × e3, (2.5)

where e3 = e1 × e2 is the out-of-plane unit vector. The derivative of equations (2.5) with respect
to the arclengths s0 and s, respectively, leads to

∂m0

∂s0
= κ0n0 × e3 and

∂m
∂s

= κn × e3, (2.6)

which can alternatively be expressed as

∂m0

∂s0
= −sgn(n0 · m0) κ0 t0 and

∂m
∂s

= −sgn(n · m) κ t. (2.7)

The unit vector m in equation (2.5) and its derivative can be written in terms of referential
quantities as

m = ∂u
∂s

× e3 + m0 and
∂m
∂s

=
(
∂2u
∂s2 + κ0n0

)
× e3. (2.8)

(b) Statics of a curved rod
(i) Equilibrium in the current configuration

An element of the rod in its current configuration, ideally ‘excised’ between the arclengths s1
and s2, is subject to a distributed load q(s) and moment μ(s)e3. To maintain equilibrium, internal
forces a(s) and bending moment M(s)e3 must act at the ends s1 and s2, as shown in figure 4b. The
translational equilibrium of the rod is expressed as

a(s2) − a(s1) +
∫ s2

s1

q ds = 0, (2.9)

while the rotational equilibrium is

[
Me3 + (x − o) × a

]s2
s1

+ e3

∫ s2

s1

μds +
∫ s2

s1

(x − o) × q ds = 0, (2.10)

where x − o represents the position vector of a generic point x on the rod.
Equations (2.9) and (2.10) can be reduced to a unique integral, which can eventually be

localized to yield
∂a
∂s

= −q and
∂M
∂s

+ μ− m · a = 0. (2.11)

The internal force a can be defined in terms of axial and shear components, N and T, both
referred to the current configuration, as

a = N t + T m. (2.12)

Substitution of equation (2.12) into equations (2.11) leads to the equilibrium equations,

∂N
∂s

− sgn(n · m) κ T = −q · t,

sgn(n · m) κ N + ∂T
∂s

= −q · m,

∂M
∂s

= T − μ,

(2.13)

holding for any curved rod.
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(ii) Equilibrium in the reference configuration

The equilibrium equations (2.13) are now re-derived in the referential description, by introducing
the nominal, or ‘Piola’, internal force a0, defined in a way that

a0 = a, (2.14)

and with referential, axial and shear force components

a0 = N0t0 + T0m0. (2.15)

Note that the bending moment M remains unchanged in the reference configuration, say, M0 =
M. The same procedure used in the spatial treatment of the equilibrium leads now to

∂N0

∂s
− sgn(n0 · m0) κ0 T0 = −q0 · t0,

sgn(n0 · m0) κ0 N0 + ∂T0

∂s
= −q0 · m0,

∂M0

∂s
− m · a0 = −μ0,

(2.16)

where the external loads in the reference configuration remain unchanged with respect to the
deformed configuration

q0 = q and μ0 =μ, (2.17)

because of the validity of the inextensibility constraint.
Equation (2.5) yields

t0 · m = −m0 · t and m0 · m = t0 · t, (2.18)

so that substitution of the expression (2.15) into equations (2.16) leads to the equilibrium equations
for a curved rod in the referential description

∂N0

∂s
− κ0 sgn(n0 · m0)T0 + q · t0 = 0,

κ0 sgn(n0 · m0)N0 + ∂T0

∂s
+ q · m0 = 0,

∂M0

∂s
= T0

(
∂u
∂s

· t0 + 1
)

− N0
∂u
∂s

· m0 − μ0.

(2.19)

It should be noted that equation (2.19)3 can be rewritten as

∂M0

∂s
= T0 t · t0 − N0 t · m0 − μ0. (2.20)

(iii) Constitutive equations

Constitutive equations cannot determine the rod’s axial and shear forces, which are to be
understood as reactions to the inextensibility and unshearability constraints. However, the
bending moment, which is independent of the referential and spatial distinctions, M = M0, is
determined by the difference in the curvature

M = B
∂(ω − ω0)

∂s
, (2.21)

where B = EJ is the bending stiffness, equal to the product between Young’s modulus, E, of the
rod and the second moment of inertia of its cross section, J, and ω and ω0 are the angles between
the tangent vectors in the current and reference configurations and the axis e1, so that t · e1 = cosω
and t0 · e1 = cosω0.
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(c) Incremental equations for a curved rod
The incremental form of the equilibrium equations for the elastic rod can directly be obtained
from equations (2.13), holding for finite deformation, as

∂Ṅ
∂s

− sgn(n · m)(κ̇ T + κ Ṫ) = −q̇ · t − q · ṫ,

sgn(n · m)(κ̇ N + κ Ṅ) + ∂Ṫ
∂s

= −q̇ · m − q · ṁ,

∂Ṁ(s)
∂s

= Ṫ − μ̇,

(2.22)

where increments are denoted with a superimposed dot.
Since the increments of referential quantities are null, ṫ0 = ṁ0 = 0, the incremental form of

equations (2.4) and (2.5) become

ṫ = ∂u̇
∂s

and ṁ = ∂u̇
∂s

× e3. (2.23)

Hence, equations (2.22) can be rewritten as

∂Ṅ
∂s

− sgn(n · m)(κ̇ T + κ Ṫ) = −q̇ ·
(
∂u
∂s

+ t0

)
− q · ∂u̇

∂s
,

sgn(n · m)(κ̇ N + κ Ṅ) + ∂Ṫ
∂s

= −q̇ ·
(
∂u
∂s

× e3 + m0

)
− q ·

(
∂u̇
∂s

× e3

)
,

∂Ṁ
∂s

= −μ̇+ Ṫ,

(2.24)

which are equivalent to equations (2.22), but expressed in terms of incremental displacement u̇,
instead than ṫ and ṁ.

