

Learning Gaps and Proficiency Levels in Science Specialized Subjects of Senior High School Students in Surigao City, Philippines

¹Joey S. Simbajon, ²Mauricio S. Adlaon

¹ Student, Surigao del Norte State University, ²Faculty, Surigao del Norte State University ¹ORCID: 0000-0002-0876-0624 ²ORCID: 0000-0002-3546-0774

Abstract – This study examines the learning gaps and proficiency levels in science-specialized subjects among grade 12 Senior High School STEM students at St. Paul University Surigao. The goal is to identify areas of weakness and develop targeted interventions to enhance students' understanding and academic achievement. A cross-sectional design and purposive sampling technique are employed to assess multiple subjects simultaneously. Diagnostic and post-tests are conducted, and statistical measures are used for analysis. The findings indicate varying levels of mastery and learning gaps in specific topics, highlighting the need for targeted interventions. The study emphasizes the importance of effective instructional strategies, considering factors like gender and learning approaches, and utilizing interventions such as the Mastery Learning Approach and Learning Management Systems. The results provide valuable insights for educators, curriculum developers, and policymakers to enhance science education at St. Paul University Surigao. Recommendations include establishing support programs, providing professional development for educators, and allocating resources for a comprehensive science curriculum integrating technology. Implementation of these recommendations can create a supportive and inclusive learning environment, ultimately improving the quality of science education at the institution.

Keywords: Learning gaps, Proficiency level, Science specialized subjects

I. Introduction

In the field of education, it is crucial to continuously monitor and evaluate students' learning progress to ensure effective instruction and meaningful educational experiences. According to the findings from the PISA 2022 assessment, the examination of Filipino students' performance in science has elucidated that a predominant proportion of students have demonstrated attainment levels primarily within Levels 1 (indicative of performance below proficiency) and Level 2 (reflective of basic proficiency), with a relatively limited representation in Levels 3 (characterized by intermediate proficiency) and Level 4 (embodying advanced proficiency).

In the context of senior high school education, particularly in science-specialized subjects, it is essential to identify and address learning gaps that students may encounter. By conducting a comprehensive assessment of these learning gaps, educators can gain valuable insights into the specific areas where students struggle the most, enabling the development of targeted interventions and instructional strategies to enhance their conceptual understanding and academic achievement.

According to Pajares (2012), individuals' self-efficacy beliefs significantly influence their motivation, effort, and perseverance in learning. When students face challenges or encounter difficulties in their science education, it can negatively impact their self-efficacy and overall engagement in the subject matter (Flores, 2015). Hence, it becomes imperative for educators to identify and address these learning gaps to foster students' confidence and competence in science.

St. Paul University Surigao, a reputable educational institution committed to providing quality education, recognizes the importance of assessing learning gaps in science-specialized subjects among its senior high school students. This assessment aims to uncover specific topics or concepts where students may struggle, providing educators with critical insights to design targeted interventions and instructional strategies that effectively address these gaps (Monroe et al., 2019).

By assessing learning gaps and proficiency levels in science-specialized subjects, educators at St. Paul University Surigao can create a supportive and inclusive learning environment that caters to the diverse needs of their students. This assessment will contribute to the ongoing improvement of science education practices within the institution and promote equitable education (Windschitl et al., 2019). Moreover, addressing these learning gaps will empower students to develop a strong conceptual foundation in science and enhance their academic achievement, preparing them for future academic pursuits and careers in scientific fields (Kpolovie, Joe, & Okoto, 2014).

The purpose of this study is to conduct a comprehensive assessment of learning gaps and proficiency levels in science-specialized subjects among grade 12 STEM students at St. Paul University Surigao. Through this assessment, the specific areas of weaknesses and challenges that students may be facing in their science education will be identified. This research endeavor aims to provide insights that will inform the development of targeted interventions and instructional strategies to bridge these gaps effectively.

By undertaking this study, St. Paul University Surigao reaffirms its commitment to providing quality science education and ensuring the academic success of its senior high school students. The findings of this assessment will contribute to evidence-based decision-making, inform curriculum development, and guide instructional practices, ultimately improving the overall quality of science education at the institution.

Furthermore, this study holds immense significance for various stakeholders. Senior high school students will benefit from the identification and addressing of specific gaps, receiving targeted support to enhance understanding and academic achievement, ultimately improving their self-efficacy and engagement. Educators can utilize the findings to design effective instructional

strategies and interventions, improving teaching practices and learning outcomes. The institution itself can contribute to science education improvement, informed by evidence-based decision-making, curriculum development, and tailored instruction. Additionally, the broader field of education can benefit from insights into effective practices, fostering equitable education and enhancing science education quality.

