
We have
a fully
parallel model
cap!

 !

Abstract!

Method!
Equations and Approximations:!
!
Starting from an unperturbed
system, we introduce a
perturbation.

This yields: (Anderson, 1949)
!

!
!
!
!
!
!
!
In physics, one FREQUENTLY
has to make assumptions/
simplifications. These–invariably–
have to be justified.!
!
!
!
!
!
!
!
!
!
!
!
Substituting in for the various Tʼs,
one obtains:!

!

Semi-classical trajectories from
solving Hamiltonʼs Eqs.!
!
Numerical Method:!
!
Fully explicitly parallel, FORTRAN
and MPI!
!
Parallelization:!
!
The code has been explicitly
parallelized both for the efficiency
of the parallelization and improved
time performance of the code. !

Explicit Parallelization of Robert-Bonamy Formalism!
!

John Styers and Robert Gamache !
University of Massachusetts Lowell!

A bit about the
Parallelization!

Speedup on Local Machines I!

Speedup on Local Machines II!

Unique Parallel Output Scheme!
Consider a three-dimensional
array:!
!
a = 1,2,3, . . ., n!
b = 1,2,3,4, . . ., nʼ!
c = 1,2,3, . . ., nʼʼ!
!
The progression is!
!
111, 112, 113, 121, 122, 123,
131, 132, 133, 211, . . . !
!
Now consider x(b,a,c) (Which is
in essence the structure of the
output of the code.). The
progression is!
!
111, 112, 113, 211, 212, 213,
311, 312, 313, 411, 412, 413,
121, 122, 123, 221, 222, 223,
321, 322, 323, 421, 422,
423, . . . !
!
The problem presented is that
the data must be outputted in
this manner. This is complicated
by this being a fully parallel
(perhaps “massively parallel”)
system and by development for
an arbitrary number of
processors.!
!
This required the development
of a parallel output scheme!

The code runs over the outer
two limits whilst keeping the
middle one fixed, i.e. one
"b" (impact parameter) per
processor (note, one can't just
write out one "blob," after
another).!
!
So, a new subroutine was
written that reproduces the
write behavior of the serial
code.!
!
The code outputs its data into
a new structure (FTD_MSTR),
that then is dumped (when full)
by the master processor (0),
when "global_write” (a logical
variable) is "true.”!
!
It then resets FTD_MSTR, by
a call to (the subroutine)
FTD_MSTR_CLR.!
!
The code uses some mod
statements to make certain
that the next writes to
FTD_MSTR, "land" in the
correct places.!
!
The procedure functions
flawlessly and for an arbitrary
number of processors,
representing a significant
accomplishment of code
design and (fully parallel)
implementation.!

 The Port from Hell!

The porting of a code from one system to another is
invariably a tedious and time-consuming affair. Dealing
with the various compiler and linking issues can take as
long as a week and half of solid work. The port from
the local Mac to Darter has taken over 1 & ½ months so
far.
!
Our problems included, but were not limited to:!
!
u  Multiple very serious linking problems!
u  A horrendous “final link” problem (which took the

expertise of two professional computer scientists,
Intel, and myself to resolve)!

u  A “deformed executable”!
u  Freeing up almost a Gig (!) of statically-linked

memory!
u  A full-blown compiler error (only the second of my

entire career)!
u  Further “linker confusion,” during the final

debugging!

Summary and
Conclusions !

The parallelization of the code
has been completed, resulting
in an order of magnitude
speed-up on local systems
−and it is predicted will provide
a speed-up of several orders of
magnitude on the Darter and
MGHPCC (Massachusetts
Green High Performance
Computing Center)
supercomputers.!
!
Significant obstacles were
overcome (both in terms of
code design and
implementation), to achieve
this goal. Generalized data
output, for an arbitrary level of
processors, proved particularly
difficult. The porting of the
code to the supercomputer
Darter−as mentioned above
−proved almost surrealistically
difficult.!
!
The code has fully validated. It
results have been shown to be
identical down to the byte level
on the four processor Mac
(This is for an over 100 Mbyte
dataset.). It has validated
down to the four or fifth decimal
point, for half-width calculations
on a twelve processor Mac. (It
is believed that the (subtle)
difference is due to the use of
the “-O3” and “-parallel”
optimizations during the half-
width and line-shift
calculations.)!
!
Multiple orders of magnitude
speed-up (with full validation of
results) will greatly facilitate
further scientific investigation.!

Acknowledgments!

This work is supported by NSF
grant AGS-1156862!
!
Computation is supported on
Darter, NICS and the
Massachusetts Green High
Performance Computing Facility
(MGHPCC),!

 The Robert-Bonamy formalism has long been employed
for the computation of line shape parameters for
atmospherically important molecules. As a method, it
presents a fine balance between accuracy, and
computational viability. While within the bounds of
present-day computational resources, its calculations still
constitute a significant amount of computational overhead.
The vast majority of said computational demand is in the
computing of the resonance functions. Major aspects of
the calculation of the resonance function are extremely
repetitive in nature−presenting a problem which is almost
"embarassingly parallel.” The computation of the
resonance functions has been explicitly parallelilized
resulting in an order of magnitude speed-up on local
Macintosh machines−and multiple orders of magnitude
speed-up on two Cray Supercomputers (Darter and
MGHPCC). This will facilitate further scientific
investigation.

The system domain is
distributed on the various
processors as a function of
v and b (velocity and impact
parameter).

Initially, an identical 2-
dimensional array is built,
on all processors:

do i = 1, FTD.NV
 do j = 1, FTD.ARR.NB
 work_tasks((i-1)
*FTD.ARR.NB + j,1) = i
 work_tasks((i-1)
*FTD.ARR.NB + j,2) = j
 end do
end do

The unique (and sequential)
processor ID’s run from 0
to n-1 (n == total number of
processors)

Task is the variable that
identifies the number of
times one has cycled
through the processors.

Therefore, task + procid
yields which velocity and
impact parameter one
should be working on, i.e.

work_tasks((task + procid),
1) = curent velocity
work_tasks((task + procid),
2) = current impact
parameter

This enables each
processor to “know” what it
should be working on.

At the end of the main loop,
task is incremented by the
number of processor, i.e.

task = task + num_procs

Note that if task +
num_procs is greater than
the total number of tasks a
”global” logical variable
(work) keeps the code from
performing “non-existent”
work.

If an error is detected all
processors must be called
to terminate cleanly. If an
error occurs on any
processor a globally-
scoped, logical variable
(fault) is set to true.

The code will periodically
check to see if fault is true
on any processor. If it is,
fault is set to true on all
processors and all
processors are brought—
cleanly—to a halt.

Performance plot for a four processor
Mac(standard run)−showing an
approximate four-fold speed-up.

Performance plot for a twelve processor Mac
(standard run)−showing an approximate
twelve-fold speed-up.

1)  Assume binary collisions

2)  Full quantum mechanical

modeling of interaction
exceeds even present day
computational resources
for molecules of
atmospheric interest