The incremental versions of the equilibrium equations (2.19) find their counterpart in the
reference configuration as

∂Ṅ0

∂s
− sgn(n0 · m0)(κ̇0T0 + κ0Ṫ0) = −q̇0 · t0,

sgn(n0 · m0)(κ̇0N0 + κ0Ṅ0) + ∂Ṫ0

∂s
= −q̇0 · m0,

∂Ṁ0

∂s
= Ṫ0 + ∂u

∂s
· (Ṫ0t0 − Ṅ0m0) + ∂u̇

∂s
· (T0t0 − N0m0) − μ̇0.

(2.25)

The incremental version of the rotational equilibrium equation (2.25)3 can be rewritten as

∂Ṁ0

∂s
= T0(ṫ · t0) − N0(ṫ · m0) + (Ṫ0t0 − Ṅ0m0) · t − μ̇0, (2.26)

while the incremental version of the constitutive equation (2.21) is

Ṁ = B
∂ ω̇

∂s
. (2.27)

3. The annular rod

(a) Governing equations for a circular rod
The theory described above is applicable to rods of any shape, assuming that they are axially
inextensible and unshearable, and is particularized now to the case of a circular rod of radius R
and centred at point O, assumed as origin of a reference system defined by unit vectors e1 and
e2. The circumferential angle θ is measured positively in counter-clockwise direction, as depicted
in figure 5.
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R
t0 m0

e1e3

e2

PP

m0x

t m
(a)

P m0x

t m
(c)

P

x
m0

t m
(b)

x0 s
θ

∏

Figure 5. The deformation of an annular rod, where points x0 of the reference configuration are displaced to points x of the
current configuration. The radial loadΠ , uniform in the reference configuration, is assumed to follow three different models
under incremental deformation: (a) hydrostatic pressure, where the force resultant P over an elementary arc ds follows the
normal m in the deformed configuration, (b) centrally directed load, where the resultant P is pointing towards the centre of
the rod in the undeformed configuration, (c) dead load, where the original direction of the resultant P remains unaltered by
deformation.

Due to the polar symmetry being s = Rθ , the tangent t0 and the normal m0 become

t0 = − sin θe1 + cos θe2 and m0 = cos θe1 + sin θe2, (3.1)

while the position of a generic point x0 is singled out by x0 = R m0. Hence, for the annular rod the
following relations hold true:

∂t0

∂s
= − 1

R
m0 and

∂m0

∂s
= t0

R
. (3.2)

Equations (2.13)1−2 govern the translational equilibrium of the rod in its spatial configuration
where κ represents its deformed curvature. The derivative of the tangent vector t with respect to
the arclength s becomes

∂t
∂s

= ∂2u
∂s2 − m0

R
, (3.3)

so that the curvature is

κ =
(
∂2u
∂s2 − m0

R

)
· n, (3.4)

to be used in equations (2.13)1−2, which are complemented by the rotational equilibrium, equation
(2.13)3.

Equations (3.2) can be used to express the partial derivative of the internal ‘Piola’ force (2.15)
as

∂a0

∂s
=
(
∂N0

∂s
+ T0

R

)
t0 −

(
N0

R
− ∂T0

∂s

)
m0. (3.5)

The displacement vector u can be expressed in polar components as

u = ur m0 + uθ t0, (3.6)

so that, according to relations (3.2), the derivative with respect to s of the expression (3.6) leads to

∂u
∂s

=
(
∂ur

∂s
− uθ

R

)
m0 +

(
ur

R
+ ∂uθ

∂s

)
t0. (3.7)
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Using equations (3.5) and (3.7), the equilibrium equations for the rod in the material configuration
are

∂N0

∂s
+ T0

R
= −q · t0,

− ∂T0

∂s
+ N0

R
= q · m0,

∂M0

∂s
= T0

(
ur

R
+ ∂uθ

∂s
+ 1

)
− N0

(
∂ur

∂s
− uθ

R

)
− μ0.