II. Statement of the Problem

In this study, the researchers aim to assess the learning gaps and proficiency levels in science-specialized subjects in senior high school students of St. Paul University Surigao. Specifically, it sought to answer the following:

- 1. What are the specific learning gaps and proficiency levels in science-specialized subjects among senior high school students at St. Paul University Surigao in terms of:
 - 1.1 Learning Competency; and
 - 1.2 Percentage of Correct Responses per Competency?
- 2. Based on the findings, what recommendations may be proposed?

III. Assumptions

There is a significant learning gap in science-specialized subjects of the Grade 12 STEM Students.

IV. Methodology

This study will employ a cross-sectional design which is appropriate for this study as it allows for an overview of the learning gaps and proficiency levels in science-specialized subjects of grade 12 STEM students at St. Paul University Surigao. It efficiently assesses multiple subjects simultaneously and provides practical data collection within a specific timeframe, making it a cost-effective approach for examining the current state of knowledge in the selected subjects. Additionally, the subjects of focus are General Chemistry 2, General Physics 1, and General Biology 1.

A purposive sampling technique will be used to select participants, ensuring representation from each STEM section. The data collection process will include a diagnostic and post-test to gauge students' initial knowledge and mastery of the subjects. The results will be analyzed to identify specific areas of learning gaps, supplemented by data mining to gather quantitative data on students' difficulties with specific learning competencies.

Quantitative analysis of the diagnostic and post-test results will be conducted using statistical measures, while interpretations are based on the percentage of correct responses per competency. The findings will be presented, highlighting the identified learning gaps in each subject.

In addition, to facilitate the interpretation of the assessment results, a legend was used to categorize the percentage of correct responses per competency into different levels of mastery.

This legend provides a clear framework for understanding the students' proficiency based on their performance. This legend allows for a straightforward interpretation of the student's level of understanding in each competency.

Legend					
Percentage	of	Correct	Responses	per	Internetation
Competency					inter pretation
0%					Absolute No Mastery
5%					Very Low Mastery
15%					Low Mastery
35%					Average Mastery
66%					Moving Towards Mastery
86%					Closely Approximating Mastery
96%					Mastery

Furthermore, this study utilizes a four-point Likert scale with clear verbal descriptions such as Needs Improvement, Proficient, Moderately Proficient, and Highly Proficient which enables researchers to assess and communicate participants' proficiency levels in a concise and easily understandable manner. With this, it facilitates the identification of areas that require improvement as well as areas where participants demonstrate higher levels of proficiency.

Likert Scale

Interval	Verbal Description
3.59% - 20.40%	Needs Improvement
20.41% - 37.22%	Proficient
37.23% - 54.04%	Moderately Proficient
54.05% - 70.85%	Highly Proficient

V. Results and Discussions

Overview of the assessment of learning gaps and proficiency level in Science-specialized Subjects

Table 1 presents the overview of learning gaps and proficiency level in General Chemistry 2 for the First Quarter of School Year 2022-2023.

Table 1. Overview of the assessment of learning gaps and proficiency level on General Chemistry2.

Loouning	Diagnostic Test		Post-Test			Post
Competencies	%	I	%	Ι	Difference	intervention result
Use the kinetic molecular model to explain properties of liquids and solids. <i>STEM_GC111MF111a-</i> <i>c-99</i>	47.09%	Average Mastery	87.71%	Moving Towards Mastery	40.62%	Moderately Proficient
Describe and differentiate the types of intermolecular forces. STEM_GC111MFIIIa- c-100	41.45%	Average Mastery	83.56%	Moving Towards Mastery	42.11%	Moderately Proficient
Describe the following properties of liquids, and explain the effect of intermolecular forces on these properties: surface tension, viscosity, vapor pressure, boiling point, and molar heat of vaporization. <i>STEM_GC111MF111a- c-102</i>	28.55%	Low Mastery	64.13%	Average Mastery	35.58%	Proficient
Explain the properties of water with its molecular structure and intermolecular forces. <i>STEM_GC111MF111a-</i> <i>c-102</i>	27.80%	Low Mastery	55.61%	Average Mastery	27.81%	Proficient

Describe the difference						
in structure of						
crystalline and	22 770/	Low	55 160/	Average	21 200/	Draficiant
amorphous solids.	23.1170	Mastery	33.10%	Mastery	51.59%	Proficient
STEM_GC111MF111a-						
<i>c-104</i>						
Interpret the phase						
diagram of water and		Low		Augraga		
carbon dioxide.	22.57%	Low	45.14%	Average	22.57%	Proficient
STEM_GC111MF111a-		Mastery		Mastery		
<i>c-104</i>						
Determine and explain						
the heating and cooling		τ		A		
curve of substance.	20.03%	Low	43.65%	Average	23.62%	Proficient
STEM_GC111MF111a-		Mastery		Mastery		
<i>c-109</i>						
Use different ways of						
expressing						
concentration of						
solutions: percent by						
mass, mole fraction,	21.000/	Low	40.420/	Average	17 2 40/	Needs
molarity, molality,	31.09%	Mastery	48.43%	Mastery	1/.34%	Improvement
percent by volume,		-				-
percent by mass, ppm.						
STEM GC11PPIIId-f-						
111						
Perform stoichiometric						
calculations for		т				
reactions in solution.	30.64%	Low	58.00%	Average	27.36%	Proficient
STEM GC11PPIIId-f-		Mastery		Mastery		
112						
Describe the effect of						
concentration on the						
colligative properties of	22 1 40 /	Low		Moving	25.520/	Moderately
solutions.	32.14%	Mastery	69.66%	Iowards	57.52%	Proficient
STEM GC11PPIIId-f-				Mastery		
115						

