

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 124
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

A Practical Approach of Software Fault Prediction Using Error

Probabilities and Machine Learning Approaches

1. ABSTRACT

Software fault prediction is used to improve the testing efficiency and software quality by earlier

identification of software faults associated with software. The identification of faults is usually

carried out using the task of classification. The task of classification utilises the code attributes and

other features to predict the fault instances. The detection of software faults is prominently affected

by a poor classification decision and hence an improved decision-making model is required to

predict the patterns using the attributes collected out from the datasets. In the first part of the

research, the study proposes a Bayes Decision classifier associated with the finding of error

probabilities and integrals in software fault prediction. This chapter discusses the fundamental

software error prediction using feature and classifier data. It also discusses the proposed software

error prediction with fault predictable region that includes Chernoff Bound and Bhattacharyya

Bound. The proposed Bayesian decision algorithm with error probabilities and integrals of fault

predictions learning model is used to predict the software faults. It works on two different bounds

namely Chernoff Bound and Bhattacharyya Bound.The performance of the proposed methods is

tested against several other machine learning classifier over collected software fault datasets.

Keywords: Software defect prediction, Fault Detection, machine leaning.

2. INTRODUCTION

Much of the software development budget is spent on quality control and software testing (Arar &

Ayan 2015). This thus shows the value of testing during the life cycle of software development.

Over the years, software systems have expanded and become more complex, making it more

difficult to provide high - quality software. The aim is to provide the end user with a bug - free

software. The software must be thoroughly tested and therefore an expensive, tedious and at times

impossible task can be achieved in order to acquire such confidence. Resources and time constraints

often limits testing. The prediction of fault - prone code enables practitioners to target the fault -

prone modules with their resources and efforts, thus improving the quality of software and reducing

maintenance costs and efforts (Dhankhar et al. 2015). Prediction of software failure permits the

detect of defective code during developing software and prevents the spread of defective code in

other areas of the software. It is also a process which helps optimize tests, focusing on modules

which are susceptible to defects, identifying candidates for re-factoring and enhancing software

quality overall. Software fault prediction can be used by project managers. During the development

stage, they can measure the quality of the work by continuously measuring the module fault. By

predicting failures, the project manager can detect and assign tasks based on the data and thereby

improve process efficiency.

Mr. Raja Lodhi

Research Scholar

Department of Computer Science & Engg.

Lakshmi Narain College of Technology, Bhopal

Prof. Rajkumar Sharma

Assistant Professor

Department of Computer Science & Engg.

Lakshmi Narain College of Technology, Bhopal

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 125
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

2.1 SOFTWARE FAULT INFORMATION

Information on software faults includes all the faults reported during the software life cycle. To

store the source code version control systems and to store the reported fault data, Change

Management Systems are tend to be used (Catal 2011). The datasets containing the source code are

listed as available (Radjenovic et al. 2013). Unbalanced data is one of the main problems

concerning defect data in the source dataset. Most modules are labeled non-fault susceptible while

the rest of them are labeled faulty.The distributed data can therefore affect the performance of fault

prediction methods. However, it is frequently recommended that the minority be examined to

balance data in order to deal with this issue (Shatnawi 2012). Nevertheless, the present study uses

improved SVM tool to improve the imbalanced data and on other hand in existing studies, the

concern is mainly on a tool, which is intended to be used in real life without insight into the data

balance.

2.2 SOFTWARE FAULT PREDICTION

A software defect or bug is defined as a state of the software that does not meet the predictions of

users (Erturk & Sezer 2015). To identify the defects in the software packages, different types of

explorational research are used. Testing plays a significant role in software development through

the mining process in which the results are referred to as bugs (Xuan et al. 2015). Details of bugs

are stored in a bug repository and this plays an important role in the monitoring of code errors

(Geng 2018).

2.3 ROLE OF SOFTWARE FAULT PREDICTION

The Specification of Software Requirements and design documents are analyzed and developed by

a user-defined code team. The coding guidelines are the focus of this team to make sure the

developer codes are coherent within the project. The requirement can be divided into several

modules and the modules can be developed by each team. Based on the size and requirement of the

project, the number of modules and module is determined.

Figure 1 Software fault prediction process

The software fault data and codes are loaded in the database, which are sent as training data to the

learning module. The training data also has both training and test dataset. The optimal parameter

suggested provides the feedback to the learning module based on the training data. The feedback is

repeated over each iteration and provides improved accuracy to the learning model. Finally, the

learning module operated under machine learning operates on the test data and provides the

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 126
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

prediction results, which are evaluated under different metrics to check the efficacy of the system.