(3.8)

Kinematic considerations lead to the evaluation of the axial strain ε (to be set equal to zero because
of the axial inextensibility), the rotation of cross-section Φ, and the change of curvature χ as

ε = ur

R
+ ∂uθ

∂s
, Φ = −uθ

R
+ ∂ur

∂s
, χ = κ − 1

R
= −∂Φ

∂s
. (3.9)

Imposing rod’s inextensibility, ε = 0, and using equations (3.9), the equation (3.8)3 can be
simplified to

∂M0

∂s
= T0 −ΦN0 − μ0. (3.10)

When an external radial load with uniform distribution, Π , is applied, the annular rod is only
subject to a uniform internal compressive force

N0 = −ΠR and T0 = M0 = 0, (3.11)

thus, before bifurcation, the rod remains in its circular configuration without suffering any
deformation. The incremental quantities (2.23) and (3.7) assume now the form

ṫ =
(
∂u̇r

∂s
− u̇θ

R

)
m0, ṁ = −

(
∂u̇r

∂s
− u̇θ

R

)
t0,

∂u̇
∂s

=
(
∂u̇r

∂s
− u̇θ

R

)
m0, (3.12)

so that the spatial equilibrium is governed by equations (2.24), where, from equation (3.4), the
increment in the curvature κ is

κ̇ = −∂
2u̇
∂s2 · m0. (3.13)

Taking the material time derivative of equations (3.8)1−2, the incremental translational
equilibrium equation in the reference configuration is obtained, so that equation (3.11)1 leads
to

∂Ṅ0

∂s
+ Ṫ0

R
= −q̇ · t0,

Ṅ0

R
− ∂Ṫ0

∂s
= q̇ · m0,

∂Ṁ0

∂s
= Ṫ0 +ΠR

(
∂u̇r

∂s
− u̇θ

R

)
, (3.14)

thus, from the constitutive equations (2.27) and (3.9)3, the left-hand side of equation (3.14)3 can
be rewritten as

∂Ṁ0

∂s
= −B

(
∂3u̇r

∂s3 + ∂u̇r

∂s
1

R2

)
. (3.15)

The use of relation (3.15), when combining together equations (3.14), yield the differential
equations describing the kinematics of the annular rod, subject to an external uniform radial
load Π

∂5u̇r

∂θ5 +
(

2 + ΠR3

B

)
∂3u̇r

∂θ3 +
(

1 + 2
ΠR3

B

)
∂u̇r

∂θ
− ΠR3

B
u̇θ + S = 0 and u̇r + ∂u̇θ

∂θ
= 0, (3.16)

where

S = −R4

B

(
∂q̇
∂θ

· m0 + 2q̇ · t0

)
. (3.17)
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(b) The incremental applied load
Equation (3.16) requires the evaluation of the increment q̇ in the applied external radial load,
taking into account the direction assumed by the load in the deformed configuration [4,5,31–35].
The modulus Π of the radial force is assumed to remain constant, so that Π̇ = 0. In particular, as
mentioned in the introduction, the three following different cases can be distinguished:

— Hydrostatic pressure (i): the applied load remains aligned parallel to the normal m to the
deformed rod element (figure 5a), so that the load qh and its increment q̇h become

qh = −Πm and q̇h =Π

(
∂u̇r

∂s
− u̇θ

R

)
t0. (3.18)

— Centrally directed load (ii): the applied load remains directed towards the initial centre of
the circular rod (figure 5b), so that the load ql and its increment q̇l become

ql = −Π x
|x| and q̇l = −Π

R
u̇θ t0. (3.19)

— Dead load (iii): the applied load is dead and does not change its original direction m0
(figure 5c), so that the load qk and its increment q̇k become

qk = −Πm0 and q̇k = 0. (3.20)

The cases of hydrostatic pressure (i), centrally directed (ii) and dead (iii) load [2,3,31,33,36] are
recovered by setting S = SΠ in equation (3.16), being

SΠ = ΠR3

B
×

⎧⎪⎪⎨
⎪⎪⎩

−∂u̇r

∂θ
+ u̇θ for hydrostatic pressure (i),

u̇θ for centrally directed load (ii),
0 for dead load (iii).

(3.21)

Considering a circular elastic rod (without any inner part), the critical loads for bifurcation (i.e. the
smaller buckling load) for the three different loading cases can be derived by imposing continuity
of displacement, bending moment and shear force, via equation (3.16), solved for non-trivial
solutions. These critical loads are given by

Πcr = B
R3 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 for hydrostatic pressure (i),

9
2

for centrally directed load (ii),

4 for dead load (iii).

(3.22)

Note that the case of hydrostatic pressure does not require any external constraint for
equilibrium in the undeformed and deformed configuration. This is different for the other two
loadings (ii) and (iii), where although the undeformed configuration is of equilibrium, the latter
is unstable, so that a constraint imposing null translations has to be enforced for case (ii) and a
constraint imposing vanishing rotation about the centre has to be enforced for (iii).