e-ISSN: 2348-6848 p-ISSN: 2348-795X Vol. 11 Issue 05 May 2024

Differentiate the colligative properties of nonelectrolyte		Low		Average		Moderately
solutions and of electrolyte solutions. STEM GC11PPIIId-f-	31.54%	Mastery	65.32%	Mastery	33.78%	Proficient
115						
Calculate boiling point						
elevation and freezing						
point depression from		Low		Average		
the concentration of a	33.63%	Masterv	55.61%	Masterv	21.98%	Proficient
solute in a solution.				j		
STEM_GC11PPIIId-f-						
Calculate molar mass						
trom colligative	26 160/	Low	45 500/	Average	10 420/	Needs
STEM CC11DDIIId f	20.10%	Mastery	43.39%	Mastery	19.45%	Improvement
51LM_0C11FF111a-j-						
Describe laboratory						
procedures in						
determining		_		Moving		
concentration of	28.70%	Low	84.45%	Towards	55.75%	Highly
solutions.		Mastery		Mastery		Proficient
STEM_GC11PPIIId-f-						
117						
Explain the first law of				Moving		
thermodynamics.	3/ 53%	Low	76.08%	Towards	11 55%	Moderately
STEM_GC11PPIIId-f-	54.5570	Mastery	/0.00/0	Mastery	41.5570	Proficient
117				widstery		
Explain enthalpy of a				Moving		
reaction.	34.98%	Low	69.06%	Towards	34.08%	Proficient
STEM_GC11PPIIId-f-		Mastery		Mastery		
				5		
Calculate the change in		T		A		
enunalpy of a given	21.97%	LOW	44.84%	Average	22.87%	Proficient
Law		wiastery		wiastery		
Law.						

Received: 25 April 2024 Revised: 7 May 2024 Accepted: 15 May 2024 Copyright ♥ authors 2024

STEM_GC11TCIIIg-i-						
127						
Describe how various						
factors influence the		Low		Automotio		Maada
rate of reaction.	25.56%	Low	41.70%	Average	16.14%	Improvement
STEM_GC11TCIIIg-i-		Mastery		Mastery		Improvement
127						
Differentiate zero, first-						
, and second-order		T		A		NT 1-
reactions.	34.38%	LOW	37.97%	Average	3.59%	Needs
STEM_GC11CKIIIi-j-		Mastery		Mastery		Improvement
132						
Explain reactions						
qualitatively in terms of		Lavy		A		Maada
molecular collisions.	19.58%	Low	37.22%	Average	17.64%	Needs
STEM_GC11CKIIIi-j-		Mastery		Mastery		Improvement
136						
Explain activation						
energy and how a						
catalyst affects the	22.020/	Low	40 1 50 /	Average	10.120/	Needs
reaction rate.	23.02%	Mastery	42.15%	Mastery	19.13%	Improvement
STEM GC11CKIIIi-j-		-		·		-
137						
Cite and differentiate						
the types of catalysts.	41 410/	Average	50.040/	Average	1 = 0.20/	Needs
STEM GC11CKIIIi-j-	41.41%	Mastery	59.34%	Mastery	17.93%	Improvement
137		2		2		1

The findings of the study reveal varying levels of mastery and learning gaps in sciencespecialized subjects among senior high school students at St. Paul University Surigao. The diagnostic test scores provide a baseline measure of students' initial knowledge, while the post-test scores indicate their performance after the intervention. The difference between the diagnostic and post-test scores reflects the improvement achieved. The post-intervention result represents the final level of proficiency attained.

Among the specific learning competencies assessed, it is evident that students made significant progress in some areas. For example, in the topic of using the kinetic molecular model to explain properties of liquids and solids, the students demonstrated *average mastery initially* (47.09%) and *moved towards mastery* (87.71%) after the intervention, resulting in a *moderate level*

of proficiency. Similar progress was observed in differentiating types of intermolecular forces and understanding the properties of water with its molecular structure and intermolecular forces.

However, several learning gaps persist in certain areas. For instance, in topics such as describing the properties of liquids and explaining the effect of intermolecular forces on these properties, students started with *low mastery* (28.55%) and achieved only *average mastery* (64.13%) after the intervention, indicating a *moderate level of proficiency* (35.58%). Similarly, in topics related to stoichiometric calculations, colligative properties of solutions, and reaction kinetics, students showed *low mastery* and made limited progress towards achieving *average mastery mastery*.