3. SOFTWARE DEFECT PREDICTION ALGORITHMS

In this section of the study the algorithms used in the prediction model of general software defects

are listed with the general idea behind the prediction process of each algorithm.

• Logistic Regression (LR) is considered as a statistical method used to classify the dataset where

the outcome is determined by one or more independent variables. One of two possible outcomes is

the classification result.

• Naïve Bayes (NB) is regarded as a classification method based upon the Bayes rule, that

determines whether an instance is subject to a certain labeling value. As final classification, the

label with the highest probability is selected.

• Random Forest (RF)(Hong2012) is considered the method of classification consisting of a tree

predictor collection each of which is used to classify an unknown event. The final classification for

the unknown instance is selected based on the predictions of the trees.

• K-Nearest Neighbour (KNN) is considered as a decision procedure that follows a non-parametric

pattern and it helps to classify an unknown instance based on its nearest neighbour.

• Support Vector Machine (SVM) is the classification method of machine learning. In view of a set

of data labeled in which two label classes are possible, the algorithm constructs a model maping the

data in a space in order to divide as wide a clear divide between the two separate classes of labeling

data. Through this model the unknown data is mapped into the previously specified space and the

etiquette class of the unknown data is predicted based on which side of the gap.

• Artificial Neural Network (ANN)or Deep Neural network (Geng 2018) is a model - based

machine learning method for classifying. A model of ANN consists of layers of units known as

neurons. The input - level, hidden layer and output - levels are usually called the layers. Between

the input and the output layers, there may be more than a hidden layer. The ANN model learns to

predict the values of unknown information by using a set of data with known labels.

3.1 EVALUATION MEASURES FOR DEFECT PREDICTION MODELS

Some of the measurements used to evaluate the performance of the prediction of software defects

covered by Chapter 5 will be listed in this section of work and described. For model predictions of

software defects, after predictions have been made on whether the entity is deficient or clean, four

possible results exist for an entity. The prediction results parameters are the shown as follows:

• True Positive: A defective entity is classified as defective

• False Negative: a defective entity is classified as clean

• True Negative: a clean entity is classified as clean

• False Positive: a clean entity is classified as defective

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 127
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

Based on these results, actions to evaluate the precision of the prediction model of a software defect

are defined. In the study covering the software defect prevention model, the most common measure

used to evaluate the performance of a defect prediction model is the precision and recall and F-

measure.

4. LITERATURE REVIEW

Dejaeger et al. (2021) adds to the coding by thinking about 15 diverse Bayesian Network (BN)

classifiers and contrasting them with other mainstream machine learning strategies. Besides, the

relevance of the Markov cover guideline for highlight choice, which is a characteristic expansion to

BN hypothesis, is researched. The outcomes, both as far as the AUC and the as of late presented H-

measure, are thoroughly tried utilizing the factual structure of Demšar. It is inferred that

straightforward and fathomable systems with less hubs can be built utilizing BN classifiers other

than the Naive Bayes classifier. Besides, it is discovered that the parts of understandability and

prescient execution should be offset, and furthermore the advancement setting is a thing which

ought to be considered amid model choice.

Abaei et al. (2021) proposed a robotized codingfault discovery show utilizing semi-regulated cross

breed self-sorting out guide.

Rathore & Kumar (2021) assessed and looked at a plenty of fault prediction methods by differing

the setting as far as space data, qualities of data, multifaceted nature, and so on. Be that as it may,

the absence of an acknowledged benchmark makes it hard to choose a fault prediction strategy for a

specific setting of prediction. The study models a suggestion framework that encourages the choice

of fitting technique(s) to fabricate fault prediction model.

Bennin et al. (2022) presented MAHAKIL, a novel and proficient engineered oversampling

approach for codinginaccurate datasets that depends on the chromosomal hypothesis of legacy.

Misusing this hypothesis, MAHAKIL deciphers two particular sub-classes as guardians and

produces another example that acquires distinctive characteristics from each parent and adds to the

assorted variety inside the data appropriation.

Wang & Zhang (2022) used a deep learning model dependent on the repetitive NN (RNN) encoder–

decoder to foresee the quantity of faults in coding and survey coding dependability. The deep

learning NN demonstrate develops the layer levels as well as adjust to catch the preparation

attributes. A far reaching, top to bottom experiment and highlight uncovering eventually

demonstrates the model can have reasonable prediction performance. Experimental results

demonstrate that the proposed model has better prediction execution contrasted and other parameter

and NN models.

