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1. ABSTRACT 

Software fault prediction is used to improve the testing efficiency and software quality by earlier 

identification of software faults associated with software. The identification of faults is usually 

carried out using the task of classification. The task of classification utilises the code attributes and 

other features to predict the fault instances. The detection of software faults is prominently affected 

by a poor classification decision and hence an improved decision-making model is required to 

predict the patterns using the attributes collected out from the datasets. In the first part of the 

research, the study proposes a Bayes Decision classifier associated with the finding of error 

probabilities and integrals in software fault prediction. This chapter discusses the fundamental 

software error prediction using feature and classifier data. It also discusses the proposed software 

error prediction with fault predictable region that includes Chernoff Bound and Bhattacharyya 

Bound. The proposed Bayesian decision algorithm with error probabilities and integrals of fault 

predictions learning model is used to predict the software faults. It works on two different bounds 

namely Chernoff Bound and Bhattacharyya Bound.The performance of the proposed methods is 

tested against several other machine learning classifier over collected software fault datasets.  

Keywords: Software defect prediction, Fault Detection, machine leaning. 

 

2. INTRODUCTION 

 

Much of the software development budget is spent on quality control and software testing (Arar & 

Ayan 2015). This thus shows the value of testing during the life cycle of software development. 

Over the years, software systems have expanded and become more complex, making it more 

difficult to provide high - quality software. The aim is to provide the end user with a bug - free 

software. The software must be thoroughly tested and therefore an expensive, tedious and at times 

impossible task can be achieved in order to acquire such confidence. Resources and time constraints 

often limits testing. The prediction of fault - prone code enables practitioners to target the fault - 

prone modules with their resources and efforts, thus improving the quality of software and reducing 

maintenance costs and efforts (Dhankhar et al. 2015). Prediction of software failure permits the 

detect of defective code during developing software and prevents the spread of defective code in 

other areas of the software. It is also a process which helps optimize tests, focusing on modules 

which are susceptible to defects, identifying candidates for re-factoring and enhancing software 

quality overall.  Software fault prediction can be used by project managers. During the development 

stage, they can measure the quality of the work by continuously measuring the module fault. By 

predicting failures, the project manager can detect and assign tasks based on the data and thereby 

improve process efficiency. 
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2.1 SOFTWARE FAULT INFORMATION 

 

Information on software faults includes all the faults reported during the software life cycle. To 

store the source code version control systems and to store the reported fault data, Change 

Management Systems are tend to be used (Catal 2011). The datasets containing the source code are 

listed as available (Radjenovic et al. 2013). Unbalanced data is one of the main problems 

concerning defect data in the source dataset. Most modules are labeled non-fault susceptible while 

the rest of them are labeled faulty.The distributed data can therefore affect the performance of fault 

prediction methods. However, it is frequently recommended that the minority be examined to 

balance data in order to deal with this issue (Shatnawi 2012). Nevertheless, the present study uses 

improved SVM tool to improve the imbalanced data and on other hand in existing studies, the 

concern is mainly on a tool, which is intended to be used in real life without insight into the data 

balance. 

 

2.2 SOFTWARE FAULT PREDICTION 

 

A software defect or bug is defined as a state of the software that does not meet the predictions of 

users (Erturk & Sezer 2015). To identify the defects in the software packages, different types of 

explorational research are used. Testing plays a significant role in software development through 

the mining process in which the results are referred to as bugs (Xuan et al. 2015). Details of bugs 

are stored in a bug repository and this plays an important role in the monitoring of code errors 

(Geng 2018).  

 

2.3 ROLE OF SOFTWARE FAULT PREDICTION 

 

The Specification of Software Requirements and design documents are analyzed and developed by 

a user-defined code team. The coding guidelines are the focus of this team to make sure the 

developer codes are coherent within the project. The requirement can be divided into several 

modules and the modules can be developed by each team. Based on the size and requirement of the 

project, the number of modules and module is determined. 

 

Figure 1 Software fault prediction process 

 

The software fault data and codes are loaded in the database, which are sent as training data to the 

learning module. The training data also has both training and test dataset. The optimal parameter 

suggested provides the feedback to the learning module based on the training data. The feedback is 

repeated over each iteration and provides improved accuracy to the learning model. Finally, the 

learning module operated under machine learning operates on the test data and provides the 
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prediction results, which are evaluated under different metrics to check the efficacy of the system. 