4. Bifurcation of the coated elastic disc
The core of the coated disc is elastic, and for an elastic material under large strain, the constitutive
equations, relating the Cauchy stress σ to the left Cauchy–Green deformation tensor B = FFT

(where F is the deformation gradient), can be written as [37]

σ = β0I + β1B + β2B2, (4.1)

where the coefficients βj (j = 0, 1, 2) are functions of the invariants of B.
The elastic material inside the disc remains unstrained and unstressed up to bifurcation so that

B = I and σ = 0. At bifurcation, the incremental relation between the Piola stress S and the Cauchy
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μd, λd

B

R

e1O

e2
∏

N0

N0

bS
.
rr

bS
.
rr

bS
.
rθ

bS
.
rθ

τ

τ0

ud
r

ud
θ

zr
θ

er

eθ

Figure 6. A circular inextensible rod is coating an elastic disc. The bonding between the two is modelled as either perfect or
allowing tangential frictionless slip. Loaded by a uniform external radial load, the rod is subject to only an axial force, but at
bifurcation incremental internal forces develop so that tractions are transmitted from the external coating to the disc.

stress leads to

Ṡ = σ̇ . (4.2)

The material time derivative of equation (4.1) reveals that the elastic response inside the disc
follows the usual linear elastic relation, where the Lamé constants can be calculated as

λd = 2
∂

∂I1
(β0 + β1 + β2) + 4

∂

∂I2
(β0 + β1 + β2), μd = β1 + 2β2, (4.3)

where I1 and I2 are the first and second invariants of the Cauchy–Green deformation tensor,
respectively.

Consider an elastic, homogeneous and isotropic disc characterized by a radius R, shear
modulusμd and Poisson’s ratio νd with reference to a Cartesian coordinate system (e1, e2, e3) with
origin O placed at the centre of the disc. A polar reference system (er, eθ , e3) is also introduced, so
that the displacement for generalized plane conditions can be written as

ud = ud
r er + ud

θ eθ , (4.4)

where ud
r and ud

θ are the radial and tangential displacement components. The disc is coated
on its boundary by the previously introduced rod with a bending stiffness B. In its reference
configuration and loaded with an external radial load Π , the annular rod is subject to an axial
internal force N0 = −ΠR, while the interior disc remains unstressed. At bifurcation, a non-trivial
incremental deformation occurs, causing the disc to experience incremental stress and strain. The
resulting incremental traction at the disc’s boundary, multiplied by its thickness b (to be set equal
to the unity for plane strain), gives rise to an incremental force acting on the rod, denoted as q̇σ

(figure 6). Hence, the incremental load on the coating is given by

q̇ = q̇Π + q̇σ , (4.5)

where q̇Π represents the incremental contribution associated with the external radial load Π

q̇σ = −b(Ṡrrm0 + M Ṡrθ t0)r=R, (4.6)

which is determined from the incremental radial and tangential components of the first Piola–
Kirchhoff stress tensor S, evaluated on the disc’s boundary r = R. The term M in equation (4.6)
describes the shear transmission properties at the interface, so that M = 1 for perfect bonding
between disc and coating or M = 0 for slip contact, when shear force is not transmitted. As a
consequence, equation (3.16) becomes

∂5u̇c
r

∂θ5 +
(

2 + ΠR3

B

)
∂3u̇c

r

∂θ3 +
(

1 + 2
ΠR3

B

)
∂u̇c

r
∂θ

− ΠR3

B
u̇c
θ + SΠ + Sσ = 0, (4.7)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 M

ay
 2

02
4 



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230491

..........................................................

where the superscript ‘c’ stands for ‘coating’ and

Sj = −R4

B

(
∂q̇j

∂θ
· m0 + 2q̇j · t0

)
, j =Π , σ . (4.8)

(a) Complex potential formulation for the elastic disc
In a region enclosed by a sufficiently smooth and non-intersecting curve L, each point can be
identified with a complex number z = x1 + ix2, where x1 and x2 represent the coordinates of the
point and i denotes the imaginary unit. Each point can also be represented in terms of polar
coordinates (r, θ ), where r denotes the distance from the origin to the point, and θ is the angle
between x1 and the radius r (measured positively in the counter-clockwise direction), such that
z = reiθ .

The complex displacement ud(z) in Cartesian coordinates at the point z inside the disc and
the complex combination of the normal and shear traction components σd(z) at that point can be
obtained from the complex variables forms of the Somigliana’s identities, which are the corollaries
of Betti’s reciprocal theorem [38]. The corresponding expressions are

ud(z) = 1
2π i(1 + κd)

∫
L

[
(κd − 1)

ud(τ )
τ − z

dτ + ud(τ )dK1(τ , z) + ud(τ ) dK2(τ , z)

− κd

μd
σd(τ ) ln(τ − z) dτ + κd

2μd
σd(τ )K1(τ , z) dτ

− 1
2μd

σd(τ )K2(τ , z) dτ
]

,

σd(z) = μd

π i(1 + κd)

∫
L

[
2μd

(τ − z)2 dτ − ud(τ )
∂

∂z
dK1(τ , z) − ud(τ )

∂

∂z
dK2

+1 − κd

2μd
σd(τ )
τ − z

dτ − κd

2μd
σd(τ )

∂K1

∂z
dτ + 1

2μd
σd(τ )

∂K2

∂z
dτ

]
,

(4.9)

where a bar over a symbol denotes complex conjugation, τ = Reiθ ∈ L, and ud(τ ) = ud
1 + iud

2 ,
σd(τ ) = σrr + iσrθ are the displacements and tractions at the boundary, respectively. The kernels
K1(τ , z), K2(τ , z) and the Kolosov constant κd in equations (4.9) are defined as

K1(τ , z) = ln
(
τ − z
τ − z

)
, K2(τ , z) = τ − z

τ − z
, κd =

⎧⎪⎨
⎪⎩

3 − 4νd, for plane strain,

3 − νd

1 + νd
, for plane stress.