An et al. (2020) dissected the execution of nine broadly utilized machine learning classifiers—

Bayes Net, NB, artificial neural system, SVM, KNN, AdaBoost, Bagging and RF for coding

deficiency prediction. Two standard testing systems—SMOTE and Resample with substitution are

utilized to deal with the class lopsidedness fault. The study further utilized FLDA-based component

determination approach in mix with SMOTE and Resample to choose most discriminative

measurements. At that point the best the classifiers dependent on execution are utilized for coding

fault prediction. The experimentation is done more than 15 publically accessible datasets (little,

medium and vast) which are gathered from PROMISE store. The proposed Resample-FLDA

technique gives better execution when contrasted with existing strategies as far as accuracy, review,

f-measure and zone under the curve.

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 128
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

Kumar et al. (2019) exhibited in his study includes building a compelling errorprediction

instrument by recognizing and examining the prescient intensity of a few understood and broadly

utilized coding measurements for fault prediction. The study apply ten distinctive element choice

strategies to pick the best classification of measurements from a lot of twenty source code

measurements. The study construct the fault prediction demonstrate utilizing Least Squares SVM

learning technique related with direct, polynomial and outspread premise work bit capacities. The

study perform investigates 30 Open Source Java ventures. Exploratory outcomes uncovers that the

prediction model is best reasonable for tasks with faulted classes not exactly the edge esteem

contingent upon fault ID proficiency.

Miholca et al. (2018) built up a novel supervised clustering strategy called HyGRAR for coding in

accurate prediction. HyGRAR is a rule mining based ANN to separate among inadequate and non-

errorcodes. Experiments performed dependent on 10 open-source informational collections showed

the phenomenal execution of the HYGRAR classifier. HyGRAR performed superior to anything a

large portion of the recently proposed methodologies for coding defect prediction in execution

evaluations utilizing similar informational indexes.

Arshad et al. (2018) proposed a semi-superviseddeep fuzzy C- means (DFCM) clustering for

coding error prediction, which is the cumulation of semi-administered DFCM bunching and include

pressure methods. Deep is used for the component based multi bunches of unlabeled and named

informational indexes alongside their named classes. In the methodology, for the preparation show,

The study at the same time manage the unsupervised data and regulated data to abuse the

obnubilated data from unlabeled data to marked data to help the development of the exact model.

The study use DFCM bunching to deal with the class irregularity fault and withal fuzzy rule is

much the same as human rule. The study further enhance the prediction execution with the

combination of highlight learning methods include extraction and highlight choice to produce great

highlights to diminish the larger data for classification. Nonetheless, by the execution of the model

outcomes, the amalgamation of deep multi clusters and highlight procedures work better because of

their capacity to distinguish and amalgamation basic data in data include. The order demonstrate is

predicted on the most extreme homogeneous between the highlights of named and unlabeled data,

the model is prepared on the un-boisterous informational collection gotten by the deep combination

of multi clusters and highlight strategies. To check the adequacy of the methodology, the study

picked informational collections from genuine coding venture (NASA and Eclipse), and after that

the study contrasted the methodology and various most recent traditional gauge techniques, and

research the execution by utilizing execution estimates, for example, likelihood of discovery, F-

measure, and area under the curve.

Manjula & Florence (2018) presented a cross breed approach by joining hereditary algorithm (GA)

for highlight optimization with Deep Neural Network (DNN) for classification. An improved

adaptation of GA is joined which incorporates another system for chromosome structuring and

wellness work algorithm. DNN system is additionally ad libbed utilizing versatile auto-encoder

which gives better portrayal of chose coding highlights. The improved softwareivity of the

proposed half breed approach because of organization of enhancement procedure is shown through

contextual analyses. A test ponder is done for coding defect prediction by considering PROMISE

dataset utilizing MATLAB apparatus. In this experiment, the study have utilized the proposed novel

technique for clustering and inaccurate prediction.

Arora & Saha (2018) proposed a mixture SFP model manufactured utilizing Firefly Algorithm (FA)

and Artificial Neural Network (ANN), alongside an observational experiment with GA and PSO

based transformative strategies in advancing the association loads of ANN. Seven diverse datasets

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 129
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

were included and MSE and the perplexity network parameters were utilized for execution

evaluation. The outcomes have demonstrated that FA-ANN model has performed superior to the

hereditary and molecule swarm improved ANN fault prediction.

Periasamy & Mishbahulhuda (2017) developes a defect prediction (clustering, classification and

association rule) model which reduces defects and helps remove the errors that terminate with a

quality software system. The correct prediction of software software bugs contributes to software

quality during software testing and facilitates maintenance through clustering, grading and

association rules.