 

3. SOFTWARE DEFECT PREDICTION ALGORITHMS 

 

In this section of the study the algorithms used in the prediction model of general software defects 

are listed with the general idea behind the prediction process of each algorithm. 

 

• Logistic Regression (LR) is considered as a statistical method used to classify the dataset where 

the outcome is determined by one or more independent variables. One of two possible outcomes is 

the classification result. 

 

• Naïve Bayes (NB) is regarded as a classification method based upon the Bayes rule, that 

determines whether an instance is subject to a certain labeling value. As final classification, the 

label with the highest probability is selected. 

 

• Random Forest (RF)(Hong2012) is considered the method of classification consisting of a tree 

predictor collection each of which is used to classify an unknown event. The final classification for 

the unknown instance is selected based on the predictions of the trees. 

 

• K-Nearest Neighbour (KNN) is considered as a decision procedure that follows a non-parametric 

pattern and it helps to classify an unknown instance based on its nearest neighbour. 

 

• Support Vector Machine (SVM) is the classification method of machine learning. In view of a set 

of data labeled in which two label classes are possible, the algorithm constructs a model maping the 

data in a space in order to divide as wide a clear divide between the two separate classes of labeling 

data. Through this model the unknown data is mapped into the previously specified space and the 

etiquette class of the unknown data is predicted based on which side of the gap. 

 

• Artificial Neural Network (ANN)or Deep Neural network (Geng 2018) is a model - based 

machine learning method for classifying. A model of ANN consists of layers of units known as 

neurons. The input - level, hidden layer and output - levels are usually called the layers. Between 

the input and the output layers, there may be more than a hidden layer. The ANN model learns to 

predict the values of unknown information by using a set of data with known labels. 

 

  

3.1 EVALUATION MEASURES FOR DEFECT PREDICTION MODELS 

 

Some of the measurements used to evaluate the performance of the prediction of software defects 

covered by Chapter 5 will be listed in this section of work and described. For model predictions of 

software defects, after predictions have been made on whether the entity is deficient or clean, four 

possible results exist for an entity. The prediction results parameters are the shown as follows: 

 

• True Positive: A defective entity is classified as defective 

• False Negative: a defective entity is classified as clean 

• True Negative: a clean entity is classified as clean 

• False Positive: a clean entity is classified as defective 

https://doi.org/10.5281/zenodo.11195244
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Based on these results, actions to evaluate the precision of the prediction model of a software defect 

are defined. In the study covering the software defect prevention model, the most common measure 

used to evaluate the performance of a defect prediction model is the precision and recall and F- 

measure. 

 

4. LITERATURE REVIEW 

 

Dejaeger et al. (2021) adds to the coding by thinking about 15 diverse Bayesian Network (BN) 

classifiers and contrasting them with other mainstream machine learning strategies. Besides, the 

relevance of the Markov cover guideline for highlight choice, which is a characteristic expansion to  

BN hypothesis, is researched. The outcomes, both as far as the AUC and the as of late presented H-

measure, are thoroughly tried utilizing the factual structure of Demšar. It is inferred that 

straightforward and fathomable systems with less hubs can be built utilizing BN classifiers other 

than the Naive Bayes classifier. Besides, it is discovered that the parts of understandability and 

prescient execution should be offset, and furthermore the advancement setting is a thing which 

ought to be considered amid model choice. 

Abaei et al. (2021) proposed a robotized codingfault discovery show utilizing semi-regulated cross 

breed self-sorting out guide.  

 

Rathore & Kumar (2021) assessed and looked at a plenty of fault prediction methods by differing 

the setting as far as space data, qualities of data, multifaceted nature, and so on. Be that as it may, 

the absence of an acknowledged benchmark makes it hard to choose a fault prediction strategy for a 

specific setting of prediction. The study models a suggestion framework that encourages the choice 

of fitting technique(s) to fabricate fault prediction model.  

 

Bennin et al. (2022) presented MAHAKIL, a novel and proficient engineered oversampling 

approach for codinginaccurate datasets that depends on the chromosomal hypothesis of legacy. 