(4.10)

Elastic displacement and stress fields can be determined everywhere in the disc via Kolosov–
Muskhelishvili complex potentials ϕ(z) and ψ(z) as [39]

2μdud(z) = κdϕ(z) − zϕ′(z) − ψ(z),

σ11 + σ22 = 4 Re(ϕ′(z)),

σ22 − σ11 + 2iσ12 = 2[zϕ′′(z) + ψ ′(z)],

⎫⎪⎪⎬
⎪⎪⎭ (4.11)

where Re and Im denote real and the imaginary parts, respectively.
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Integral expressions for the complex potentials ϕ(z) and ψ(z) were obtained for a circular disc
in [40], by evaluating the integrals in equation (4.9) and using equation (4.11) [41], to obtain

ϕ(z) = 2μd

κd − 1
Re(A1) g−1(z) + 2μd

κd

∞∑
n=1

An+1 g−(n+1)(z),

ψ(z) = − 2μd

κd − 1
Re(A1)

zc

R
− 2μd

κd

[
zc

R
+ g(z)

] ∞∑
n=1

(n + 1)An+1 g−n(z)

− 2μd
∞∑

n=2

A1−n g−(n−1)(z),

(4.12)

where

g(z) = R
z

= R
(x1 + ix2)

, g′(z) = − 1
R

g2(z), g′′(z) = 2
R2 g3(z),

g(z) = R2

r2 g−1(z), r =
√

x2
1 + x2

2, (4.13)

and zc denotes the centre of the disc, and A±n are the complex coefficients in the Fourier series
expansions for the displacements on the boundary of the disc, as explained below.

(b) Complex combinations for elastic fields on the disc’s boundary
The complex Fourier series representation for the displacement at every point τ = Reiθ on the
boundary L of the disc is introduced as

ud(τ ) =
∞∑

n=1

A−n gn(τ ) +
∞∑

n=0

An g−n(τ ), (4.14)

where A±n are unknown complex coefficients and functions g±n(τ ) are defined from equation
(4.13) at r = R as

g(τ ) = R
τ

, g(τ ) = R
τ

= g−1(τ ), g′(τ ) = − 1
R

g2(τ ). (4.15)

The relation between Cartesian and polar coordinates,

ud
r (τ ) + i ud

θ (τ ) = [ud
1 (τ ) + i ud

2 (τ )]g(τ ), (4.16)

allows for expressing the displacement components at every point τ in the polar coordinate
system (r, θ ) as

ud
r (τ ) = 1

2
[ud(τ ) g(τ ) + ud(τ ) g−1(τ )] and ud

θ (τ ) = 1
2i

[ud(τ ) g(τ ) − ud(τ ) g−1(τ )], (4.17)

so that the final representations for displacements are obtained from equation (4.14) as

2ud
r (τ )

2i ud
θ (τ )

⎫⎬
⎭=

∞∑
n=1

A−n gn+1(τ ) +
∞∑

n=0

An g−(n−1)(τ ) ±
∞∑

n=1

A−n g−(n+1)(τ ) ±
∞∑

n=0

An gn−1(τ ), (4.18)

The complex Fourier series representation for the tractions at any point τ ∈ L are introduced as

σd
rr(τ ) + i σd

rθ (τ ) =
∞∑

n=1

B−n gn(τ ) +
∞∑

n=0

Bn g−n(τ ), (4.19)

where σd
rr and σd

rθ are the radial and tangential components of the tractions at the point τ ∈ L,
respectively, and B±n are the unknown complex coefficients. The expressions for the tractions
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components can be obtained by separating the real and imaginary parts in equation (4.19) as

2σd
rr(τ )

2i σd
rθ (τ )

⎫⎬
⎭=

∞∑
n=1

B−n gn(τ ) +
∞∑

n=0

Bn g−n(τ ) ±
∞∑

n=1

B−n g−n(τ ) ±
∞∑

n=0

Bn gn(τ ). (4.20)

The complex coefficients A±n and B±n are interrelated as [42]

B−1 = 0, B0 = 4μd

(κd − 1)R
Re(A1),

B−n = 2μd

R
(n − 1) A1−n, for n ≥ 2, Bn = 2μd

κdR
(n + 1) An+1, for n ≥ 1.

(4.21)

To satisfy the condition of inextensibility of the coating, additional relations for the complex
coefficients A±n can be obtained by using equation (99)2 in [43] and the following relations [25]:

Re(A1) = 0, A2 = 0, An+1 = n − 1
n + 1

A1−n for n �= 0 and n �= −1. (4.22)

(c) Complex variable formulation for bifurcation
Expression (4.6) can be derived with respect to the arclength s to yield

∂q̇σ

∂s
= −

(
M
∂σ̇rθ (τ )
∂s

+ 1
R
σ̇rr(τ )

)
t0 +

(
M

R
σ̇rθ (τ ) − ∂σ̇rr(τ )

∂s

)
m0, (4.23)

so that the term Sσ in equation (4.8) becomes (for j = σ )

