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Abstract—Cellular networks are undergoing a revolutionary
transform with the advent of O-RAN architectures and AI/ML
solutions. O-RAN’s Non-Real-Time and Near-Real Time RAN
Intelligent Controllers open the door to the implementation of
automated control-loops that can provide RAN optimisations in
numerous scenarios and use cases, and which can be further
empowered by AI-driven approaches. Energetic sustainability
has raised as one of the main optimisations targets due to the
impact of mobile networks on global energy consumption. To
this end, the BeGREEN project aims at enhancing the energy
efficiency of beyond 5G networks by defining novel AI/ML-
based methods at RAN and edge infrastructure. This paper
presents BeGREEN Intelligent Plane, a novel framework which
implements and exposes AI/ML workflows to O-RAN-based
optimisations targeting energy efficiency. We also describe an
exemplary application of the Intelligent Plane and its AI Engine,
which aims at providing AI-driven cell on/off control.
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I. INTRODUCTION

The transition from 5G to beyond 5G (B5G) and 6G mobile
communication networks brings a paradigm shift not only in
terms of enhanced performance and increased connectivity, but
also in addressing critical issues related to the environmental
implications associated to a higher energy consumption. Im-
proving the planning, deployment, and management of B5G
and 6G networks is imperative to counteract the rising energy
consumption trend. Overcoming these challenges require inno-
vative architectural revisions and novel algorithmic solutions to
promote sustainability and mitigate the environmental impact
of cellular networks [1]. Notably, the Radio Access Network
(RAN) consumes more than 70% of the total energy of a 5G
system, making its optimisation a top priority.

The consolidation of the O-RAN architecture, which advo-
cates for disaggregated, virtualized and software-based com-
ponents, connected through open and standardised interfaces,
entails a significant opportunity to intelligently manage the
RAN with the aim of improving the network performance,
and reduce energy consumption [2]. Particularly, the Non-Real-
Time RAN Intelligent Controller (non-RT RIC), and Near-Real
Time RAN Intelligent Controller (Near-RT RIC) provide the
required functionalities to develop and host the so-called rApps

and xApps implementing, respectively, long-term and almost
real-time optimisations through automated control-loops.

Furthermore, the integration of Artificial Intelligence and
Machine Learning (AI/ML) introduces a cognitive layer that
can learn from historical data, adapt to evolving network
dynamics and make adequate decisions for improving the net-
work performance and the energy efficiency [3]. The concrete
specification of the supported AI/ML workflows in the O-
RAN is still on-going [4]. Nevertheless, it will allow several
options for providing AI/ML workflow services, for example
model management, model training, model inference, data
preparation, etc., at the Service Management and Orchesta-
tration (SMO), the Non-RT RIC, the Near-RT RIC or through
external components. Tightly (image-based) and loosely (file-
based) coupled approaches will be also supported, allowing
rApps/xApps to host the models and the training/inference
runtimes or to use exposed AI/ML services provided by other
components, respectively.

In this context, besides the user plane and data plane,
BeGREEN introduces an Intelligent Plane, which introduces
AI/ML control and management plane functions to reduce the
overall energy consumption of the RAN infrastructure [5]. The
proposed Intelligent Plane incorporates an AI Engine, which
will provide a serverless execution environment hosting the
AI/ML models, offering inference and training services to the
rApps/xApps by following a loosely coupled approach.

The rest of the paper is organised as follows. Section
II provides an overview of the related work in the context
of open-source RIC implementations to implement automated
control-loops. Section III presents the architecture of the
BeGREEN Intelligent Plane and the AI Engine, with focus
on the designed AI/ML workflows. Section IV presents the
main components and workflows involved in a specific use
case based on energy-efficient cell on/off control. Finally,
conclusions are summarised in section V.

II. RELATED WORK

This section briefly presents relevant open-source RIC
implementations and their utilisation to implement intelligent
and automated control loops. The O-RAN Alliance and the
Linux Foundation are collaborating by means of the O-RAN
Software Community (OSC) to develop open-source Non-RT
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and Near-RT RIC solutions aligned with O-RAN specifica-
tions. In parallel, two additional initiatives, the Open Air
Interface (OAI) Alliance and the Open Network Foundation
(ONF), which also collaborate with the O-RAN Alliance, are
developing their own open-source RIC solutions.