Misusing this hypothesis, MAHAKIL deciphers two particular sub-classes as guardians and 

produces another example that acquires distinctive characteristics from each parent and adds to the 

assorted variety inside the data appropriation.  

 

Wang & Zhang (2022) used a deep learning model dependent on the repetitive NN (RNN) encoder– 

decoder to foresee the quantity of faults in coding and survey coding dependability. The deep 

learning NN demonstrate develops the layer levels as well as adjust to catch the preparation 

attributes. A far reaching, top to bottom experiment and highlight uncovering eventually 

demonstrates the model can have reasonable prediction performance. Experimental results 

demonstrate that the proposed model has better prediction execution contrasted and other parameter 

and NN models. 

 

An et al. (2020) dissected the execution of nine broadly utilized machine learning classifiers—

Bayes Net, NB, artificial neural system, SVM, KNN, AdaBoost, Bagging and RF for coding 

deficiency prediction. Two standard testing systems—SMOTE and Resample with substitution are 

utilized to deal with the class lopsidedness fault. The study further utilized FLDA-based component 

determination approach in mix with SMOTE and Resample to choose most discriminative 

measurements. At that point the best the classifiers dependent on execution are utilized for coding 

fault prediction. The experimentation is done more than 15 publically accessible datasets (little, 

medium and vast) which are gathered from PROMISE store. The proposed Resample-FLDA 

technique gives better execution when contrasted with existing strategies as far as accuracy, review, 

f-measure and zone under the curve. 
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Kumar et al. (2019) exhibited in his study includes building a compelling errorprediction 

instrument by recognizing and examining the prescient intensity of a few understood and broadly 

utilized coding measurements for fault prediction. The study apply ten distinctive element choice 

strategies to pick the best classification of measurements from a lot of twenty source code 

measurements. The study construct the fault prediction demonstrate utilizing Least Squares SVM 

learning technique related with direct, polynomial and outspread premise work bit capacities. The 

study perform investigates 30 Open Source Java ventures. Exploratory outcomes uncovers that the 

prediction model is best reasonable for tasks with faulted classes not exactly the edge esteem 

contingent upon fault ID proficiency. 

 

Miholca et al. (2018) built up a novel supervised clustering strategy called HyGRAR for coding in 

accurate prediction. HyGRAR is a rule mining based ANN to separate among inadequate and non-

errorcodes. Experiments performed dependent on 10 open-source informational collections showed 

the phenomenal execution of the HYGRAR classifier. HyGRAR performed superior to anything a 

large portion of the recently proposed methodologies for coding defect prediction in execution 

evaluations utilizing similar informational indexes. 

 

Arshad et al. (2018) proposed a semi-superviseddeep fuzzy C- means (DFCM) clustering for 

coding error prediction, which is the cumulation of semi-administered DFCM bunching and include 

pressure methods. Deep is used for the component based multi bunches of unlabeled and named 

informational indexes alongside their named classes. In the methodology, for the preparation show, 

The study at the same time manage the unsupervised data and regulated data to abuse the 

obnubilated data from unlabeled data to marked data to help the development of the exact model. 

The study use DFCM bunching to deal with the class irregularity fault and withal fuzzy rule is 

much the same as human rule. The study further enhance the prediction execution with the 

combination of highlight learning methods include extraction and highlight choice to produce great 

highlights to diminish the larger data for classification. Nonetheless, by the execution of the model 

outcomes, the amalgamation of deep multi clusters and highlight procedures work better because of 

their capacity to distinguish and amalgamation basic data in data include. The order demonstrate is 

predicted on the most extreme homogeneous between the highlights of named and unlabeled data, 

the model is prepared on the un-boisterous informational collection gotten by the deep combination 

of multi clusters and highlight strategies. To check the adequacy of the methodology, the study 

picked informational collections from genuine coding venture (NASA and Eclipse), and after that 

the study contrasted the methodology and various most recent traditional gauge techniques, and 

research the execution by utilizing execution estimates, for example, likelihood of discovery, F-

measure, and area under the curve. 