Moreover, in terms Describing laboratory procedures in determining concentration of solutions, students made a huge progress having 84.45% (Moving towards mastery) from 28.70% (Low mastery), which indicates Highly Proficient. Meanwhile, it can be gleaned that seven out of twenty-two competencies Needs Improvements in particular differentiating zero, first-, and second-order reactions which has 37.97% (Average mastery) from 34.38% (Low mastery).

In this regard, a study conducted by Canac & Kermen (2016), stated that Students struggle greatly to comprehend concepts that are taught in the first two years of chemistry instruction. The pupils don't appear to be using the scientific name as opposed to a popular name as a useful classification tool for chemical species and mixtures. They have trouble decoding chemical formulas when they are not considered in the context of a chemical equation. Both macroscopic (a pure material or a combination) and microscopic (an atom or a molecule) requirements are difficult for the students in the survey to appropriately associate with a name or a formula.

Table 2 presents the overview of learning gaps and proficiency level in General Biology 1 for the First Quarter of School Year 2022-2023.

Learning	Diagnostic Test		Post-Tes	Post-Test		Post
Competencies	%	Ι	%	Ι	e	interventio n result
Explain the postulates of the cell theory <i>STEM_BIO11/12</i> - <i>Ia-c-1</i>	43.05 %	Averag e Mastery	87.89 %	Closely Approximatin g Mastery	44.84%	Moderately Proficient
Describethestructureandfunctionofandsubcellular	36.77 %	Averag e Mastery	78.92 %	Moving Towards Mastery	42.15%	Moderately Proficient

Table 2. Assessment of the learning gap and proficiency level in General Biology 1.

Received: 25 April 2024 Revised: 7 May 2024 Accepted: 15 May 2024 Copyright ♥ authors 2024

organelles						
SIEM_BIOII/12						
Distinguish						
prokaryouc and						
eukaryotic cells	26.02	Averag	94.01	Moving		Madanatala.
according to their	30.02	e	84.01	Towards	47.99%	Noderately
factures	70	Mastery	[%] 0	Mastery		Proficient
reatures						
$SIEM_BIUII/12$						
-1a-c-3 Classify different						
classify unificient						
(nlant/animal						
(prant/annia) tissues) and	32.88	Low	78 62	Moving		Moderately
specify each of the	92.00 %	Masterv	%	Towards	45.74%	Proficient
function(s)	/0	Wastery	70	Mastery		Tonoient
STEM BIO11/12						
-Ja-c-4						
Describe some cell						
modifications that						
lead to adaptation						
to carry out						
specialized	40.06	Averag	84.75	Moving	44.600/	Moderately
functions (e.g.,	%	e	%	Towards	44.69%	Proficient
microvilli, root		Mastery		Mastery		
hair)						
STEM_BIO11/12						
<i>-Ia-c-5</i>						
Characterize the						
phases of the cell		Averag		Closely		
cycle and their	44.84	Averag	86.85	Approximatin	<i>42</i> 01%	Moderately
control points	%	C Masterv	%	a Mastery	42.0170	Proficient
STEM_BIO11/12		Wastery		g mustery		
-Id-f-6						
Describe the	27.65	Low	71.90	Moving		Moderatelv
stages of	%	Masterv	%	Towards	44.25%	Proficient
mitosis/meiosis		y		Mastery		

Received: 25 April 2024 Revised: 7 May 2024 Accepted: 15 May 2024 Copyright ♥ authors 2024

DOI: https://doi.org/10.5281/zenodo.11195269

147

given 2n=6 <i>STEM_BIO11/12</i> <i>-Id-f-7</i>						
Discuss crossing over and recombination in meiosis STEM_BIO11/12	48.58 %	Averag e Mastery	91.78 %	Closely Approximatin g Mastery	43.20%	Moderately Proficient
Explain the significance or applications of mitosis/meiosis <i>STEM_BIO11/12</i> - <i>Id-f-9</i>	41.41 %	Averag e Mastery	93.12 %	Closely Approximatin g Mastery	51.71%	Moderately Proficient
Identify disorders and diseases that result from the malfunction of the cell during the cell cycle <i>STEM_BIO11/12</i> <i>-Id-f-10</i>	54.86 %	Averag e Mastery	87.74 %	Closely Approximatin g Mastery	32.88%	Proficient
Describe the structural components of the cell membrane <i>STEM_BIO11/12</i> <i>-Ig-h-11</i>	34.38 %	Low Mastery	70.10 %	Moving Towards Mastery	35.72%	Proficient
Relatethestructureandcomposition of thecell membrane toitsfunctionSTEM_BIO11/12-Ig-h-12	39.01 %	Averag e Mastery	86.40 %	Closely Approximatin g Mastery	47.39%	Moderately Proficient