The development of the Non-RT RIC by the OSC [6]
relies on the publication of cumulative releases, each of
them covering different components, interfaces and workflows
defined by the O-RAN Alliance specifications. While the first
releases were mainly centered on the communication with
the Near-RT RIC through the A1 interface, including the
A1 Policy controller (A1-P) and the exposure of enrichment
information (A1-EI), the actual focus relies on the R1 in-
terface to provide Data Management and Exposure (DME)
and Service Management and Exposure (SME) services. DME
services are implemented through the Information Coordinator
Service (ICS) [7], which serves as a data subscription platform
designed to streamline the interaction between data producers
and consumers. Regarding SME services, a 3GPP Common
API Framework (CAPIF) approach is being developed and
evaluated in the last releases, being its definition still in early
stages. Additionally, last releases have incorporated an rApp
Manager to support rApp life-cycle management (LCM).

The OSC also provides an implementation of the Near-
RT RIC on a microservices architecture, serving as a host for
independently developed xApps [8]. Serving as a mediator, the
Near-RT RIC platform facilitates interactions between xApps
and RAN elements via E2 interface and with network operators
through A1 and O1 interfaces. Key components, including
xApps lifecycle management, configuration management, and
security, are integral to the platform’s functionality. Several
relevant projects are built on the OSC’s Near-RT RIC, such as
OpenRAN Gym [9], which implements E2 towards Open Air
Interface (OAI) gNBs or NS-3 simulator, or Open AI Cellular
(OAIC) [10], which interfaces srsRAN-based gNBs.

FlexRIC [11] is the proposed framework from OAI to
implement a programmable near-RT RIC. It interfaces with the
OAI radio stack via the O-RAN-defined E2-interface for real-
time monitoring and control of the RAN, although it claims to
be vendor-agnostic. It also introduces a novel interface, called
E42, to support interaction between the xAPPs SDK and the
near-RT RIC. Additionally, FlexRIC defines internal applica-
tions (iApps) which allow the development of specialized and
low-latency controllers for common control operations, such
as RAN slicing control, and whose operations are exposed to
xApps to implement intelligent control-loops.

The ONF has also developed its own near-RT RIC, called
SD-RAN [12], compliant with the O-RAN architecture and
built on other ONF platforms like Open Network Operating
System (ONOS). It is designed around the use of different
micro-services with very delineated roles and responsibilities,
such as all the necessary terminations for the main standard O-
RAN interfaces, i.e., E2, A1 and O1. The SD-RAN-in-a-Box
(RiaB) solution, provides a SD-RAN cluster able to operate
within a single host machine by deploying the whole SD-RAN
infrastructure on Kubernetes: the ONOS RIC, an Open Mobile
Evolved Core (OMEC) and the RAN. Regarding the RAN, it
is compliant with OAI solutions, and also provides a RAN
simulator, which allows simulating several RAN Centralized
Units (CU), Distributed Units (DU) and Radio Units (RU) via

the O-RAN E2AP. Additionally, it also provides several built-
in xApps, like traffic steering or RAN slice management.

Regarding the integration with AI/ML services, both
FlexRIC and SD-RAN frameworks provide the means to
develop AI/ML-driven optimisations through xApps, though
actually they don’t implement a specific solution. For instance,
SD-RAN is being leveraged by ONF’s SMART-5G project in
order to develop AI/ML-driven energy savings solutions for
mobile networks [13]. On the other hand, OSC has started on
the implementation of an AI/ML Framework exposed to Non-
RT and Near-RT RICs [14]. It implements training services
through a training host platform based on Kuberflow pipelines,
while model serving is performed inside each rApp or xApp
using Kserve through a tightly couple approach. However, this
implementation is still on its early stages, and, as mentioned in
the introduction, O-RAN specification will also support loosely
coupled solutions. This latter is the approach being selected by
BeGREEN in order to implement its Intelligent Plane and AI
Engine, as will be described in the next section.