HaraldAltinger et al. (2017) describes a software development error and has determined that the

developed model suffers from a robust unequaled distribution to a low bug rate. Due to low

predictive performance, the turning parameters were considered necessary. The study has made the

Fault prediction on a larger dataset with an imbalanced class distribution range of 2.63 to 14.89%.

Table 1 Methods used for Software Fault prediction

Author Methods

Moeyersoms et al. (2021) RF and SVM

Bennin et al. (2022) presented MAHAKIL

Wang & Zhang (2021) RNN

Kalsoom A et al. (2018) Bayes Net, NB, ANN, SVM, KNN, AdaBoost,

Bagging, and RF

Kumar et al. (2019) Least Squares SVM

Miholca et al. (2018) HyGRAR

Arshad et al. (2018) semi-supervised deep fuzzy C-means

Manjula & Florence (2018) Deep neural network with GA

Arora & Saha (2018) ANN

5. SOFTWARE ERROR PREDICTION

Prediction of software errors measures the process of software development to create predictions.

The aim of the prediction of software errors is to predict how likely a certain portion of a project

tends to fail. For code lines or a development packages or a component assembly, the probability

can be estimated. For such purposes, this information may be used:

• Targeting the reviews in code,

• Targeting the testing patterns and

• Targeting the communication in each project

As an example, a N-variable linear regression error prevention is displayed in Equation (3.10). The

probability of errors is Y, and the values of the characteristics are X. The most likely cause of error

would be the value of the estimated weights β.

Y = β0 + β1X1 + β2X2 + · · · + βNXN + i (3.1)

Implementation error prediction can be seen as a controlled classification problem for machine

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 130
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

learning. Controlled machine learning is a practice based on historical data of training a machine

learner. The trained student will then be able to classify the actual data.

Figure 2: Prediction of faultiness using machine learning in Software systems

A commit is the basic unit of the history of software development. The features are removed and

the classification is done for the commits. Figure 3.1 shows the process of error prediction.

Figure 3 Machine learning for error prediction

Training data typically represent the history of the project in the prediction of software errors.

There was also an investigation into the use of combined history from earlier projects

(Zimmermann et al. 2009; Turhan et al. 2009). Feature and classification data required for error

prediction. In a typical software project, information on the code, organization and history of

development is features which can be extracted. Classification data are data that were deficient in

parts of the project. An error predictor can be created using both the function and the classifier data.

The Figure 3 gives this idea.

5.1 PROPOSED SOFTWARE ERROR PREDICTION

To describe the conditional probability of an event, Beyers theorem is based on the prior knowledge

of possible conditions associated with the event. Based on conditional priority, conditional

probability removes the unwanted pertinent event, since the Beyers rule covers "less error".

5.2 ALGORITHMS FOR ERROR PROBABILITIES

Bayesian decision theory (Bouguilaet al. 2008) is a basic statistical approach in relation to the

pattern classification problem. This approach is based on the algorithm of trade - offs with

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 131
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

probability between different classification decisions and their costs. It assumes that the problem of

decision is probabilistically posed and all of the corresponding probability values are known.We are

developing in this chapter the foundations and how the theory can be considered simply to

formalize common meanings processes and account the problems which arise when the structure of

probabilism is not fully understood.

5.3 DECISION RULE

Where such little information is required to make a decision, the following rule of decision seems

logical.

Decide ω1 if P(ω1) > P(ω2); otherwise decide ω2. (4.1)

If we have to judge a failure, this rule makes sense, but to judge many failures, it seems strange to

use this principle repeatedly. After all, the study always decide the same although it is known that

there are both types of decisions i.e. faults or healthy.This works well based on previous probability

values. If the value of P(ω1) is greater than the value of P(ω2), ω1is selected for entireoperation. If

the value of P(ω1) is similar to the value of P(ω2), the selection of probability will have fifty-fifty

chance to acquire fruitful results. If the value of P(ω1) is lesser than the value of P(ω2) i.e. the error

probability is the smaller in P(ω1)than P(ω2),no optimal decisions can be made and the correctness

of decision cannot be yield at this condition.

 Figure 4. Hypothetical conditional class PDF that shows the probability density

Note that the product prior probability and likelihood is considered as the important factors for

finding the posterior probability, where the evidence factor is given asp(x) and this referred as a

scale factor, which helps in guaranteeing that the sum of all the posterior probabilities is unity,

where all the probabilities should be of a good one. On other hand, conditional class PDF has the

condition P(ω1|x) < P(ω2|x), this offers the true state of nature to be ω2. These claims are justified

by the suitable estimation of error probability before a decision is made. Hence, if a specific

variable x is observed, the following condition exist.