Sσ (τ ) = R4b
B

(
R
∂σ̇rr(τ )
∂s

+ M σ̇rθ (τ )
)

. (4.24)

If the coating is perfectly connected to the disc or if sliding can occur, the following conditions
(displacement continuity in the former case, partial continuity and vanishing of shear stress in the
latter) have to be imposed,

u̇c
r = u̇d

r
∣∣
r=R and u̇c

θ = u̇d
θ

∣∣
r=R︸ ︷︷ ︸

perfect bonding

or σ̇rθ
∣∣
r=R = 0︸ ︷︷ ︸

slip contact

, (4.25)

and equation (4.7) can be rearranged as

∂5u̇c
r

∂θ5 + 2
∂3u̇c

r

∂θ3 + ∂u̇c
r

∂θ
+ ΠR3

B

(
∂3u̇c

r

∂θ3 + 2
∂u̇c

r
∂θ

− u̇c
θ

)
+ SΠ + Sσ = 0. (4.26)

Note that the term u̇c
θ simplifies in equation (4.26) for all cases, except for the combination of

slip contact and dead load, in which case, equation (4.26) has to be differentiated with respect to θ
and the inextensibility condition has to be enforced. A governing sixth-order differential equation
is obtained holding for slip contact and dead radial loading

∂6u̇c
r

∂θ6 + 2
∂4u̇c

r

∂θ4 + ∂2u̇c
r

∂θ2 + ΠR3

B

(
∂4u̇c

r

∂θ4 + 2
∂2u̇c

r

∂θ2 + u̇c
r

)
+ R4b

B
∂2σ̇rr

∂θ2 = 0. (4.27)

In the following, only the cases pertinent to equation (4.26) will be explicitely derived, while for
the sake of brevity analogous treatment of equation (4.27) will not be reported.

Using complex variables formalism, the bifurcation equation (4.7) can be rewritten by adopting
the Fourier series representation introduced in §4b for the incremental boundary displacement
and stress components at a point τ ∈ L. The first three terms on the left-hand side of equation
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(4.26) have been already derived in [25] and can now be adapted as

∂5u̇r

∂θ5 + 2
∂3u̇r

∂θ3 + ∂u̇r

∂θ
= −R3 Im

[(
R2 ∂

5u̇
∂τ 5 g−2 + 5R

∂4u̇
∂τ 4 g−1 + 3

∂3u̇
∂τ 3

)
g−2

]
, (4.28)

(where the superscripts ‘c’ and ‘d’ have been omitted) so that, using equations (43) reported in
[25], equation (4.28) becomes

∂5u̇r

∂θ5 + 2
∂3u̇r

∂θ3 + ∂u̇r

∂θ
= 1

2i

{ ∞∑
n=1

n2(n + 1)(n + 2)2[A−n gn+1 − A−n g−(n+1)]

−
∞∑

n=3

n2(n − 1)(n − 2)2[An g−(n−1) − An gn−1]

}
. (4.29)

The last three terms on the left-hand side of equation (4.26) can be rearranged by combining
together equations (99)4−5 and (99)1 reported in [43], leading to

∂3u̇r

∂θ3 + 2
∂u̇r

∂θ
− u̇θ = R Im

(
R2 ∂

3u̇
∂τ 3 g−2 − ∂u̇

∂τ

)
. (4.30)

Employing equations (42) reported in [25], equation (4.30) can be written as

∂3u̇r

∂θ3 + 2
∂u̇r

∂θ
− u̇θ = 1

2i

{ ∞∑
n=1

n(n2 − 3n + 1)[An g−(n−1)(τ ) − An gn−1]

−
∞∑

n=1

n(n2 + 3n + 1)[A−n gn+1 − A−n g−(n+1)]

}
. (4.31)

Using equation (99)1 reported in [43] in equations (3.21), the complex form of SΠ introduced by
equation (4.26) becomes

SΠ = ΠR3

B
×

⎧⎪⎪⎨
⎪⎪⎩

R Im
(
∂u̇
∂τ

)
for hydrostatic pressure (i),

Im(u̇) for centrally directed load (ii),
0 for dead load (iii).

(4.32)

Equations (43) derived in [25] and the above equations (4.14), allow to rewrite equations (4.32) as

SΠ = ξ
ΠR3

2i B

{ ∞∑
n=1

(−n)α[A−n gn+1 − A−n g−(n+1)]

+
∞∑

n=0

nα[An g−(n−1) − An gn−1] − (α − ξ )[A0 g − A0 g−1]

}
, (4.33)

where (i) ξ = α = 1 for hydrostatic pressure, (ii) ξ = 1, α= 0 for centrally directed load and (iii)
ξ = 0 for dead load. The term Sσ (τ ) in equation (4.26) is expressed through equation (4.24), so
that the relation (96)2 reported in [43], namely, ∂/∂s = ig−1(τ ) ∂/∂τ , for points τ ∈ L, leads to

Sσ = R4b
2i B

{ ∞∑
n=1

(n + M )[B−n gn − B−n g−n] −
∞∑

n=0

(n − M )[Bn g−n − Bn gn]

}
. (4.34)
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Therefore, the bifurcation criterion for the coated disc, equation (4.26), assumes the form