III. BEGREEN INTELLIGENT PLANE AND AI ENGINE

BeGREEN targets energy efficient optimisations at RAN
and Edge infrastructure domains. Therefore, the Intelligent
Plane, whose main architecture is illustrated in Figure 1, can be
seen as a cross-domain management function [15], integrating
monitoring, analytics and control operations from Edge, Core
and RAN domains. This enables the development of feature-
rich ML models, hosted in the AI Engine, which can be
exposed to analytics consumers such as rApps and xApps to
implement energy efficient automated control-loops. Further-
more, the Intelligent Plane aims at integrating the control of
Reconfigurable Intelligent Surfaces (RIS), fixed relays or Relay
User Equipments (i.e. UEs with relaying capabilities) [5],
which are technologies currently beyond the O-RAN’s scope.
Therefore, in addition to O-RAN/3GPP compliant interfaces,
Figure 1 shows proposed extensions, denoted as O1+ and O2+,
and new interfaces to monitor and control these elements, and
to integrate the AI Engine.

The objective of the O1+ interface is to enable Non-RT
control and monitoring of RIS and relay elements, in a similar
way to compliant O-Nodes. For instance, in the case of the
relays, this will enable the collection of network measurements
and performance indicators that can be useful to identify re-
gions with coverage problems, geographical space/time traffic
distributions in the network, etc. Then, this data could be
exploited by AI/ML-based rApps to take adequate relay control
decisions, such as activation/deactivation or reconfiguration. In
the case of O2+, it will leverage O2 functionalities to monitor
and manage the resources of the Edge infrastructure hosting
software-based user-plane functions such as the 5G Core UPF,
with the objective of reducing energy consumption without
impairing traffic performance. The final specification of these
interfaces is still under definition in the BeGREEN project and
it is out of the scope of this paper.

Regarding the the Non-RT and Near-RT RICs, two specific
implementations are considered within BeGREEN project.
On the one hand, in the case of the Non-RT RIC, we are
leveraging the implementation from OSC, focusing on the
exposure of ML models through the R1 interface and the ICS
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Fig. 1: BeGREEN architecture including the Intelligent Plane

component, which implements DME services as introduced
in Section II. Operating as an intermediary, the ICS simplifies
the relationship between data producers and data consumers by
establishing data subscriptions, referred to as Information Jobs,
decoupled from the specific data generator. Furthermore, these
Information Jobs have the flexibility to draw data from multiple
sources, enhancing versatility in data consumption within the
Intelligent Plane. On the other hand, the Near-RT RIC is based
on a commercial cloud-native solution developed by a partner
of the consortium. Nevertheless, as will be further described
in this section, the objective of the followed loosely coupled
approach is to facilitate the integration of AI/ML workflows
through the AI Engine and the associated Assist rApps/xApps,
independently of the RIC implementation.

Completing the Intelligent Plane architecture, the AI En-
gine will host the ML models to offload workload from
the RICs, but also implement the required AI/ML workflows
or services. As detailed in Figure 2, it will include model
management, monitoring, training, serving and the datalake
with prepared data. In addition to ML models, the AI engine
will host other functions which may be used intensively by the
rApps/xApps, such as the BeGREEN Energy Score calculation
[5]. This Key Performance Indicator (KPI) will be used to
characterize the energy efficiency of the network and its
components, and of the applied optimisations. It will also help
to detect areas or components with low efficiency, triggering
the orchestration of the required optimisations.

The proposed AI Engine adopts a loosely coupled
approach, wherein AI/ML models are hosted within the

AI Engine rather than being embedded in the control
rApps/xApps that require their outputs. This approach allows
for the independent management of ML models by dedicated
rApps/xApps. Notably, any control rApp/xApp can access
the ML model outputs, which are exposed as data types
(e.g., offering load predictions for specific cells), promoting
model reuse. Moreover, this design permits the deployment
of ML models for training or inference on servers or clusters
separate from the RICs, enabling offloading through serverless
computing and hardware acceleration.