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 132
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

 Figure 5. Posterior probabilities of P(ω1) and P(ω2)

The error probability of a variable x can be reduced by suitably deciding the value of the state of

nature ω1, upon a condition P(ω1|x) > P(ω2|x) and ω2 for the condition P(ω1|x) < P(ω2|x), otherwise.

It is seen from the graph that the values do not occur twice for a variable x. This reduces the average

error probability and it is expressed as follows:

5.4 PERFORMANCE EVALUATION

This section discusses the experimental setup needed to evaluate the proposed system. The

experiment is performed on a 3.6GHZ quad-core processor with windows platform. A 10-fold

cross-validation is used to carry out the performance evaluation on software failure dataset. The

performance of proposed method is compared against conventional ensemble methods with

weighted SVM classifier and random forest classifier. The proposed feature selection method using

genetic algorithm is used to test the hypothesis with and without PCC. The proposed classifier

model is evaluated against software fault datasets that are available publicly, which includes

Camel-1.6, Ant-1.7, MC1, KC3 datasets, PC4 and PC2. The information of the collected datasets is

given in Table 1.

Table 1 Information from the Defect Dataset

Dataset
Number of

Components

Total number of Defective

components

Camel-1.6 965 188

Ant-1.7 745 166

MC1 1988 46

KC3 200 36

PC4 1287 177

PC2 1585 16

 Table 2 Software Metrics considered for evaluation in the present study

Code Metric

M_1 Decision count

M_2 Cyclomatic complexity

M_3 Global data density

M_4 Halstead difficulty

M_5 Halstead content

M_6 Maintenance severity

M_7 Coupling between objects

M_8 Number of unique operands

M_9 Afferent couplings

M_10 Essential density

M_11 Global data complexity

M_12 Efferent couplings

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 133
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

M_13 Lack of cohesion of methods

M_14 Condition count

RESULTS AND DISCUSSION

In this section, we present the analysis of proposed method and its related discussions. The

proposed ensemble learning method has multiple SVM classifier, where the final classification

result is an average value of output probabilities from all individual SVM classifiers. The proposed

ensemble model with software failure dataset is tested against existing classifiers like random

forests classifiers and Weighted SVM that includes the preprocessing and feature selection with or

without GA. The Figure 4 presents the AUC measures of these three classifiers. The result shows

that proposed Bayes classifier model achieves higher AUC measure than Decision Tree and KNN.

From the results, it is interesting to see that proposed Bayes classification method outperforms

Decision Tree and KNN even in the presence of imbalanced dataset. The proposed method has

improved results due to the use of decision rule with Bayesian Classifier with Chernoff Bound and

Bhattacharyya Bound this has enabled the proposed model to alter its decision for acquire improved

class samples. It could be inferred that averaging of classification outcomes compensates the

presence of errors. Additionally, the proposed model behaves with better robustness against the

imbalanced datasets. The robustness is further improved even in the presence of irrelevant and

redundant features and this recommends the use of averaging ensembles models for software failure

classification.

 Figure 5 AUC measures of these three classifiers for Software Fault datasets

Further, it is interesting to note that use of Chernoff Bound and Bhattacharyya Bound provides

improved result in proposed method than other methods for all datasets. The use of Bhattacharyya

Bound has further improvised the AUC obtained under chernoff bound. From this discussion it is

clear that clustering of classifier result improves the performance of overall classification result,

even if other classifiers performs poor. The Figure 4.4 shows the classification accuracy between

the proposed Bayes classifier and existing Decision Tree and KNN classifer.It is claimed from the

results that in terms of classifiers accuracy, the proposed model outperforms other single classifiers

namely Decision Tree and KNN classifer. This is true when the selection of base classifier using

Decision Tree is made based its optimal performance. It is further noted that overall performance of

proposed classification model is not affected by the base classifiers than other classifiers.

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 134
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

Figure 6 Classification results of these three classifiers for Software Fault datasets

This states that various algorithms and methods have examined and forecast the software fault

prediction. The focus of this research is on a detailed analyze of fault prediction using error

probability methodology and integral method for predicting the error that occurred during coding

stages. Developers at certain times fail to detect the error by coding. Hence, in the proposed method

the mathematical derivations are used with boundary conditons to identify the fault. The Chernoff

Bound and Bhattacharyya Bound methods provides its improved support to predict the defects or

faults. These defects are used to cluster the failures and defects, which are saved for precautionary

predictions in the software repository. This is used when the testing team uses software that

develops the life cycle.