Received: 25 April 2024 Revised: 7 May 2024 Accepted: 15 May 2024 Copyright ♥ authors 2024

DOI: https://doi.org/10.5281/zenodo.11195269

	iternatio	onal Jou	rnal of I	Research (IJR)	e-ISSN p-ISSN Vol	: 2348-6848 : 2348-795X . 11 Issue 05 May 2024
Explain transport mechanisms in cells (diffusion, osmosis, facilitated transport, active transport) STEM_BIO11/12	23.17 %	Low Mastery	62.63 %	Average Mastery	39.46%	Moderately Proficient
-Ig-h-13 Differentiate exocytosis and endocytosis STEM_BIO11/12 -Ig-h-14 Categorize the	14.35 %	Very Low Mastery	60.84 %	Average Mastery	46.49%	Moderately Proficient
biological molecules (lipids, carbohydrates, proteins, and nucleic acids) according to their structure and function <i>STEM_BIO11/12</i> - <i>li-j-15</i>	35.13 %	Averag e Mastery	84.30 %	Moving Towards Mastery	49.17%	Moderately Proficient

The findings from the pre- and post-assessments of learning competencies in science subjects among senior high school students provide valuable insights into the student's performance and the effectiveness of the intervention. The results indicate the percentage of correct responses (mastery level) for each learning competency and the difference in performance before and after the intervention. Additionally, the post-intervention results are provided as an indication of the student's proficiency level.

In terms of the specific learning competencies assessed, it is evident that there were varying levels of mastery observed. For example, in the topic "Explain the postulates of the cell theory," the students exhibited an *average mastery* level of 43.05% in the pre-test, which significantly improved to 87.89% in the post-test. This indicates a substantial increase in understanding and knowledge after the intervention. Similarly, in the topic "Identify disorders and diseases that result from the malfunction of the cell during the cell cycle," the students demonstrated an *average*

mastery level of 54.86% in the pre-test, which remained relatively high at 87.74% in the post-test and indicated as *Highly proficient*.

However, there were also areas where the students showed lower levels of mastery. For instance, in the topic "Differentiate exocytosis and endocytosis," the students had a *very low mastery* level of 14.35% in the pre-test, which improved to an *average mastery level* of 60.84% in the post-test indicated as *Moderately proficient*. Although there was an improvement, the level of understanding remained relatively low.

Thirteen (13) out of fifteen (15) competencies in General Biology 1 showed remarkable progress having *moderately proficient* by incorporating LMS. The study conducted by Hidayat (2018), suggests that the utilization of a Learning Management System (LMS) such as Quipperschool supports the effectiveness of students' learning to improve learning outcomes and concept mastery in Biology.

Table 3 presents the overview of learning gaps and proficiency level in General Physics 1 for the First Quarter of School Year 2022-2023.

Loorning	Diagno	stic Test	Post	t-Test	_	Post
Competencies	%	Ι	%	Ι	Difference	intervention result
Solve measurement problems involving conversion of units, expression of measurements in scientific notation. STEM GP12EU-Ia-1	42.75%	Average Mastery	48.58%	Average Mastery	5.83%	Needs Improvement
Differentiate accuracy from precision. STEM_GP12EU-Ia-2	37.67%	Average Mastery	79.07%	Moving Towards Mastery	41.41%	Moderately Proficient
errors from systematic errors. STEM GP12EU-Ia-3	21.67%	Low Mastery	65.02%	Average Mastery	43.35%	Moderately Proficient
Estimate errors from multiple measurements of a physical quantity using variance. STEM_GP12EU-Ia-5	41.85%	Average Mastery	68.01%	Moving Towards Mastery	26.16%	Proficient

Table 3. Assessment of learning gap and proficiency level in General Physics 1.

and scalar quantities. <i>STEM_GP12EU-Ia-8</i>	40.96%	Average Mastery	54.56%	Average Mastery	13.60%	Needs Improvement
Perform addition of vectors. STEM_GP12EU-Ia-9	19.13%	Low Mastery	46.34%	Average Mastery	27.20%	Proficient
Rewrite a vector in component form. <i>STEM_GP12EU-Ia-10</i>	19.58%	Low Mastery	45.44%	Average Mastery	25.86%	Proficient
Convert a verbal description of a physical situation involving uniform acceleration in one dimension into a mathematical description. STEM_GP12EU-Ia-12	46.64%	Average Mastery	68.01%	Moving Towards Mastery	21.38%	Proficient
Interpret displacement and velocity, respectively, as areas under velocity vs. time and acceleration vs. time curves.	42.75%	Average Mastery	61.29%	Average Mastery	18.54%	Needs Improvement
STEM_GP12EU-Ia-14 Interpret velocity and acceleration, respectively, as slopes of position vs. time and velocity vs. time curves. STEM_GP12EU-Ia- 15	40.51%	Average Mastery	59.34%	Average Mastery	18.83%	Needs Improvement
Construct velocity vs. time and acceleration vs. time graphs, respectively, corresponding to a given position vs. time- graph and velocity vs. time graph and vice versa. STEM_GP12EU-Ia-16	24.22%	Low Mastery	68.16%	Moving Towards Mastery	43.95%	Moderately Proficient