To make the AI/ML workflow services of the AI Engine ac-
cessible to the rApps/xApps, the BeGREEN project introduces
the concept of AI Engine Assist rApps/xApps. These specific
rApps/xApps are linked to an ML model, exposing its outputs
to other rApps/xApps by acting as data producers through ICS
coordination. They also facilitate communication between the
AI Engine and the RICs for procedures like ML monitoring
or retraining. The communication between these rApps/xApps
and the AI Engine relies on the definition of a common
interface or Software Development Kit (SDK), while each is
individually responsible for its ML model requirements, such
as necessary input parameters, data for training or inference,
triggered pipelines, and more. Initially we are considering four
primary AI/ML workflows, which are described as follows:

• ML Model Creation and Training: To create and
train an ML model, the model developer acquires the
necessary data from the AI Engine datalake by engag-
ing with the RICs. This may involve deploying rApps
or xApps to produce and expose the required data.
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After analyzing the data, the developer generates and
trains the model. Once trained, the model is published
in the catalog, and the developer establishes the infer-
ence pipeline, optionally incorporating monitoring and
retraining pipelines. Finally, the developer creates the
AI Engine Assist rApp/xApp, which interfaces with
the AI Engine through the AI Engine-RIC interface
and serves as an ML model producer.

• ML Model Inference (Non-RT domain): For ML
model inference at the Non-RT RIC level, a rApp
developer or deployer creates or deploys a control
rApp subscribing to the ML model outputs exposed by
the AI Engine Assist rApp through the R1 interface.
The AI Engine Assist rApp generates inference data
through the serverless on-demand deployment of the
ML model’s inference pipeline in the AI Engine. The
control rApp receives the ML output and generates an
action, policy or data through O1 (O-Nodes), O2 (O-
Cloud), A1 (Near-RT RIC, xApps) or R1 (rApps) in-
terfaces. Alternatively, an xApp developer or deployer
can create or deploy a control xApp subscribing to
the ML model outputs through the A1-EI interface. In
this case, the control xApp obtains the predictions and
generates actions through the E2 interface (E2-Nodes).

• ML Model Inference (Near-RT domain): In this
case, an xApp developer or deployer creates or deploys
a control xApp subscribing to the ML model outputs
exposed by the AI Engine Assist xApp through the
Near-RT RIC. The AI Engine Assist xApp acquires
inference data from the ML model’s inference pipeline
in the AI Engine, deployed either in the same server or
in a nearby server (e.g., on the same edge resources)
to ensure Near-RT runtime. Finally, the xApp receives

the ML model output and generates an action through
the E2 interface. Alternatively, inference outputs may
be exposed northbound (e.g., to the RIC rApps)
or to external components (e.g., application servers)
through the Y1 interface.

• ML Model Monitoring and Retraining: The AI
Engine Assist rApp triggers the retraining of an ML
model based on the monitoring pipeline. Retrain-
ing may use prepared data from the RICs, obtained
through the AI Engine Assist rApp itself. In some
scenarios, an A1-ML interface between Assist rApps
and xApps could be used to exchange ML model
information. For instance, different Assist xApps de-
ployed in different near-RT RICs but associated to
the same model could report model performance, trig-
gering model monitoring and retraining by the Assist
rApp. Similarly, in Federated Learning scenarios, this
interface may be used to exchange model weights.

To implement these workflows, certain components will
leverage existing open-source frameworks or dedicated solu-
tions in the realms of MLOps. MLOps has emerged as a pivotal
solution in addressing the intricate challenges associated with
training, deploying, monitoring, and sustaining ML models
within production environments. The primary objective of
MLOps is to streamline the entire lifecycle of an ML project,
with a focus on not only enhancing the efficiency of model
development but also ensuring the effective deployment and
management of these models. Therefore, MLOps frameworks
are characterized by their emphasis on automation, scalability,
and reproducibility, which is why most of them are integrated
with orchestration platforms such as Kubernetes. Particularly,
we have selected the MLRun framework, which covers the
whole ML pipeline, including their automation and monitoring.



Fig. 3: Cell on/off switching use case: Model training phase

MLRun also allows serverless automation through Nuclio,
which is a high-performance serverless framework that sup-
ports execution over CPUs and GPUs.