SCOPE OF THE FURTHER RESEARCH

Further research is necessary to adopt the agile-based software fault prediction. In future studies,

several robust software metrics must be used for the development of failure prediction models to

detect the differences between the two software versions. Some studies of fault forecasting have

shown that a few modules contain most of the software projects faults. In future, such studies

should be inteneded to increase the information on fault prediction models. Researchers in future

should carry out more studies using machine learning or heuristic or meta-heuristic or evolutionary

algorithm to assess the best way to make optimal use of such approaches. Such research can

significantly influence the performance of the fault prediction. Future studies can attempt to

develop fault prediction models for the purpose of cross-project prediction that is considered to be

useful to an organization with insufficient project history of fault diagnosis.

CONCLUSIONS

The study worked on various issues associated with the software fault prediction activities like fault

prediction, software metrics, issues in data quality and performance evaluation measures. The study

highlights different methodological issues and challenges linked to these software fault prediction

activities. The high dimensionality of data and data class imbalance associated with software

quality issues is investigated widely using feature extraction and classification, respectively. The

performance is compared in terms of different metrics to evaluate the accuracy of prediction

performance. The study also identified challenges for researchers to explore in the future to further

develop the software fault prediction process.

REFERENCES

1. Abaei, G, Selamat, A & Fujita, H 2015. ‘An empirical study based on semi-supervised hybrid self-

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 135
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

organizing map for software fault prediction. Knowledge-Based Systems’, vol. 74, vol. 28-39.

2. Alonso, J, Torres, J, Berral, JL & Gavalda, R 2010. ‘Adaptive on-line software aging prediction

based on machine learning’, In 2010 IEEE/IFIP International Conference on Dependable Systems

& Networks (DSN), pp. 507-516.

3. Altinger, H, Herbold, S, Schneemann, F, Grabowski, J & Wotawa, F 2017, ‘Performance tuning for

automotive software fault prediction. In 2017 IEEE 24th International Conference on Software

Analysis’, Evolution and Reengineering (SANER), pp. 526-530.

4. Andersson, Carina 2007, ‘A replicated empirical study of a selection method for software reliability

growth models’, Empirical Software Engineering, vol. 12, no. 2, pp. 161.

5. Arar, ÖF & Ayan, K 2015. ‘Software defect prediction using cost- sensitive neural network,’

Applied Soft Computing, vol. 33, pp. 263-277.

6. Arora, I & Saha, A 2018, ‘Software fault prediction using firefly algorithm. International Journal of

Intelligent Engineering Informatics, vol. 6, no. 3-4, pp. 356-377.

7. Arora, I, Tetarwal, V & Saha, A 2015. ‘Open issues in software defect prediction’, Procedia

Computer Science, vol. 46, pp. 906-912.

8. Arshad, A, Riaz, S, Jiao, L & Murthy, A 2018. ‘Semi-supervised deep fuzzy c-mean clustering for

software fault prediction. IEEE Access’, vol. 6, pp. 25675-25685.

9. Bachmann, Adrian, Christian Bird, Foyzur Rahman, PremkumarDevanbu & Abraham Bernstein

2010’, ‘The missing links: bugs and bug-fix commits’, In Proceedings of the eighteenth ACM

SIGSOFT international symposium on Foundations of software engineering, pp. 97-106. ACM.

10. Bai, CG, Hu, QP, Xie, M & Ng, SH 2005. ‘Software failure prediction based on a Markov Bayesian

network model’, Journal of Systems and Software, vol. 74, no. 3, pp. 275-282.

11. Bennin, KE, Keung, J, Phannachitta, P, Monden, A & Mensah, S 2018, Mahakil: Diversity based

oversampling approach to alleviate the class imbalance issue in software defect prediction. IEEE

Transactions on Software Engineering, vol. 44, no. 6, pp. 534-550.

12. Bibi, S, Tsoumakas, G, Stamelos, I & Vlahavas, IP 2006, ‘Software Defect Prediction Using

Regression via Classification’, In AICCSA, pp. 330-336.

13. Bishnu, PS & Bhattacherjee, V 2012, ‘Software fault prediction using quad tree-based k-means

clustering algorithm. IEEE Transactions on knowledge and data engineering’, vol. 24, no. 6, pp.

1146-1150.

14. Bouguila, Nizar, Jian Han Wang & Ben Hamza, A 2008, ‘A bayesian approach for software quality

prediction’, In 2008 4th International IEEE Conference Intelligent Systems, vol. 2, pp. 11-49.

15. Can, H, Jianchun, X, Ruide, Z, Juelong, L, Qiliang, Y & Liqiang, X, 2013. ‘A new model for

software defect prediction using particle swarm optimization and support vector machine’, In 2013

25th Chinese Control and Decision Conference (CCDC), pp. 4106-4110.