 

Manjula & Florence (2018) presented a cross breed approach by joining hereditary algorithm (GA) 

for highlight optimization with Deep Neural Network (DNN) for classification. An improved 

adaptation of GA is joined which incorporates another system for chromosome structuring and 

wellness work algorithm. DNN system is additionally ad libbed utilizing versatile auto-encoder 

which gives better portrayal of chose coding highlights. The improved softwareivity of the 

proposed half breed approach because of organization of enhancement procedure is shown through 

contextual analyses. A test ponder is done for coding defect prediction by considering PROMISE 

dataset utilizing MATLAB apparatus. In this experiment, the study have utilized the proposed novel 

technique for clustering and inaccurate prediction. 

 

Arora & Saha (2018) proposed a mixture SFP model manufactured utilizing Firefly Algorithm (FA) 

and Artificial Neural Network (ANN), alongside an observational experiment with GA and PSO 

based transformative strategies in advancing the association loads of ANN. Seven diverse datasets 
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were included and MSE and the perplexity network parameters were utilized for execution 

evaluation. The outcomes have demonstrated that FA-ANN model has performed superior to the 

hereditary and molecule swarm improved ANN fault prediction. 

 

Periasamy & Mishbahulhuda (2017) developes a defect prediction (clustering, classification and 

association rule) model which reduces defects and helps remove the errors that terminate with a 

quality software  system. The correct prediction of software software bugs contributes to software 

quality during software testing and facilitates maintenance through clustering, grading and 

association rules. 

 

HaraldAltinger et al. (2017) describes a software development error and has determined that the 

developed model suffers from a robust unequaled distribution to a low bug rate. Due to low 

predictive performance, the turning parameters were considered necessary. The study has made the 

Fault prediction on a larger dataset with an imbalanced class distribution range of 2.63 to 14.89%. 

 

Table 1 Methods used for Software Fault prediction 

 

Author Methods 

Moeyersoms et al. (2021) RF and SVM 

Bennin et al. (2022) presented MAHAKIL 

Wang & Zhang (2021) RNN 

Kalsoom A et al. (2018) Bayes Net, NB, ANN, SVM, KNN, AdaBoost, 

Bagging, and RF 

Kumar et al. (2019) Least Squares SVM 

Miholca et al. (2018) HyGRAR 

Arshad et al. (2018) semi-supervised deep fuzzy C-means 

Manjula & Florence (2018) Deep neural network with GA 

Arora & Saha (2018) ANN 

 

5. SOFTWARE ERROR PREDICTION 

 

Prediction of software errors measures the process of software development to create predictions. 

The aim of the prediction of software errors is to predict how likely a certain portion of a project 

tends to fail. For code lines or a development packages or a component assembly, the probability 

can be estimated. For such purposes, this information may be used: 

• Targeting the reviews in code, 

 

• Targeting the testing patterns and 

 

• Targeting the communication in each project 

 

As an example, a N-variable linear regression error prevention is displayed in Equation (3.10). The 

probability of errors is Y, and the values of the characteristics are X. The most likely cause of error 

would be the value of the estimated weights β. 

 

Y = β0 + β1X1 + β2X2 + · · · + βNXN + i (3.1) 

 

Implementation error prediction can be seen as a controlled classification problem for machine 
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learning. Controlled machine learning is a practice based on historical data of training a machine 

learner. The trained student will then be able to classify the actual data.  

 

 

Figure 2: Prediction of faultiness using machine learning in Software systems 

 

A commit is the basic unit of the history of software development. The features are removed and 

the classification is done for the commits. Figure 3.1 shows the process of error prediction. 

 

 

Figure 3 Machine learning for error prediction 

 

Training data typically represent the history of the  project  in  the prediction of software errors. 

There was also an investigation into the use of combined history from earlier projects 

(Zimmermann et al. 2009; Turhan et al. 2009). Feature and classification data required for error 

prediction. In a typical software project, information on the code, organization and history of 

development is features which can be extracted. Classification data are data that were deficient in 

parts of the project. An error predictor can be created using both the function and the classifier data. 

The Figure 3 gives this idea. 

 

5.1 PROPOSED SOFTWARE ERROR PREDICTION 

 

To describe the conditional probability of an event, Beyers theorem is based on the prior knowledge 

of possible conditions associated with the event. Based on conditional priority, conditional 

probability removes the unwanted pertinent event, since the Beyers rule covers "less error". 