∞∑
n=1

n2(n + 1)(n + 2)2[A−n gn+1(τ ) − A−n g−(n+1)(τ )]

−
∞∑

n=3

n2(n − 1)(n − 2)2[An g−(n−1)(τ ) − An gn−1(τ )] + ΠR3

B

{ ∞∑
n=1

n(n2 − 3n + 1)

[An g−(n−1)(τ ) − An gn−1(τ )] −
∞∑

n=1

n(n2 + 3n + 1)[A−n gn+1(τ ) − A−n g−(n+1)(τ )]

}

+ bR4

B

{ ∞∑
n=1

(n + M )[B−n gn(τ ) − B−n g−n(τ )] −
∞∑

n=0

(n − M )[Bn g−n(τ ) − Bn gn(τ )]

}

+ SΠ = 0. (4.35)

The bifurcation load depends on the particular type of applied radial force per unit length, cases
(i)–(iii), while the term SΠ is given by equation (4.33). Taking into account the expressions for
coefficients (4.21) and collecting terms with the same power of g±n(τ ) in equation (4.35), lead to
the following result.

— Determination of coefficients A1 and A0

Π Im(A1)(ξ − 1) = 0 and Π A0 ξ (α − ξ ) = 0. (4.36)

— The bifurcation condition, holding for modes of order n ≥ 2

A1−nΥ (Π , n) = 0, (4.37)

where

Υ (Π , n) = n2(n2 − 1) + b
μd

κdB
[(n + M )κd + n − M ]

−Π
R3

B

{
n2 − 1 − ξ

2

[
(1 − n)α

n − 1
− (n + 1)α−1

]}
. (4.38)

When A1−n = 0 the trivial solution is obtained, otherwise, the bifurcation radial load for the coated
disc, corresponding to the n-th mode, is

Π (n)R3

B
= 2n2(n2 − 1) + 2(μdbR3/κdB)[(n + M )κd + n − M ]

2(n2 − 1) + ξ [(1 − n)α−1 + (1 + n)α−1]
, n ≥ 2, (4.39)

where M = 1 (M = 0) for perfect bonding (for slip contact) at the rod/core interface and ξ = α = 1
for hydrostatic pressure, ξ = 1 and α = 0 for centrally directed load and ξ = α = 0 for dead load.

It is worth noting that equation (4.39) has been obtained for five load and interface
combinations, excluded the sixth case of slip contact plus dead loading, which requires a separate
treatment based on equation (4.27). This treatment is omitted for brevity but leads again to
equation (4.39), which is found to hold true in all cases. Equation (4.39) shows that, when
parameter μdbR3/B tends to zero, the coated disc behaves as a rod subject to the radial load
Π . For a given set of material and geometrical parameters (Ec, Ed, νd, R, h, b) and varying the
mode number n in equation (4.39), different values for the bifurcation load can be analysed. The
critical value corresponds to the integer number n that minimizes equation (4.39), so that from
the expressions (4.37) and (4.22), the only non-vanishing coefficients are A1−ncr and A1+ncr , which
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define the bifurcation mode. For the elastic rod coating the disc, the latter corresponds to the
displacement components

ur(τ , n) = Re
(

n
n + 1

A1−n gn(τ ) + A0 g(τ )
)

,

uθ (τ , n) = Im
(

2
n + 1

A1−n gn(τ ) + A0 g(τ ) + A1

)
,

(4.40)

where the non-vanishing coefficient A1−n remains arbitrary, while A0 and Im(A1) can be
computed by fixing the rigid-body displacement, as shown in [40,43]. The stress components on
the boundary of the disc are

σrr(τ , n) = 2μd

Rκd
(κd + 1)(n − 1)Re(A1−n gn(τ )),

σrθ (τ , n) = 2μd

Rκd
(κd − 1)(n − 1)Im(A1−n gn(τ )).

(4.41)

All displacement and stress fields at every point z within the boundary of the disc may be
determined from equations (4.11), where the complex potentials and their derivatives can be
obtained from equation (4.12) as

ϕ(z, n) = 2μd

κd
n − 1
n + 1

A1−n g−(n+1)(z),

ϕ′(z, n) = 2μd

Rκd
(n − 1) A1−n g−n(z),

ϕ′′(z, n) = 2μd

R2κd
n(n − 1) A1−n g−n+1(z).

ψ(z, n) = −2μd

κd
(n + κd − 1)A1−n g−(n−1)(z),

ψ ′(z, n) = − 2μd

κdR
(n − 1)(n + κd − 1) A1−n g−(n−2)(z).