16. Cao, Q, Sun, Q, Cao, Q & Tan, H 2015, ‘Software defect prediction via transfer learning based

neural network’, In 2015 First International Conference on Reliability Systems Engineering

(ICRSE), pp. 1-10.

17. Catal, C & Diri, B 2009, ‘Investigating the effect of dataset size, metrics sets, and feature selection

techniques on software fault prediction problem. Information Sciences’, vol. 179, no. 8,

pp. 1040-1058.

18. Catal, C 2011, ‘Software fault prediction: A literature review and current trends’, Expert systems

with applications, vol. 38, no. 4, pp. 4626-4636.

19. Catal, C, Sevim, U & Diri, B 2011, ‘Practical development of an Eclipse-based software fault

prediction tool using Naive Bayes algorithm. Expert Systems with Applications’, vol. 38, no.

3, pp. 2347-2353.

20. Catal, Cagatay & Banu Diri 2009, ‘A systematic review of software fault prediction studies’,

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 136
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

‘Expert systems with applications, vol. 36, no. 4, pp. 7346-7354.

21. Challagulla, VUB & Bastani, FB, Yen, IL & Paul, RA 2008. ‘Empirical evaluation of machine

learning based software defect prediction techniques’, International Journal on Artificial

Intelligence Tools, vol. 17, no. 02, pp. 389-400.

22. Choudhary, Garvit Rajesh, Sandeep Kumar, Kuldeep Kumar, Alok Mishra & Cagatay Catal 2018,

‘Empirical analysis of change metrics for software fault prediction’, Computers & Electrical

Engineering, vol. 67, pp. 15-24.

23. Claesen, Marc, Frank De Smet, Johan AK Suykens & Bart De Moor 2014, ‘Ensemble SVM A

library for ensemble learning using support vector machines’, The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 141-145.

24. De Carvalho, AB, Pozo, A & Vergilio, SR 2010, ‘A symbolic fault- prediction model based on

multiobjective particle swarm optimization. Journal of Systems and Software’, vol. 83, no. 5,

pp. 868-882.

25. Dejaeger, K, Verbraken, T & Baesens, B 2013, ‘Toward comprehensible software fault prediction

models using bayesian network classifiers’, IEEE Transactions on Software Engineering, vol. 39,

no. 2, pp. 237-257.

26. Dhankhar, S, Rastogi, H & Kakkar, M 2015, ‘Software fault prediction performance in software

engineering’, In 2015 2nd International Conference on Computing for Sustainable Global

Development (INDIACom), pp. 228-232.

27. Duda, Richard O, Peter E Hart & David G, ‘Stork Pattern classification. John Wiley & Sons, 2012.

28. Erturk, E & Sezer, EA 2016a. ‘Iterative software fault prediction with a hybrid approach’, Applied

Soft Computing, vol. 49, pp. 1020-1033.

29. Erturk, E & Sezer, EA 2016b. ‘Software fault prediction using Mamdani type fuzzy inference

system’, International Journal of Data Analysis Techniques and Strategies, vol. 8, no. 1, pp. 14-28.

30. Erturk, Ezgi & Ebru Akcapinar Sezer 2015, ‘A comparison of some soft computing methods for

software fault prediction’, Expert systems with application, vol. 42, no. 4, pp. 1872-1879.

31. Geng, Wang, 2018, ‘Cognitive Deep Neural Networks prediction method for software fault

tendency module based on Bound Particle Swarm Optimization’, Cognitive Systems Research, vol.

52, pp. 12-20.

32. Gondra, I 2008, ‘Applying machine learning to software fault- proneness prediction. Journal of

Systems and Software, vol. 81, no.2, pp. 186-195.

33. Goyal, R, Chandra, P & Singh, Y 2014, ‘Suitability of KNN regression in the development of

interaction based software fault prediction models. IeriProcedia, vol. 6, pp. 15-21.

34. Gyimothy, T, Ferenc, R & Siket, I 2005. ‘Empirical validation of object-oriented metrics on open

source software for fault prediction. IEEE Transactions on Software engineering’, vol. 31, no.

10, pp. 897-910.

35. Hammouri, A, Hammad, M, Alnabhan, M & Alsarayrah, F 2018, ‘Software bug prediction

using machine learning approach. International Journal of Advanced Computer Science and

Applications’, vol. 9, no. 2, pp. 78-83.

36. Han, J, Kamber, M & Pei, J 2012, ‘Data mining, concepts and techniques, Waltham, MA. Morgan

Kaufman Publishers, vol. 10, pp. 978-1.