151

Copyright ♥ authors 2024

Solve for unknown quantities in equations involving one- dimensional uniformly accelerated motion, including free-fall motion. STEM_GP12EU-Ia-17	14.05%	Very Low Mastery	49.63%	Average Mastery	35.58%	Proficient
Solve problems involving one- dimensional motion with constant acceleration in contexts such as, but not limited to, the "tail-gating phenomenon", pursuit, rocket launch, and free- fall problems.	11.96%	Very Low Mastery	46.04%	Average Mastery	34.08%	Proficient
Describe motion using the concept of relative velocities in 1D and 2D. <i>STEM_GP12EU-</i> <i>Ia-20</i>	29.75%	Low Mastery	74.29%	Moving Towards Mastery	44.54%	Moderately Proficient
Deduce the						
consequences of the independence of vertical and horizontal components of projectile motion.	36.92%	Average Mastery	64.87%	Average Mastery	27.95%	Proficient
STEM_GP12EU-Ia-22 Calculate range, time of flight, and maximum heights of projectiles. STEM_GP12EU-Ia-23	17.79%	Low Mastery	65.47%	Average Mastery	47.68%	Moderately Proficient
associated with circular motion such as tangential velocity, centripetal acceleration, tangential acceleration radius of	30.34%	Low Mastery	51.57%	Average Mastery	21.23%	Proficient
curvature. STEM_GP12EU-Ia-25 Received: 25 April 2024						152
Revised: 7 May 2024 Accepted: 15 May 2024						

Solve problems involving two- dimensional motion in contexts such as, but not limited to ledge jumping, movie stunts, basketball, safe locations during firework displays, and	32.29%	Low Mastery	70.70%	Moving Towards Mastery	38.42%	Moderately Proficient
Ferris wheels. STEM_GP12EU-Ia-26 Define inertial frames of reference. STEM_GP12EU-Ia-28	34.08%	Low Mastery	78.03%	Moving Towards Masterv	43.95%	Moderately Proficient
Identify action-reaction pairs. STEM_GP12EU-Ia-31	37.37%	Average Mastery	81.46%	Moving Towards Mastery	44.10%	Moderately Proficient
Draw free-body diagrams. STEM_GP12EU-Ia-32	20.93%	Low Mastery	70.10%	Moving Towards Mastery	49.18%	Moderately Proficient
Apply Newton's 1st law to obtain quantitative and qualitative conclusions about the contact and noncontact forces acting on a body in equilibrium.	41.11%	Average Mastery	77.28%	Moving Towards Mastery	36.17%	Proficient
STEM_GP12EU-1a-33 Differentiate the properties of static friction and kinetic friction. STEM_GP12EU-1a-34 Apply Newton's 2nd	24.22%	Low Mastery	80.72%	Moving Towards Mastery	56.50%	Highly Proficient
law and kinematics to obtain quantitative and qualitative conclusions about the velocity and acceleration of one or more bodies, and the contact and noncontact forces acting on one or	14.05%	Very Low Mastery	84.90%	Moving Towards Mastery	70.85%	Highly Proficient
Pacaivad: 25 April 2024						152

more bodies. STEM GP12EU-Ia-36						
Solve problems using						
Newton's Laws of						
motion in contexts such						
as, but not limited to,						
ropes and pulleys, the						
design of mobile		Verv				
sculptures, transport of	11 96%	Low	57 /0%	Average	15 11%	Proficient
loads on conveyor	11.7070	Mastery	57.4070	Mastery	43.4470	Toncicia
belts, force needed to		wiaster y				
move stalled vehicles,						
determination of safe						
driving speeds on						
banked curved roads.						
STEM_GP12EU-Ia-38						
Calculate the dot or						
scalar product of	42.00%	Average	60.54%	Average	18.54%	Needs
vectors.		Mastery		Mastery		Improvement
SIEM_GP12EU-1a-40						
Determine the work		A		A		
done by a force acting	36.92%	Average	63.23%	Average	26.31%	Proficient
On a system.		Wastery		Mastery		
Define work as a scalar						
or dot product of force		Low		Average		
and displacement	16.14%	Mastery	51.57%	Mastery	35.43%	Proficient
STEM GP12EU-Ia-42		widster y		Wastery		
Interpret the work done						
by a force in one -						
dimension as an area		Average		Moving		_ ~ .
under a Force vs.	43.65%	Masterv	70.70%	Towards	27.06%	Proficient
Position curve.		J		Mastery		
STEM_GP12EU-Ia-43						
Relate the gravitational						
potential energy of a				Moving		
system or object to the	42 1504	Average	91 460/	Towarda	20 210/	Moderately
configuration of the	42.13%	Mastery	01.40%	Mostory	39.31%	Proficient
system.				Wastery		
STEM_GP12EU-Ia-48						
Relate the elastic				Moving		
potential energy of a	42 45%	Average	71 90%	Towards	29.45%	Proficient
system or object to the	72.7370	Mastery	/1.9070	Mastery	27.7370	Toneicht
configuration of the				111u5t01 y		
Received: 25 April 2024						154
Accepted: 15 May 2024						
Copyright ♥ authors 2024	DOI: <u>htt</u>	os://doi.org/10).5281/zenod	lo.11195269		