IV. USE CASE: ENERGY EFFICIENT RU CONTROL

One of the main energy efficient optimisations targeted
by BeGREEN aims at intelligently controlling RUs through
switching on/off their cells based on traffic status and predic-
tions. According to this, cells that are expected to serve very
low traffic in certain periods of time can be switched off in or-
der to reduce energy consumption, consequently steering their
traffic among active neighbor cells. This is one of the principal
energy saving uses cases introduced by O-RAN Alliance in its
report [2], due to the significant impact of the RU operations on
the overall energy consumption of the network. In this context,
AI/ML plays a pivotal role, as predictions related to load and
energy consumption become key to enable the implementation
of proactive automated control loops, contributing to energy
efficiency without impairing the status of network traffic [3].

In this section we illustrate the main Intelligent Plane com-
ponents and workflows involved in this use case. The solution
requires the development of three essential artifacts. First, the
Cell Load Predictor (CLP), that will offer the predicted traffic
per cell. Secondly, the CLP Model Assist rApp, which will
manage the required ML workflows through the AI Engine
and the exposure of model outputs to other rApp through the
R1 interface. Finally, a Cell Control rApp, which will consume
the predictions and perform the cell control according to them.

Regarding the CLP model, we have access to a real
dataset from a mobile network operator in Spain. We are
currently evaluating regression algorithms such as Gradient
Boosting through the XGBoost Python library, which is widely
recognized for its high accuracy and scalability, particularly
in handling large datasets [16]. Additionally, it can be used
for time series forecasting, which seems especially valuable
since we found in the dataset an evident correlation between
load, energy consumption, and time trends. Therefore, we are
also exploring the integration of ML models to provide energy
consumption predictions according to load inputs.

Figure 3 illustrates the workflows required during the train-
ing phase of the model. Two main options are contemplated.
In the first one, the model is trained by an offline dataset
already present in the AI Engine, which could comprehend
data from real deployments captured in different measurement
campaigns. Alternatively, for instance for retraining purposes,
the Assist rApp may be be used to generate, augment or
update the dataset by subscribing, consuming and preparing
data obtained from the O1 and/or E2 nodes. The required data
will be produced by other rApps and exposed through the R1
interface, as implemented by the ICS component. Once the
dataset is ready, the model can be trained and stored. Note
the monitoring and retraining could be triggered by the Assist
rApp, according to its implementation logic.

Once trained, the CLP model inference will be exposed to
the control rApps through the Assist rApp performing as data
producer. This way, any rApp requiring this data will need
only to create a subscription through the R1 interface and the
ICS component. Figure 4 illustrates the case of a Cell Control
rApp, which subscribes to RAN telemetry (RAN Telemetry
Producer rApp) and cell load predictions (CLP Model Assist
rApp) in order to perform decisions. Note that in this phase,
the Assist rApp may also require to consume data to generate
the inference (e.g., the current load of the cell).

After generating the subscriptions, the automated control-
loop performed by the Cell Control rApp will consist of
obtaining the data and the prediction, deciding the RU control
action, and performing the action through O1 (direct control to
the O-Node) or through A1 (indirect control through Near-RT
RIC or xApp policies). Moreover, the Assist rApp has the ca-
pability to transmit performance KPIs regarding the inference.
These KPIs can then be leveraged by the RU Control rApp
to enhance its decision-making process. For instance, during
peak-hour periods, decisions to deactivate cells might adopt a
conservative approach based on the accuracy of predictions.

V. CONCLUSIONS

This paper presented BeGREEN approach to provide
AI/ML services to O-RAN RICs through the implementation



Fig. 4: Cell on/off switching use case: Model serving and control phase

of an Intelligent Plane. The AI Engine works an external com-
ponent which implements AI/ML workflows through a MLOps
framework, making use of Assist rApps/xApps to manage
and expose the ML models in a loosely coupled approach.
Exploiting the DME features of the R1 interface, ML model
outputs are exposed to control rApps/xApps implementing
energy efficient automated control-loops. As an exemplary use
case, we described the required workflows to implement an AI-
driven cell on/off control. Future work includes the definition
and implementation of the AI Engine Assist rApp/xApp model
and SDK to support the AI/ML workflows. We also plan to
further elaborate and integrate uses cases comprehending the
utilization of the O1+ and O2+ interfaces.
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