37. Hatton, L 2008, ‘The role of empiricism in improving the reliability of future software. In Testing:

Academic and Industrial Conference.

38. He, H & Garcia, EA 2008, ‘Learning from imbalanced data. IEEE Transactions on Knowledge

& Data Engineering, vol. 9, pp. 1263-1284.

39. He, Q, Shen, B & Chen, Y 2016. ‘Software defect prediction using semi-supervised learning with

change burst information’, In 2016 IEEE 40th Annual Computer Software and Applications

Conference (COMPSAC) vol. 1, pp. 113-122.

https://doi.org/10.5281/zenodo.11195244

International Journal of Research

(IJR)

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Vol. 11 Issue 05
May 2024

Received: 25 April 2024 137
Revised: 7 May 2024
Accepted: 15 May 2024
Copyright authors 2024 DOI: https://doi.org/10.5281/zenodo.11195244

40. Hong, E 2012, ‘Software fault-proneness Prediction using random forest. International Journal of

Smart Home, vol. 6, no. 4, pp. 147-152.

41. Hu, QP, Xie, M, Ng, SH & Levitin, G 2007, ‘Robust recurrent neural network modeling for

software fault detection and correction prediction. Reliability Engineering & System Safety, vol.

92, no. 3, pp. 332-340.

42. Jiang, Y, Lin, J, Cukic, B & Menzies, T 2009. ‘Variance analysis in software fault prediction

models’, 20th International Symposium on Software Reliability Engineering, pp. 99-108.

43. Kalsoom, A, Maqsood, M, Ghazanfar, MA, Aadil, F & Rho, S 2018. ‘A dimensionality reduction-

based efficient software fault prediction using Fisher linear discriminant analysis (FLDA)’, The

Journal of Supercomputing, vol. 74, no. 9, pp. 4568-4602.

44. Kan, SH 2002, ‘Metrics and models in software quality engineering. Addison-Wesley Longman

Publishing Co., Inc..

45. Kanmani, S, Uthariaraj, VR, Sankaranarayanan, V & Thambidurai, P 2007. ‘Object-oriented

software fault prediction using neural networks. Information and software technology’, vol. 49,

no. 5, pp. 483-492.

46. Kaur, Rajdeep & ErSumit Sharma, 2018, ‘Various techniques to detect and predict faults in

software system: survey’, International Journal on Future Revolution in Computer Science and

Communication Engineering (IJFRSCE), vol. 4, no. 2, pp. 330-336.

47. Kim, S, Zimmermann, T, Whitehead Jr, EJ & Zeller, A 2007, ‘Predicting faults from cached

history. In Proceedings of the 29th international conference on Software Engineering (pp. 489-498).

IEEE Computer Society.

48. Kumar, L, Sripada, SK, Sureka, A & Rath, SK 2018, ‘Effective fault prediction model developed

using least square support vector machine (lssvm). Journal of Systems and Software,

vol. 137, pp. 686-712.

49. Lee, T, Nam, J, Han, D, Kim, S & In, HP 2011, ‘Micro interaction metrics for defect prediction’. In

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on

Foundations of software engineering, ACM, pp. 311-321.

50. Li, Z, Jing, XY & Zhu, X 2018, ‘Heterogeneous fault prediction with cost‐sensitive domain

adaptation’. Software Testing, Verification and Reliability, vol. 28, no. 2, pp. e1658.

51. Lu, H, Cukic, B & Culp, M 2012, ‘Software defect prediction using semi-supervised learning with

dimension reduction’. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, ACM, pp. 314-317.

52. Malhotra, R & Jain, A 2012, ‘Fault prediction using statistical and machine learning methods for

improving software quality’. Journal of Information Processing Systems, vol. 8, no. 2, pp. 241-262.

53. Manjula, C & Florence, L 2018, ‘Deep neural network based hybrid approach for software

defect prediction using software metrics’. Cluster Computing, pp. 1-17.

54. Martarelli, NJ & Nagano, MS 2018, ‘A constructive evolutionary approach for feature selection in

unsupervised learning’. Swarm and Evolutionary Computation, vol. 42, pp. 125-137.

55. Menzies, T, Greenwald, J & Frank, A 2007, ‘Data mining static code attributes to learn defect

predictors’. IEEE transactions on software engineering, vol. 33, no. 1, pp. 2-13.

56. Miholca, DL, Czibula, G & Czibula, IG 2018, ‘A novel approach for software defect prediction

through hybridizing gradual relational association rules with artificial neural networks’.

Information Sciences, vol. 441, pp. 152-170.

https://doi.org/10.5281/zenodo.11195244