Explain the properties and the effects of conservative forces. STEM_GP12EU-Ia-50 Use potential energy diagrams to infer force; stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	40.96% 25.56%	Average Mastery Low	54.71%	Average Mastery	13.75%	Needs Improvement
and the effects of conservative forces. STEM_GP12EU-Ia-50 Use potential energy diagrams to infer force; stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	40.96% 25.56%	Average Mastery Low	54.71%	Average Mastery	13.75%	Needs Improvement
conservative forces. STEM_GP12EU-Ia-50 Use potential energy diagrams to infer force; stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	40.96% 25.56%	Low	54.71%	Mastery	13.75%	Improvement
STEM_GP12EU-Ia-50 Use potential energy diagrams to infer force; stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	25.56%	Low				
Use potential energy diagrams to infer force; stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	25.56%	Low				
diagrams to infer force; stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	25.56%	Low				
stable, unstable, and neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	25.56%	Low				
neutral equilibria; and turning points. STEM_GP12EU-Ia-53 Solve problems involving work,	25.56%		40 500/	Average	22.020/	
turning points. STEM_GP12EU-Ia-53 Solve problems involving work,		Mastery	48.58%	Mastery	23.02%	Proficient
STEM_GP12EU-Ia-53 Solve problems involving work,		•		-		
Solve problems involving work,						
involving work,						
energy, and power in						
contexts such as, but						
not limited to, bungee						
jumping, design of						
roller -coasters, number						
of people required to						
build structures such as	40.06%	Average	58.00%	Average	17.94%	Needs
the Great Pyramids and	1010070	Mastery	20.0070	Mastery	11.0 170	Improvement
the rice terraces; power						
and energy						
requirements of human						
activities such as						
sleeping vs. sitting vs.						
standing, running vs.						
walking.						
Differentiate conter of						
mass and geometric				Moving		
mass and geometric	28 /0%	Low	60 06%	Towards	11 55%	Moderately
STEM GP12FU_Ia_	20.4070	Mastery	09.90%	Mastery	41.3370	Proficient
56 51 <u>51</u> <u>56</u>				Widsterry		
Relate the motion of						
center of mass of a						
system to the				Moving		
momentum and net	20.48%	Low	67.71%	Towards	47.23%	Moderately
external force acting on		Mastery		Mastery		Proficient
the system.				5		
STEM_GP12EU-Ia-57						
Relate the momentum,	27 270/	Average	(2.020)	Average	26 160/	Dueficient
impulse, force, and	37.37%	Mastery	03.83%	Mastery	26.46%	Proficient
I <i>i i i</i>		-		-		
eceived: 25 April 2024						155
eceived: 25 April 2024 evised: 7 May 2024						155
not limited to, bungee jumping, design of coller -coasters, number of people required to build structures such as the Great Pyramids and the rice terraces; power and energy requirements of human activities such as sleeping vs. sitting vs. standing, running vs. walking. STEM_GP12EU-Ia-55 Differentiate center of mass and geometric center. STEM_GP12EU-Ia- 56 . Relate the motion of center of mass of a system to the momentum and net external force acting on the system. STEM_GP12EU-Ia-57 Relate the momentum, impulse, force, and	40.06% 28.40% 20.48% 37.37%	Average Mastery Low Mastery Low Mastery Average Mastery	58.00% 69.96% 67.71% 63.83%	Average Mastery Moving Towards Mastery Moving Towards Mastery Average Mastery	17.94% 41.55% 47.23% 26.46%	Needs Improvement Moderately Proficient Moderately Proficient

time of contact in a						
system.						
STEM_GP12EU-Ia-58						
Compare and contrast				Moving		
elastic and inelastic	10 120/	Low	77 280/	Towarda	59 150/	Highly
collisions.	19.15%	Mastery	11.28%	Towards	58.15%	Proficient
STEM_GP12EU-Ia-60		-		Mastery		
Apply the concept of						
restitution coefficient	20.020/	Low	40 790/	Average	20.050/	Ducticiant
in collisions.	20.93%	Mastery	49./8%	Mastery	28.83%	Proficient
STEM_GP12EU-Ia-61		-				
Solve problems						
involving center of						
mass, impulse, and						
momentum in contexts		Very		A		Madanatala
such as, but not limited	10.01%	Low	60.99%	Average	50.97%	Drafisiant
to, rocket motion,		Mastery		Mastery		Proficient
vehicle collisions, and		•				
ping-pong.						
STEM_GP12EU-Ia-63						

Analyzing the results, it is evident that there are variations in the mastery levels of different learning competencies. For instance, in the topic of "Solve measurement problems involving conversion of units, expression of measurements in scientific notation," the average mastery level increased from 42.75% in the pre-test to 48.58% in the post-test, indicating a *moderately proficient*.