(4.42)

The coefficients A0 and A1 are determined by fixing a rigid-body displacement, in particular,
equation (4.11)1 assumes the form

u(z) = 1
2μd

[κdϕ(z) − zϕ′(z) − ψ(z)] + A0 + i
z
r

Im(A1), (4.43)

so that the condition A0 = 0 is obtained by imposing the displacement to be zero at point z = zc in
equation (4.43), as in [25]. Again, requiring the displacement component uθ to be zero at the point
τ0 = R, the following expression for A1 is obtained:

Im(A1) = −2ξ Im
(

1
n + 1

A1−n

)
, (4.44)

and hence, under the conditions A0 = 0 and (4.44), fixing possible rigid-body roto-translations,
the displacement field is determined by equations (4.40) leading to

ur(τ , n) = Re(A1−n)
n

n + 1
gn(τ ), uθ (τ , n) = Im(A1−n)

2
n + 1

[gn(τ ) + 1], ξ = α = 1,

ur(τ , n) = Re(A1−n)
n

n + 1
gn(τ ), uθ (τ , n) = Im(A1−n)

2
n + 1

[gn(τ ) + 1], ξ = 1, α = 0,

ur(τ , n) = Re(A1−n)
n

n + 1
gn(τ ), uθ (τ , n) = Im(A1−n)

2
n + 1

gn(τ ), ξ = 0.

(4.45)

The displacement amplitude is ruled by the non-vanishing coefficient A1−n which remains
arbitrary as in a standard Sturm–Liouville bifurcation problem.
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Figure 7. Dimensionless radial load for bifurcationΠ (n) as a functionof the ratio Ed/Ec for hydrostatic (ξ = α = 1) pressure,
centrally directed (ξ = 1,α = 0) anddead (ξ = 0) load. Thedifferent colours correspond to the critical bifurcationnumberncr .
(a) Perfect bonding at the disc/coating interface. (b) Slip contact, where the black dashed line corresponds to the approximate
solution obtained in [24] for a hydrostatic load distribution.

(d) Bifurcation results
The bifurcation radial load, equation (4.39), evaluated for the three different types of radial forces
per unit length (i)–(iii), as listed in §1, and for the two models of bonding at the interface, has
been normalized through division by the bifurcation load of the ‘empty’ coating, equation (3.22),
and has been evaluated as a function of the contrast ratio Ed/Ec between Young’s moduli of the
coated disc. In addition to the latter parameter, the bifurcation load depends on κd and on the
dimensionless parameter bR3/[(1 + νd)κdJ]. The latter has been assumed equal to 1000, while
the Kolosov constant has been selected as κd = 2, corresponding to νd = 1/4 in plane strain and
νd = 1/3 in plane stress. Bifurcation results are reported in figure 7, for perfect bonding at the
disc/coating interface (a) and for frictionless slip (b).

Both cases exhibit similar behaviour, in which the critical load increases with the increasing
stiffness contrast between the disc and the coating. However, the critical loads are smaller under
slip conditions than perfect bonding conditions. The increase in the critical load is accompanied
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2 3 4 5 6 7

Figure 8. Bifurcation modes for the coated disc at increasing wavenumber n. Perfect bonding is assumed at the disc/coating
interface. The parts highlighted red (blue) show zones at the interface where tensile (compressive) tractions in the radial
direction prevail.
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Figure9. Dimensionless radial load for bifurcationΠ (n) as a functionof the ratio Ed/Ec for hydrostatic (ξ = α = 1) pressure,
centrally directed (ξ = 1, α= 0) and dead (ξ = 0) load, when slip contact holds at the interface, for νd = 0.455 under
plane strain assumption. The black dashed line corresponds to the approximate solution obtained in [24] for a hydrostatic load
distribution. This approximate solution matches very well our bifurcation condition for νd ≥ 0.455.

by increase in the wavenumber n of the bifurcation mode, evidenced by the alternance of different
colour marking the curves.

The shapes of the bifurcation modes are reported in figure 8 for the case of perfect bonding,
from n = 2 to n = 7. These have been obtained by choosing the non-vanishing coefficient A1−n = 1
and fixing the rigid body motion accordingly to equation (4.44). The contour of the bifurcation
modes are highlighted red (blue) where tensile (compressive) tractions in the radial direction
prevail. The zones under incremental tension may be expected to detach as a consequence of
adhesion failure.

For the case of slip contact and hydrostatic pressure loading, the results have been compared
with Herrmann & Forrestal [24] and included in the figure as a dashed black line. The solution by
Herrmann and Forrestal was obtained under the plane strain assumption and by introducing
several mathematical approximations, so that for νd = 1/4 the comparison shows the correct
trend, although results are not superimposed. Extensive analyses performed by us (and not
reported for brevity) show that the approximate solution by Herrmann and Forrestal becomes
tight to our solution for νd ≥ 0.455. In particular, figure 9 reports the plane strain analysis for
νd = 0.455, pertaining to the case of slip contact, and shows that the Herrmann and Forrestal
approximation is superimposed to our bifurcation curve.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 M

ay
 2

02
4 



21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230491

..........................................................

5. Conclusion
The Kolosov–Muskhelishvili complex potential technique has proved to enable the analytical
solution of the bifurcation of an elastic disc coated with an inextensible elastic rod. The latter
can be fully bonded or in slip contact with the inner disc and is subject to three different types
of external radial loads, all uniformly distributed. This new solution reveals that the presence
of the inner disc may lead to the predominance of high-wavenumber modes. It also emphasizes
the importance of detachment at the interface between disc and coating, as well as, of proper
modelling of how the external load acts on the structure during its incremental deformation.
Applications of the results could be valuable in the development of various coating technologies
and in the understanding of growth of plants and fruits.
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