 

5.2 ALGORITHMS FOR ERROR PROBABILITIES  

 

Bayesian decision theory (Bouguilaet al. 2008) is a basic statistical approach in relation to the 

pattern classification problem. This approach is based on the algorithm of trade - offs with 

https://doi.org/10.5281/zenodo.11195244


  

International Journal of Research 

(IJR) 

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 

Vol. 11 Issue 05 
May 2024 

 

Received: 25 April 2024                                                                                                                                  131 
Revised: 7 May 2024 
Accepted: 15 May 2024 
Copyright  authors 2024                DOI: https://doi.org/10.5281/zenodo.11195244 

probability between different classification decisions and their costs. It assumes that the problem of 

decision is probabilistically posed and all of the corresponding probability values are known.We are 

developing in this chapter the foundations and how the theory can be considered simply to 

formalize common meanings processes and account the problems which arise when the structure of 

probabilism is not fully understood. 

 

5.3 DECISION RULE 

 

Where such little information is required to make a decision, the following rule of decision seems 

logical. 

 

Decide ω1 if P(ω1) > P(ω2); otherwise decide ω2. (4.1) 

 

If we have to judge a failure, this rule makes sense, but to judge many failures, it seems strange to 

use this principle repeatedly. After all, the study always decide the same although it is known that 

there are both types of decisions i.e. faults or healthy.This works well based on previous probability 

values. If the value of P(ω1) is greater than the value of P(ω2), ω1is selected for entireoperation. If 

the value of P(ω1) is similar to the value of P(ω2), the selection of probability will have fifty-fifty 

chance to acquire fruitful results. If the value of P(ω1) is lesser than the value of P(ω2) i.e. the error 

probability is the smaller in P(ω1)than P(ω2),no optimal decisions can be made and the correctness 

of decision cannot be yield at this condition. 

 

 
 

 

                           Figure 4. Hypothetical conditional class PDF  that  shows  the probability density 

 

Note that the product prior probability and likelihood is considered as the important factors for 

finding the posterior probability, where the evidence factor is given asp(x) and this referred as a 

scale factor, which helps in guaranteeing that the sum of all the posterior probabilities is unity, 

where all the probabilities should be of a good one. On other hand, conditional class PDF has the 

condition P(ω1|x) < P(ω2|x), this offers the true state of nature to be ω2. These claims are justified 

by the suitable estimation of error probability before a decision is made. Hence, if a specific 

variable x is observed, the following condition exist. 
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                Figure 5. Posterior probabilities of P(ω1) and P(ω2) 

 

The error probability of a variable x can be reduced by suitably deciding the value of the state of 

nature ω1, upon a condition P(ω1|x) >  P(ω2|x) and ω2 for the condition P(ω1|x) < P(ω2|x), otherwise. 

It is seen from the graph that the values do not occur twice for a variable x. This reduces the average 

error probability and it is expressed as follows: 

 

5.4 PERFORMANCE EVALUATION 

 

This section discusses the experimental setup needed to evaluate the proposed system. The 

experiment is performed on a 3.6GHZ quad-core processor with windows platform. A 10-fold 

cross-validation is used to carry out the performance evaluation on software failure dataset. The 

performance of proposed method is compared against conventional ensemble methods with 

weighted SVM classifier and random forest classifier. The proposed feature selection method using 

genetic algorithm is used to test the hypothesis with and without PCC. The proposed classifier 

model is evaluated against software fault datasets that are available publicly, which includes 

Camel-1.6, Ant-1.7, MC1, KC3 datasets, PC4 and PC2. The information of the collected datasets is 

given in Table 1. 

 

Table 1 Information from the Defect Dataset 

 

Dataset 
Number of 

Components 

Total number of Defective 

components 

Camel-1.6 965 188 

Ant-1.7 745 166 

MC1 1988 46 

KC3 200 36 

PC4 1287 177 

PC2 1585 16 

 

                   Table 2 Software Metrics considered for evaluation in the present study 

 

Code Metric 

M_1 Decision count 

M_2 Cyclomatic complexity 

M_3 Global data density 

M_4 Halstead difficulty 

M_5 Halstead content 

M_6 Maintenance severity 

M_7 Coupling between objects 

M_8 Number of unique operands 

M_9 Afferent couplings 

M_10 Essential density 

M_11 Global data complexity 

M_12 Efferent couplings 
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M_13 Lack of cohesion of methods 