In contrast, some topics showed higher levels of mastery. For example, in the topic "Differentiate accuracy from precision," the average mastery level improved significantly from 37.67% in the pre-test to 79.07% in the post-test. This indicates a substantial increase in understanding and knowledge after the intervention which is through Mastery Learning Approach.

However, there were also areas where the students exhibited lower levels of mastery. For instance, in the topic "Solve problems involving one-dimensional motion with constant acceleration," the average mastery level remained relatively low at 11.96% in the pre-test, which increased to 46.04% in the post-test, indicating progress but still below average proficiency.

It is important to note that these results provide a snapshot of the student's performance in specific learning competencies and do not represent their overall proficiency in science subjects. The data suggests that further attention and targeted interventions may be required in certain areas to enhance students' understanding and mastery. Moreover, the findings highlight the varying levels of mastery among the senior high school students in different science topics.

This study agreed with that of Wambugu & Changeiywo (2008) that Mastery Learning Approach (MLA) teaching method resulted in higher achievement, but gender had no significant influence on their achievement. Additionally, Nggadas (2019) further stated that the score of students' mastery of the physic concept of students are treated with ICT-based learning was higher than students are treated with laboratory experiment –based learning.

VI. Conclusions

In conclusion, this study aimed to assess the learning gaps and proficiency levels in science specialized subjects among senior high school students at St. Paul University Surigao. The findings revealed varying levels of proficiency and learning gaps in different topics within the subjects of General Chemistry 2, General Physics 1, and General Biology 1. While some areas showed significant progress and improvement, there were persistent gaps in certain topics. The use of interventions, such as the Mastery Learning Approach and Learning Management Systems, demonstrated positive effects on students' understanding and knowledge. However, targeted attention and further interventions may be needed in specific areas to enhance students' mastery. The results also highlight the importance of effective instructional strategies and the potential impact of factors such as gender and learning approaches on students' achievement. This study provides valuable insights for educators, curriculum developers, and policymakers in designing interventions and instructional practices that address the identified learning gaps, enhance student learning outcomes, and improve the overall quality of science education at St. Paul University Surigao.

VII. Recommendation

Based on the findings and significance of this study, several recommendations are proposed to enhance science education at St. Paul University Surigao. These include establishing targeted support programs for students, focusing on areas of lower mastery to bridge learning gaps and promote academic achievement. Providing professional development opportunities for educators is crucial, enabling them to enhance instructional strategies and create engaging learning environments. Allocating resources for the development of a comprehensive science curriculum, aligned with standards and incorporating evidence-based practices, is essential. Integration of technology and digital resources can enhance student engagement and facilitate interactive and immersive learning experiences. By implementing these recommendations, St. Paul University Surigao can foster a supportive and inclusive environment, positively impacting science education.

VIII. References

Flores, I. M. (2015). Developing Preservice Teachers' Self-Efficacy through Field-Based Science Teaching Practice with Elementary Students. *Research in Higher Education Journal*, 27.

Kpolovie, P. J., Joe, A. I., & Okoto, T. (2014). Academic achievement prediction: Role of interest in learning and attitude towards school. *International Journal of Humanities Social Sciences and Education (IJHSSE)*, 1(11), 73-100.

Received: 25 April 2024 Revised: 7 May 2024 Accepted: 15 May 2024 Copyright ♥ authors 2024

- Monroe, M. C., Plate, R. R., Oxarart, A., Bowers, A., & Chaves, W. A. (2019). Identifying effective climate change education strategies: A systematic review of the research. *Environmental Education Research*, 25(6), 791-812.
- Pajares, F. (2012). Motivational role of self-efficacy beliefs in self-regulated learning. In Motivation and self-regulated learning (pp. 111-139). Routledge.
- Wambugu, P. W., & Changeiywo, J. M. (2008). Effects of mastery learning approach on secondary school students' physics achievement. *Eurasia Journal of Mathematics, Science and Technology Education*, 4(3), 293-302.
- Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D. (2012). Proposing a core set of instructional practices and tools for teachers of science. *Science education*, *96*(5), 878-903.
- Yammine, K., Violato, C. The effectiveness of physical models in teaching anatomy: a metaanalysis of comparative studies. *Adv in Health Sci Educ* 21, 883–895 (2016). https://doi.org/10.1007/s10459-015-9644-7