M_14 Condition count 

 

RESULTS AND DISCUSSION 

 

In this section, we present the analysis of proposed method and its related discussions. The 

proposed ensemble learning method has multiple SVM classifier, where the final classification 

result is an average value of output probabilities from all individual SVM classifiers. The proposed 

ensemble model with software failure dataset is tested against existing classifiers like random 

forests classifiers and Weighted SVM that includes the preprocessing and feature selection with or 

without GA. The Figure 4 presents the AUC measures of these three classifiers. The result shows 

that proposed Bayes classifier model achieves higher AUC measure than Decision Tree and KNN. 

From the results, it is interesting to see that proposed Bayes classification method outperforms 

Decision Tree and KNN even in the presence of imbalanced dataset. The proposed method has 

improved results due to the use of decision rule with Bayesian Classifier with Chernoff Bound and 

Bhattacharyya Bound this has enabled the proposed model to alter its decision for acquire improved 

class samples. It could be inferred that averaging of classification outcomes compensates the 

presence of errors. Additionally, the proposed model  behaves with better robustness against the 

imbalanced datasets. The robustness is further improved even in the presence of irrelevant and 

redundant features and this recommends the use of averaging ensembles models for software failure 

classification. 

 

 
 

 

                          Figure 5 AUC measures of these three classifiers for Software Fault datasets 

 

Further, it is interesting to note that use of Chernoff Bound and Bhattacharyya Bound provides 

improved result in proposed method  than other methods for all datasets. The use of Bhattacharyya 

Bound has further improvised the AUC obtained under chernoff bound. From this discussion it is 

clear that clustering of classifier result improves the performance of overall classification result, 

even if other classifiers  performs poor. The Figure 4.4 shows the classification accuracy between 

the proposed Bayes classifier and existing Decision Tree and KNN classifer.It is claimed from the 

results that in terms of classifiers accuracy, the proposed model outperforms other single classifiers 

namely Decision Tree and KNN classifer. This is true when the selection of base classifier using 

Decision Tree is made based its optimal performance. It is further noted that overall performance of 

proposed classification model is not affected by the base classifiers than other classifiers. 
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Figure 6 Classification results of these three classifiers for Software Fault datasets 

 

This states that various algorithms and methods have examined and forecast the software fault 

prediction. The focus of this research is on a detailed analyze of fault prediction using error 

probability methodology and integral method for predicting the error that occurred during coding 

stages. Developers at certain times fail to detect the error by coding. Hence, in the proposed method 

the mathematical derivations are used with boundary conditons to identify the fault. The Chernoff 

Bound and Bhattacharyya Bound methods provides its improved support to predict the defects or 

faults. These defects are used to cluster the failures and defects, which are saved for precautionary 

predictions in the software repository. This is used when the testing team uses software that 

develops the life cycle. 

 

SCOPE OF THE FURTHER RESEARCH 

Further research is necessary to adopt the agile-based software fault prediction. In future studies, 

several robust software metrics must be used for the development of failure prediction models to 

detect the differences between the two software versions. Some studies of fault forecasting have 

shown that a few modules contain most of the software projects faults. In future, such studies 

should be inteneded to increase the information on fault prediction models. Researchers in future 

should carry out more studies using machine learning or heuristic or meta-heuristic or evolutionary 

algorithm to assess the best way to make optimal use of such approaches. Such research can 

significantly influence the performance of the fault prediction. Future studies can attempt to 

develop fault prediction models for the purpose of cross-project prediction that is considered to be 

useful to an organization with insufficient project history of fault diagnosis. 

 

CONCLUSIONS 

The study worked on various issues associated with the software fault prediction activities like fault 

prediction, software metrics, issues in data quality and performance evaluation measures. The study 

highlights different methodological issues and challenges linked to these software fault prediction 

activities. The high dimensionality of data and data class imbalance  associated with software 

quality issues is investigated widely using feature extraction and classification, respectively. The 

performance is compared in terms of different metrics to evaluate the accuracy of prediction 

performance. The study also identified challenges for researchers to explore in the future to further 

develop the software fault prediction process. 
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